ค้นหา
  
Search Engine Optimization Services (SEO)

ไฟฟ้ากระแสสลับ

ไฟฟ้ากระแสสลับ (อังกฤษ: Alternating Current Electricity: AC หรือ ac) หมายถึงกระแสที่มีทิศทางไปและกลับตลอดระยะเวลา ไม่เหมือนกระแสตรง (Direct Current, DC หรือ dc) ที่ไหลไปในทิศทางเดียว ไม่ไหลกลับ

ไฟ AC เป็นไฟฟ้าสำหรับบ้านเรือนหรือธุรกิจอุตสาหกรรมที่ใช้ปริมาณไฟมากๆ รูปคลื่นเป็น sine wave ในบางกรณี รูปคลื่นอาจเป็นสามเหลี่ยมหรือสี่เหลี่ยม

เครื่องกำเนิดไฟฟ้ากระแสสลับเครื่องแรกเป็นครั้งแรกมีพื้นฐานมาจากหลักการของไมเคิล ฟาราเดย์สร้างขึ้นโดยช่างชาวฝรั่งเศสชื่อ Hippolyte Pixii ในปี (ค.ศ.1832) หลังจากนั้น Pixii เพิ่มตัวสลับสายเข้าไปในอุปกรณ์ของเขา ซึ่งในขณะนั้นยังใช้ไฟ dc กันอย่างแพร่หลายอยู่ กระแสสลับที่เก่าแก่ที่สุดที่มีการถูกบันทึกไว้ว่าประยุกต์ใช้จริงโดย กีโยม Duchenne นักประดิษฐ์และพัฒนาไฟฟ้าบำบัด ในปี ค.ศ.1855 เขาประกาศว่า AC ใช้รักษาการหดตัวของกล้ามเนื้อได้ดีกว่า DC

ไมเคิล ฟาราเดย์ เกิดเมื่อวันที่ 22 กันยายน ในปี ค.ศ.1791 เป็นบุตรของช่างเหล็กชาวอังกฤษ เนื่องจากฐานะไม่สู้ดี เขาจึงได้รับการศึกษาน้อยยังไม่ทันเรียนสำเร็จก็ต้องออกจากโรงเรียนกลางคัน และใช้ชีวิตอยู่ในสลัมแห่งหนึ่งไม่มีแววว่าจะเติบโตขึ้นเป็นนักวิทยาศาสตร์ที่มีชื่อเสียงไปได้ เมื่อมีอายุ 13 ปี ไมเคิลก็ได้ไปทำงานเป็นเด็กส่งหนังสือพิมพ์ และทำงานเย็บปกหนังสือในร้านขายหนังสือ จากการทำงานนี้ทำให้เขามีใจรักหนังสือและหาโอกาสอ่านหนังสืออยู่เสมอ โดยเฉพาะหนังสือที่เกี่ยวกับวิชาไฟฟ้าที่ไมเคิลได้สนใจมากที่สุด ซึ่งก็ได้ทำการทดลองดูด้วยตัวของเขาเอง และหาโอกาสไปฟังการบรรยายของเชอร์ฮัมฟรีย์ เดวี ซึ่งเขาจะไปฟังทุกครั้ง และได้ส่งจดหมายแสดงความประสงค์ที่จะขอไปเป็นเด็กรับใช้ของเชอร์ฮัมฟรีย์อีกด้วย เชอร์ฮัมฟรีย์ เดวีย์ เห็นชายหนุ่มมีความสนใจอย่างแรงกล้า จึงรับเข้าทำงานเป็นคนล้างเครื่องมือวิทยาศาสตร์ในห้องเครื่องมือ ทำให้เขามีโอกาสศึกษาวิชาทางวิทยาศาสตร์จากเชอร์ฮัมฟรีย์ เดวีย์ จนเกิดความชำนาญ จนได้รับหน้าที่เป็นช่วยและติดตามท่านเชอร์ไปในการเดินทางไปบรรยายทุกครั้ง ในปี ค.ศ.1876 วิศวกรชาวรัสเซียชื่อ Pavel Yablochkov คิดค้นระบบไฟส่องสว่างขึ้นโดยมีรากฐานจากชุดของขดลวดเหนี่ยวนำโดยที่ขดลวดปฐมภูมิเชื่อมต่อกับแหล่งไฟ AC ลวดทุติยภูมิสามารถเชื่อมต่อไปยังเทียนไฟฟ้า (โคมประกายไฟ) ได้หลายดวง ขดลวด Yablochkov ทำหน้าที่เป็นหม้อแปลงไฟฟ้านั่นเอง

หม้อแปลงไฟฟ้??าที่ถูกพัฒนาขึ้นโดยลูเชียน Gaulard และจอห์น ดิกสัน กิ๊บส์ได้แสดงให้เห็นในลอนดอนในปี ค.ศ.1881 และดึงดูดความสนใจของเวสติงเฮ้าส์ พวกเขายังแสดงสิ่งประดิษฐ์ใน Turin ในปี ค.ศ.1884 ที่ๆมันถูกนำมาใช้สำหรับระบบไฟฟ้??าแสงสว่าง งานออกแบบของพวกเขาหลายชิ้นถูกนำไปปรับใช้เป็นกฎหมายควบคุมการกระจายไฟฟ้าในสหราชอาณาจักร

วิลเลียม สแตนลี่ย์ จูเนียร์ได้ออกแบบหนึ่งในอุปกรณ์จริงครั้งแรกในการถ่ายโอนไฟ AC อย่างมีประสิทธิภาพระหว่างวงจรที่แยกออกมา การใช้คู่ของขดลวดพันบนแกนเหล็กเดียวกัน เรียกว่าขดลวดเหนี่ยวนำเป็นหม้อแปลงยุคแรก ระบบไฟ AC ได้รับการพัฒนาอย่างรวดเร็วหลังปี ค.ศ. 1886 และรวมทั้งการอุดหนุนโดยนิโคลา เทสลา (สิทธิบัตรให้จอร์จ เวสติงเฮ้าส์) และคาร์ล วิลเฮล์ม ซีเมนส์ ระบบ AC เอาชนะข้อจำกัด ของระบบ DC ที่ใช้โดยโทมัส เอดิสัน ในการแจกจ่ายกระแสไฟฟ้าอย่างมีประสิทธิภาพในระยะทางไกล ถึงแม้ว่าเอดิสันพยายามที่จะทำลายชื่อเสียงของกระแสสลับว่าเป็นอันตรายเกินไปในสงครามแห่งกระแส

แรงดันไฟฟ้า AC อาจจะเพิ่มขึ้นหรือลดลงด้วยหม้อแปลงไฟฟ้??า การใช้แรงดันไฟฟ้าที่สูงจะมีประสิทธิภาพในการส่งพลังงานมากอย่างมีนัยสำคัญ การสูญเสียพลังงานในตัวนำเป็นผลคูณของกระแสยกกำลังสองกับค่าความต้านทานของตัวนำ ตามสูตร

ซึ่งหมายความว่าเมื่อส่งไฟฟ้??าด้วยพลังงานคงที่บนลวดใดๆ ถ้ากระแสลดลงสองเท่า, การสูญเสียพลังงานจะลดลงสี่เท่า

ดังนั้น ถ้าต้องการส่งพลังงานเท่าเดิม แต่ให้การสูญเสียน้อยที่สุด คือลดกระแสที่ส่งลง แต่เพิ่มแรงดันไฟฟ้าขึ้น (มักจะหลายร้อยกิโลโวลต์) เพราะการที่ใช้กระแสที่ต่ำ ทำให้เกิดพลังงานสูญเสียน้อยลง

อย่างไรก็ตาม การใช้แรงดันไฟฟ้าที่สูงยังมีข้อเสียเหมือนกัน อย่างแรกคือฉนวนไฟฟ้าต้องเพิ่มขึ้นและอย่างที่สองเรื่องความปลอดภัยของผู้ปฏิบัติงาน ในโรงไฟฟ้??าพลังงานจะถูกสร้างขึ้นที่แรงดันไฟฟ้าหนึ่งและจากนั้นก็เพิ่มแรงดันสำหรับการส่ง ใกล้โหลดแรงดันจะถูกปรับลงเหลือไม่กี่ร้อยโวลต์

ระบบสายส่งแบบกระแสตรงแรงดันสูง (HVDC) ทำงานตรงกันข้ามกับระบบ AC ในการส่งพลังงานระยะทางไกลๆ แต่ระบบ HVDC มีแนวโน้มที่จะมีราคาแพงกว่าและมีประสิทธิภาพน้อยกว่าถ้าระยะทางที่ส่งสั้นๆ ระบบ HVDC ยังเป็นไปไม่ได้เมื่อครั้งที่ เอดิสัน, เวสติงเฮ้าส์และเทสลาแข่งกันออกแบบระบบไฟฟ้า เพราะยังไม่มีวิธีแปลงไฟ AC เป็น DC แล้วแปลงกลับเป็น AC ใหม่ได้ด้วยเทคโนโลยีสมัยนั้น

ระบบไฟฟ้าสามเฟสเป็นเรื่องธรรมดามาก วิธีที่ง่ายที่สุดคือการแยกขดลวดสเตเตอร์ในเครื่องกำเนิดไฟฟ้าออกเป็น 3 ชุด แต่ละชุดทำมุม 120?ซึ่งกันและกัน รูปคลื่นของกระแสจะถูกสร้างขึ้นโดยมีขนาดเท่ากันแต่เฟสต่างกัน 120? ถ้าเพิ่มขดลวดตรงข้ามกับชุดเหล่านี้ (ระยะห่าง 60 ?) พวกมันจะสร้างเฟสเดียวกันแต่กระแสไฟฟ้าตรงข้ามกันและสามารถต่อสายเข้าด้วยกันได้

ในทางปฏิบัติ จะใช้ "ลำดับของ pole"ที่สูงกว่า ตัวอย่างเช่นเครื่อง 12-pole จะมีขดลวด 36 ชุด (ระยะห่าง 10?) ข้อดีคือสามารถใช้ความเร็วต่ำได้ ตัวอย่างเช่นเครื่อง 2-pole ทำงานที่ 3600 รอบต่อนาทีแต่เครื่อง 12-pole ทำงานที่ 600 รอบต่อนาทีเพื่อผลิตความถี่เดียวกัน วิธีนี้ทำได้สำหรับเครื่องขนาดใหญ่

ถ้าโหลดในระบบสามเฟสจะมีความสมดุลกันทุกเฟส จะไม่มีการไหลของกระแสที่นิวทรอล แม้จะอยู่ในสภาวะโหลดไม่สมดุล (เชิงเส้น) ที่เลวร้ายที่สุด กระแสนิวทรอลก็จะไม่เกินกว่ากระแสสูงสุดของเฟส โหลดไม่เชิงเส้น (เช่นคอมพิวเตอร์) อาจต้องใช้สายนิวทรอลขนาดใหญ่ในแผงกระจายไฟเพื่อจัดการกับ Harmonics ที่เกิดขึ้น ฮาโมนิคส์สามารถทำให้กระแสในนิวทรอลสูงกว่ากระแสเฟสได้

ระบบสามเฟส สี่เส้น จะถูกใช้ที่ปลายทาง ในการลดแรงดันจากสายส่ง ด้าน primary จะเป็นเดลต้า (3 สาย) ด้าน secondary เป็นดาว (4-wire,center เป็น สายดิน)

สำหรับลูกค้าขนาดเล็ก อาจใช้เพียงเฟสเดียวกับนิวทรอล หรือสองเฟสกับนิวทรอล สำหรับการติดตั้งขนาดใหญ่ใช้สามเฟสกับนิวทรอล จากแผงหลักทั้งไฟสามเฟสและเฟสเดียวจะถูกจ่ายออกไป

สายนิวทรอลหรือสายดิน จะต่อระหว่างโลหะที่เป็นฝาตู้ใส่อุปกรณ์กับสายดิน ตัวนำนี้จะป้องกันไฟฟ้าดูด ในกรณีที่มีกระแสไฟฟ้ารั่วมาที่ฝาตู้โลหะนี้ การเชื่อมฝาตู้ที่เป็นโลหะทั้งหมดมาที่สายดินเพียงจุดเดียว จะทำให้แน่ใจได้ว่า จะมีเส้นทางของกระแสรั่วไปลงดินที่สั้นที่สุด กระแสที่รั่วนี้ จะต้องทำให้อุปกรณ์ป้องกันไฟฟ้ารั่ว (เบรกเกอร์, ฟิวส์)ทำงานเช่นเบรกเกอร์ตก หรือฟิวส์ละลายให้เร็วที่สุด สายที่เชื่อมตู้ทุกเส้นต้องมาลงดินที่ตู้กระจายไฟหลักหรือที่เดียวกับที่สายนิวทรอลต่อลงดิน

ความถี่ของระบบไฟฟ้าแตกต่างกันไปตามประเทศ; พลังงานไฟฟ้าส่วนใหญ่จะถูกสร้างขึ้นที่ 50 หรือ 60 เฮิรตซ์ บางประเทศมีส่วนผสมของความถี่ 50 Hz และ 60 Hz เช่นพลังงานไฟฟ้าในประเทศญี่ปุ่น ประเทศไทยใช้ความถี่ 50 Hz หรือ 50 รอบต่อวินาที หรือ ไฟฟ้าวิ่งจากโรงไฟฟ้ามาบ้านผู้ใช้ ไปกลับ 50 ครั้งต่อวินาที

ความถี่ต่ำทำให้ง่ายในการออกแบบมอเตอร์ไฟฟ้า โดยเฉพาะอย่างยิ่งสำหรับการยก การบดและการกลิ้ง และมอเตอร์ชนิดฉุดสำหรับการขนส่งเช่นรถไฟ อย่างไรก็ตาม ความถี่ต่ำยังทำให้เกิดการกระพริบที่เห็นได้ชัดเจนในหลอดไฟอาร์คและหลอดไส้ การใช้ความถี่ที่ต่ำๆยังให้ประโยชน์จากการลดการสูญเสียความต้านทานซึ่งเป็นสัดส่วนกับความถี่ แต่เดิมเครื่องกำเนิดไฟฟ้าที่น้ำตกไนแอการาผลิตไฟฟ้า 25 Hz, เพื่อประนีประนอมระหว่างมอเตอร์เหนี่ยวนำเพื่อการลากความถี่ต่ำในขณะที่ยังช่วยให้หลอดไฟทำงาน (แม้ว่าจะมีการกระพริบที่เห็นได้ชัด) ส่วนใหญ่ของลูกค้าที่อยู่อาศัยและเชิงพาณิชย์ที่ใช้ 25 Hz ถูกแปลงเป็น 60 Hz ในปลายปี 1950 ไฟฟ้าความถี่16.7 เฮิรตซ์ (เดิม 16 2/3 Hz) ก็ยังคงใช้ในบางระบบของรถไฟในยุโรปเช่นในประเทศออสเตรีย, เยอรมนี, นอร์เวย์, สวีเดนและสวิส

การใช้งานนอกชายฝั่ง, การทหาร, อุตสาหกรรมสิ่งทอ, ในทะเล, คอมพิวเตอร์เมนเฟรม, เครื่องบินและยานอวกาศบางครั้งใช้ 400 Hz เพื่อประโยชน์ของน้ำหนักที่ลดลงของอุปกรณ์หรือเพิ่มความเร็วของมอเตอร์

กระแสตรงไหลอย่างสม่ำเสมอตลอดหน้าตัดของลวด กระแสสลับที่ความถี่ใดๆถูกบังคับให้ไหลห่างจากใจกลางลวด ให้ไปอยู่ผิวนอก เป็นเพราะการเร่งความเร็วของประจุไฟฟ้าในกระแสสลับสร้างคลื่นรังสีแม่เหล็กไฟฟ้าที่ลบล้างการแพร่กระจายของกระแสไฟฟ้าให้ออกไปจากกึ่งกลางของวัสดุที่มีค่าการนำไฟฟ้าสูง ปรากฏการณ์นี้เรียกว่า skin effect

ที่ความถี่สูงมากๆ กระแสจะไม่ไหลในเส้นลวด แต่ไหลบนพื้นผิวของลวดภายในความหนาของผิวเล็กน้อย ความลึกของผิวจะมีความหนาที่ทำให้ความหนาแน่นกระแสลดลง 63% แม้ที่ความถี่ค่อนข้างต่ำที่ใช้ในการส่งกำลังไฟฟ้??า (50-60 Hz), การกระจายไม่สม่ำเสมอของกระแสไฟฟ้ายังคงเกิดขึ้นในตัวนำที่หนาพอ ตัวอย่างเช่นความลึกของผิวของตัวนำทองแดงจะอยู่ที่ประมาณ 8.57 มม. ที่ 60 Hz, ดังนั้น ตัวนำที่กระแสสูงมักจะกลวงเพื่อลดมวลและค่าใช้จ่าย

เนื่องจากกระแสไฟฟ้ามีแนวโน้มที่จะไหลในผิวรอบตัวนำ, พื้นที่หน้าตัดของตัวนำจะลดลง ทำให้ความต้านทานของตัวนำในระบบไฟฟ้ากระแสสลับสูงขึ้น เพราะความต้านทานจะแปรผกผันกับพื้นที่หน้าตัด ความต้านทาน AC มักจะสูงกว่าความต้านทาน DC มาก ก่อให้เกิดการสูญเสียพลังงานที่สูงขึ้นมากเนื่องจากปรากฏการณ์ ohmic heating (หรือเรียกว่าการสูญเสีย I2R)

สำหรับความถี่ต่ำถึงความถี่กลาง ตัวนำสามารถถักเป็นสายเกลียว แต่ละเส้นเคลือบฉนวน สายไฟที่สร้างขึ้นโดยใช้เทคนิคนี้เรียกว่า Litz wire วิธีนี้จะช่วยบรรเทาผลกระทบจาก skin effect ด้วยการบังคับให้กระแสกระจายเท่าเทียมกันตลอดหน้าตัดของสายเกลียว Litz wire ถูกนำมาใช้ทำ ตัวเหนี่ยวนำคุณภาพสูง ลดการสูญเสียในตัวนำกระแสสูงแต่ความถี่ต่ำ และขดลวดของอุปกรณ์ที่ใช้คลื่นวิทยุความถี่สูงขึ้น (ถึงหลายร้อยกิโลเฮิร์ตซ์) เช่นเพาเวอร์ซัพพลายแบบสลับโหมด และหม้อแปลงไฟฟ้??าคลื่นความถี่วิทยุ

ตามที่ได้กล่าวไว้ข้างต้น กระแสสลับเกิดจากประจุไฟฟ้าภายใต้ความเร่งเป็นระยะ ๆ ซึ่งทำให้เกิดการแผ่กระจายของคลื่นแม่เหล็กไฟฟ้า พลังงานที่แผ่ออกมาจะหายไป ทั้งนี้ขึ้นอยู่กับความถี่ การใช้เทคนิคหลายอย่างจะสามารถลดการสูญเสียอันเนื่องมาจากการแผ่กระจายนั้น

ที่ความถี่สูงถึงประมาณ 1 GHz, สายแต่ละคู่จะถูกบิดเป็นเกลียวเข้าด้วยกัน เรียกว่า twisted pair ซึ่งจะช่วยลดความสูญเสียที่เกิดจากการแผ่รังสีแม่เหล็กไฟฟ้าและเหนี่ยวนำต่างๆ คู่บิดที่ต้องใช้กับระบบการส่งสัญญาณที่มีความสมดุลเพื่อให้ทั้งสองสายพกพากระแสเท่ากัน แต่ทิศทางตรงข้ามกัน ลวดแต่ละในคู่บิดจะแผ่กระจายสัญญาณออกมา แต่มันจะถูกหักล้างอย่างมีประสิทธิภาพโดยรังสีจากสายอื่น ๆ มีผลทำให้เกิอบจะไม่มีการสูญเสียจากการแผ่รังสีเลย

สาย coaxial มักใช้กับความถี่เสียงหรือสูงกว่าเพื่อความสะดวก ประกอบด้วยลวดตัวนำอยู่ภายในหลอดตัวนำแยกจากกันด้วยชั้นของไดอิเล็กทริก กระแสไฟฟ้าที่ไหลในตัวนำด้านในมีค่าเท่ากับและตรงข้ามกับกระแสที่ไหลบนพื้นผิวด้านในของหลอด สนามแม่เหล็กไฟฟ้าจึงมีอย่างสมบูรณ์ภายในหลอดและ (โดยจินตนาการ) ไม่มีการสูญเสียพลังงานจากการแผ่รังสีหรือเชื่อมถึงกันนอกหลอด สาย coaxial มีการสูญเสียเล็กน้อยที่ยอมรับได้สำหรับความถี่สูงถึงประมาณ 5 GHz สำหรับความถี่ไมโครเวฟที่สูงกว่า 5 GHz ความสูญเสีย (สาเหตุหลักจากความต้านทานไฟฟ้าของตัวนำใส้กลาง) มากเกินไป ทำให้ waveguide เป็นตัวกลางในการส่งคลื่นที่มีประสิทธิภาพมากกว่า สาย coaxial ที่มีอากาศแทนสารไดอิเล็กทริกเป็นที่ต้องการเพราะสามารถส่งกำลังด้วยความสูญเสียที่น้อยกว่า

ท่อนำคลื่นคล้ายกับสาย coax เนื่องจากทั้งสองชนิดนี้ประกอบด้วยท่อ แต่ความแตกต่างอยู่ที่ท่อนำคลื่นไม่ได้มีตัวนำภายใน ท่อนำคลื่นอาจมีรูปแบบหน้าตัดอะไรก็ได้ แต่ส่วนใหญ่เป็นรูปสี่เหลี่ยมผืนผ้า เพราะท่อนำคลื่นไม่ได้มีตัวนำภายในเพื่อส่งพลังงานในรูปกระแส แต่ส่งโดยสนามแม่เหล็กไฟฟ้า ถึงแม้ว่ากระแสที่พื้นผิวจะไหลในผนังด้านในของท่อ กระแสพื้นผิวไม่ส่งพลังงาน พลังงานจะถูกส่งโดยสนามแม่เหล็กไฟฟ้า กระแสพื้นผิวเกิดจากสนามแม่เหล็กไฟฟ้าและมีผลในการเก็บสนามไฟฟ้าไว้ภายในท่อนำคลื่นและป้องกันการรั่วไหลของคลื่นออกนอกท่อนำคลื่น

ท่อนำคลื่นมีขนาดเป็นสัดส่วนกับความยาวคลื่นที่จะถูกส่ง ดังนั้นท่อนำคลื่นจึงเป็นความเป็นไปได้อย่างเดียวสำหรับความถี่ย่านไมโครเวฟ นอกจากความเป็นไปได้ทางด้านกลไกแล้ว ความต้านทานไฟฟ้าของโลหะที่ใช้สร้างผนังของท่อนำคลื่นทำให้คลื่นกระจาย (กระแสพื้นผิวทีไหลบนตัวนำที่มีรอยต่อหลวมทำให้เกิดความร้อน) ที่ความถี่สูงๆ การสูญเสียพลังงานอันเนื่องมาจากความร้อนจะมีขนาดใหญ่เกินกว่าจะยอมรับได้

ที่ความถี่สูงกว่า 200 GHz, ขนาดของท่อนำคลื่นเล็กลงมากๆ และ ohmic loss ในผนังท่อนำคลื่นมีจำนวนมาก แต่ใยแก้วนำแสงซึ่งเป็นรูปแบบของท่อนำคลื่นไดอิเล็กทริกสามารถถุกนำมาใช้ได้แทน สำหรับความถี่ดังกล่าววิธีส่งพลังงานด้วยแรงดันไฟฟ้าและกระแส ใช้ไม่ได้แล้ว

กระแสสลับไปด้วยกัน (หรือเกิดจาก) กับแรงดันไฟฟ้า แรงดันไฟฟ้ากระแสสลับ v สามารถอธิบายทางคณิตศาสตร์ว่าเป็นฟังชั่นของเวลาโดยสมการต่อไปนี้:

ค่า peak-to-peak ของแรงดันไฟฟ้า AC ถูกกำหนดให้เป็นความแตกต่างระหว่างจุดสูงสุดด้านบวกและจุดสูงสุดด้านลบ เนื่องจากค่าสูงสุดของ คือ +1 และค่าต่ำสุดคือ -1, แรงดัน AC จะขึ้นลงระหว่าง และ แรงดันไฟฟ้า peak-to-peak ปกติจะถูกเขียนว่า หรือ เพราะฉะนั้น .

  แทนที่จะใช้กำลังงานในจุดใดจุดหนึ่ง ในทางปฏิบัติ จะใช้กำลังงานในเวลาเฉลี่ย (ที่ๆค่าเฉลี่ยจะถูกกระทำในจำนวนเต็มรอบใด ๆ) ดังนั้นแรงดันไฟฟ้า AC มักจะแสดงเป็นค่า root mean square (RMS) เขียนเป็น ดังนั้น

เพื่อแสดงให้เห็นถึงแนวคิดเหล่านี้ พิจารณาไฟ 230 V AC ที่ใช้ในหลายประเทศทั่วโลก เพราะค่า RMS = 230 V หมายความว่ากำลังงานเฉลี่ยตามเวลา เทียบเท่ากับกำลังงานที่ส่งมาจากแรงดัน DC 230 โวลต์จารณาถึงค่าแรงดันไฟฟ้าสูงสุด (แอมปลิจูด) เราสามารถจัดเรียง สมการข้างต้นใหม่ว่า :


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301