โรงไฟฟ้านิวเคลียร์ เป็นโรงไฟฟ้าพลังความร้อนแบบหนึ่งที่ใช้แหล่งพลังงานความร้อนจากเครื่องปฏิกรณ์ที่ใช้พลังงานนิวเคลียร์ในการผลิตไอน้ำแรงดันสูงจ่ายให้กับกังหันไอน้ำ กังหันไอน้ำจะไปหมุนเครื่องกำเนิดไฟฟ้าผลิตเป็นกระแสไฟฟ้าออกมา โดยเครื่องปฏิกรณ์ที่ใช้ในการผลิตพลังงานนิวเคลียร์ สามารถแบ่งออกเป็น 2 ประเภทได้แก่ เครื่องปฏิกรณ์นิวเคลียร์แบบวิจัย (อังกฤษ: Research Reactor) ที่ใช้ประโยชน์จากนิวตรอนฟลักซ์ในการวิจัย และระบายความร้อนที่เกิดขึ้นออกสู่ชั้นบรรยากาศ และเครื่องปฏิกรณ์นิวเคลียร์กำลัง (อังกฤษ: Power Reactor) ที่ใช้พลังความร้อนที่เกิดขึ้นเปลี่ยนเป็นพลังงานไฟฟ้า ซึ่งเครื่องปฏิกรณ์นิวเคลียร์กำลัง มีขนาดใหญ่โตกว่าเครื่องปฏิกรณ์นิวเคลียร์วิจัยเป็นอย่างมาก
โรงไฟฟ้านิวเคลียร์เป็นโรงไฟฟ้าชนิด Baseload คือผลิตพลังงานคงที่ โดยไม่ขึ้นกับกำลังงานที่ต้องการใช้จริง เนื่องจากต้นทุนเชื้อเพลิงมีราคาถูกเมื่อเทียบกับค่าใช้จ่ายอื่นๆในการผลิต (ในขณะที่โรงไฟฟ้าที่ใช้การต้มน้ำด้วยแหล่งพลังงานอื่น สามารถลดการจ่ายไฟลงครึ่งหนึ่งได้เวลากลางคืนเพื่อประหยัดค่าใช้จ่ายเชื้อเพลิง) กำลังไฟที่หน่วยผลิตจ่ายได้นั้นอาจมีตั้งแต่ 40 เมกะวัตต์ จนถึงเกือบ 2000 เมกะวัตต์ ในปัจจุบันหน่วยผลิตที่สร้างกันมีขอบเขตอยู่ที่ 600-1200 เมกะวัตต์
ข้อมูลของ IAEA ณ วันที่ 23 เมษายน ค.ศ. 2014 มีเครื่องปฏิกรณ์ทำงานอยู่ 435 เครื่องใน 31 ประเทศทั่วโลก รวมแล้วผลิตกำลังไฟฟ้าเป็น 1 ใน 6 ส่วนของพลังงานไฟฟ้าทั้งหมดในโลก โดยสหรัฐอเมริกามีจำนวนโรงไฟฟ้านิวเคลียร์ มากที่สุด ตามมาด้วย ฝรั่งเศส
ไฟฟ้าถูกสร้างขึ้นโดยเครื่องปฏิกรณ์นิวเคลียร์เป็นครั้งแรกในวันที่ 3 กันยายน 1948 ด้วย'เครื่องปฏิกรณ์แกรไฟท์ X-10' ใน Oak Ridge รัฐเทนเนสซี ประเทศสหรัฐอเมริกาและเป็นโรงไฟฟ้านิวเคลียร์เครื่องแรกที่จะให้กำลังไฟกับหลอดไฟดวงหนึ่ง. การทดลองครั้งที่สองมีขนาดใหญ่กว่าเกิดขึ้นในวันที่ 20 ธันวาคม 1951 ที่สถานีทดลอง EBR-I ใกล้ Arco, รัฐไอดาโฮสหรัฐอเมริกา และเมื่อวันที่ 27 มิถุนายน 1954 โรงไฟฟ้านิวเคลียร์แห่งแรกของโลกที่ผลิตไฟฟ้าสำหรับกริด (ไฟฟ้า) เริ่มดำเนินการที่เมือง Obninsk สหภาพโซเวียต. สถานีไฟฟ้าเต็มรูปแบบแห่งแรกของโลกคือที่คาลเดอฮอลล์ในอังกฤษเปิดเมื่อวันที่ 17 ตุลาคม 1956.
การแปลงให้เป็นพลังงานไฟฟ้าเกิดขึ้นทางอ้อม เช่นเดียวกับในโรงไฟฟ้าพลังความร้อนธรรมดาทั่วไป ความร้อนเกิดจากปฏิกิริยาฟิชชันในเครื่องปฏิกรณ์นิวเคลียร์ (เครื่องปฏิกรณ์น้ำเบา) ไอของน้ำ (ไอน้ำ) ถูกผลิตขึ้นโดยตรงหรือโดยอ้อม จากนั้น ไอน้ำแรงดันสูงมักจะจ่ายให้กับกังหันไอน้ำในหลายขั้นตอน กังหันไอน้ำในโรงไฟฟ้านิวเคลียร์ของประเทศตะวันตกมักอยู่ในหมู่กังหันไอน้ำที่ใหญ่ที่สุดเท่าที่เคยสร้าง หลังจากผ่านกังหันไอน้ำ ไอน้ำมีการขยายตัวและบางส่วนก็ควบแน่น ไอน้ำที่เหลือจะควบแน่นในคอนเดนเซอร์ คอนเดนเซอร์เป็นตัวแลกเปลี่ยนความร้อนซึ่งจะเชื่อมต่อกับฝั่งด้านรองเช่นแม่น้ำหรือหอหล่อเย็น จากนั้น น้ำจะถูกสูบกลับเข้ามาในเครื่องปฏิกรณ์นิวเคลียร์และวงจรก็เริ่มต้นอีกครั้ง วัฏจักรของน้ำกับไอเป็นไปตามวงจรของ "Rankine cycle"
เครื่องปฏิกรณ์นิวเคลียร์เป็นอุปกรณ์ที่จะเริ่มต้นและควบคุมปฏิกิริยาลูกโซ่นิวเคลียร์ที่ยั่งยืน การใช้งานที่พบมากที่สุดของเครื่องปฏิกรณ์นิวเคลียร์คือใช้ในการผลิตพลังงานไฟฟ้าและการขับเคลื่อนเรือ
เครื่องปฏิกรณ์เป็นหัวใจของโรงไฟฟ้า ในส่วนกลางของมัน ความร้อนของแกนเครื่องปฏิกรณ์ถูกสร้างขึ้นโดยปฏิกิริยานิวเคลียร์ที่มีการควบคุม ความร้อนนี้ถูกส่งผ่านไปให้น้ำหล่อเย็นขณะที่มันถูกสูบผ่านเครื่องปฏิกรณ์และนี่เองเป็นการดึงเอาพลังงานจากเครื่องปฏิกรณ์ออกมา ความร้อนจากปฏิกิริยานิวเคลียร์ฟิชชั่นจะถูกใช้ในการสร้างไอน้ำซึ่งจะไหลผ่านกังหันไอน้ำที่จะส่งกำลังไปที่ใบพัดของเรือหรือไปหมุนเครื่องกำเนิดไฟฟ้า
เนื่องจากปฏิกิริยานิวเคลียร์ฟิชชั่นสร้างกัมมันตภาพรังสีออกมาด้วย แกนของเครื่องปฏิกรณ์จึงต้องถูกล้อมรอบด้วยเกราะป้องกัน อ่างบรรจุนี้จะดูดซับรังสีและป้องกันไม่ให้วัสดุกัมมันตรังสีถูกปล่อยออกมาสู่สิ่งแวดล้อม นอกจากนี้เครื่องปฏิกรณ์จำนวนมากมีการติดตั้งโดมคอนกรีตเพื่อป้องกันเครื่องปฏิกรณ์ไม่ให้เกิดการเสียหายภายในและไม่ให้เกิดผลกระทบกับภายนอก.
ในโรงไฟฟ้านิวเคลียร์ ชนิดของเครื่องปฏิกรณ์ เชื้อเพลิงนิวเคลียร์ วงจรความเย็นและตัวหน่วงปฏิกิริยาจะใช้แตกต่างกัน
วัตถุประสงค์ของกังหันไอน้ำคือการแปลงความร้อนที่มีอยู่ในไอน้ำเป็นพลังงานกล เครื่องยนต์ที่ประกอบขึ้นเป็นกังหันไอน้ำมักจะถูกแยกออกจากโครงสร้างอาคารเครื่องปฏิกรณ์หลัก มันจะถูกวางให้อยุ่ในตำแหน่งที่จะป้องกันไม่ให้เศษซากจากการเสียหายของกังหัน หากเกิดขึ้นในระหว่างการดำเนินงาน ไม่ให้มันบินว่อนไปกระทบกับเครื่องปฏิกรณ์[ต้องการอ้างอิง]
ในกรณีของเครื่องปฏิกรณ์น้ำแรงดันสูง กังหันไอน้ำจะถูกแยกออกจากระบบนิวเคลียร์ ในการตรวจสอบการรั่วไหลในเครื่องกำเนิดไอน้ำ ซึ่งก็คือทางเดินของน้ำกัมมันตภาพรังสีในช่วงเริ่มต้น มาตรวัดปฏิกิริยาจะถูกติดตั้งเพื่อตามรอยทางออกของไอน้ำจากเครื่องกำเนิดไอน้ำ ในทางตรงกันข้าม เครื่องปฏิกรณ์น้ำเดือดจะส่งน้ำกัมมันตรังสีไปยังกังหันไอน้ำโดยตรง ดังนั้นกังหันจึงถูกเก็บไว้เป็นส่วนหนึ่งของพื้นที่ควบคุมของโรงไฟฟ้านิวเคลียร์
เครื่องกำเนิดไฟฟ้าแปลงพลังงานจลน์ที่เกิดจากกังหันให้เป็นพลังงานไฟฟ้า. เครื่องกำเนิดไฟฟ้า AC แบบซิงโครนัสที่มีอัตรากำลังสูงจะถูกนำมาใช้
ระบบหล่อเย็นจะระบายความร้อนออกจากแกนเครื่องปฏิกรณ์และลำเลียงมันไปยังอีกพื้นที่หนึ่งของโรงงาน ในพื้นที่นี้พลังงานความร้อนสามารถถูกนำไปใช้ประโยชน์ในการผลิตไฟฟ้าหรือทำงานที่มีประโยชน์อื่นๆ โดยปกติตัวหล่อเย็นที่ร้อน(อังกฤษ: hot coolant) จะถูกใช้เป็นแหล่งจ่ายความร้อนสำหรับหม้อต้มน้ำ และแรงดันไอน้ำจากหม้อต้มน้ำนั้นจะเป็นกำลังขับกังหันไอน้ำหนึ่งเครื่องหรือมากกว่าที่จะไปหมุนเครื่องกำเนิดไฟฟ้า
ในกรณีฉุกเฉิน วาล์วนิรภัยสามารถนำมาใช้เพื่อป้องกันไม่ให้ท่อหรือเครื่องปฏิกรณ์ระเบิด วาล์วทั้งหลายได้รับการออกแบบเพื่อให้พวกมันสามารถปรับเปลี่ยนอัตราการไหลให้มีความดันเพิ่มขึ้นทีละน้อย ในกรณีของ BWR ไอน้ำถูกป้อนเข้าไปในห้องบีบอัดโดยตรงและควบแน่นอยู่ในนั้น หลายห้องในตัวแลกเปลี่ยนความร้อน(อังกฤษ: heat exchanger) มีการเชื่อมต่อกับวงจรหล่อเย็นระยะกลาง
ระดับน้ำในเครื่องกำเนิดไอน้ำและเครื่องปฏิกรณ์นิวเคลียร์จะถูกควบคุมโดยใช้ระบบจ่ายน้ำ ปั๊มจ่ายน้ำมีหน้าที่ในการนำน้ำจากระบบควบแน่น เพิ่มความดันและบังคับให้มันเข้าไปในเครื่องกำเนิดไอน้ำ (ในกรณีของเครื่องปฏิกรณ์น้ำแรงดันสูง) หรือป้อนโดยตรงเข้าไปในเครื่องปฏิกรณ์ (สำหรับเครื่องปฏิกรณ์น้ำเดือด)
โรงไฟฟ้านิวเคลียร์ส่วนใหญ่ต้องการแหล่งจ่ายไฟที่มีหม้อแปลงไฟฟ้าบริการจากสถานีจ่ายด้านนอกที่แตกต่างกันสองแห่งและอยู่ภายในพื้นที่ที่เป็น switchyard ของโรงงานที่อยู่ห่างกันพอสมควรและสามารถรับกระแสไฟฟ้าจากสายส่งหลายสาย นอกจากนี้ในบางโรงไฟฟ้านิวเคลียร์ เครื่องกำเนิดไฟฟ้าแบบกังหันสามารถให้กำลังไฟกับโหลดบ้านของโรงงานในขณะที่โรงงานต่ออยู่กับหม้อแปลงบริการของสถานีซึ่งต่อพ่วงไฟฟ้ามาจากบัสบาร์เอาต์พุตของเครื่องกำเนิดไฟฟ้าก่อนที่จะถึง step-up transformer (โรงงานเหล่านี้ยังมีหม้อแปลงไฟฟ้าบริการของสถานีที่รับพลังงานนอกสถานที่โดยตรงจาก switchyard) แม้จะมีความซ้ำซ้อนของแหล่งพลังงานสองแหล่ง การสูญเสียพลังงานนอกสถานที่โดยรวมยังคงเป็นไปได้ โรงไฟฟ้านิวเคลียร์มีการติดตั้งระบบไฟฉุกเฉินเพื่อรักษาความปลอดภัยในกรณีที่มีการปิดหน่วยและการขาดหายของพลังงานนอกสถานที่ แบตเตอรี่ให้พลังงานสำรองกับเครื่องมือและระบบการควบคุมและวาล์วทั้งหลาย เครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินให้ไฟ AC โดยตรงในการชาร์จแบตเตอรี่และเพื่อให้กำลังไฟกับระบบที่ต้องใช้ไฟ AC เช่นมอเตอร์ที่ขับเคลื่อนปั๊ม เครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินไม่ได้กำลังไฟให้กับทุกระบบในโรงงาน เฉพาะระบบที่จำเป็นต้องปิดเครื่องปฏิกรณ์ลงอย่างปลอดภัย เอาความร้อนจากการสลายตัวของเครื่องปฏิกรณ์ออก ระบายความร้อนที่แกนในกรณีฉุกเฉิน, และในโรงงานบางชนิดใช้สำหรับระบายความร้อนในบ่อเชื้อเพลิงใช้แล้ว (อังกฤษ: spent fuel pool) ปั๊มผลิตกระแสไฟฟ้าขนาดใหญ่เช่นปั๊มจ่ายน้ำหลัก คอนเดนเสท น้ำหมุนเวียน และ (ในเครื่องปฏิกรณ์น้ำแรงดันสูง) ปั๊มตัวหล่อเย็นของเตาปฏิกรณ์ไม่ได้รับการสำรองจากเครื่องยนต์ดีเซล
ในประเทศสหรัฐอเมริกาและแคนาดา, คนงานยกเว้นผู้บริหารจัดการ, บุคคลากรมืออาชีพ (เช่นวิศวกร) และเจ้าหน้าที่รักษาความปลอดภัยมีแนวโน้มที่จะเป็นสมาชิกของ'ภราดรภาพของคนงานไฟฟ้านานาชาติ'(อังกฤษ: International Brotherhood of Electrical Workers (IBEW)) หรือ'สหภาพคนงานยูทิลิตี้แห่งอเมริกา'(อังกฤษ: Utility Workers Union of America (UWUA))อย่างใดอย่างหนึ่ง หรือหนึ่งในสหภาพของธุรกิจการค้าต่างๆและสหภาพแรงงานที่เป็นตัวแทนของช่างเครื่อง, แรงงาน, ผู้สร้างหม้อต้มน้ำ, คนงานโรงสี, คนงานเหล็ก, ฯลฯ
เศรษฐศาสตร์ของโรงไฟฟ้านิวเคลียร์ใหม่เป็นเรื่องความขัดแย้ง, และการลงทุนหลายพันล้านดอลลาร์นั่งอยู่บนทางเลือกของแหล่งพลังงาน. โรงไฟฟ้านิวเคลียร์มักจะมีค่าใช้จ่ายในการลงทุนสูง, แต่ค่าใช้จ่ายด้านเชื้อเพลิงโดยตรงต่ำ, กับค่าใช้จ่ายของการสกัดเชื้อเพลิง, กระบวนการ, การใช้งานและค่าใช้จ่ายในการเก็บรักษาเชื้อเพลิงใช้แล้ว. ดังนั้น การเปรียบเทียบกับวิธีการผลิตไฟฟ้าอื่นๆจะขึ้นอยู่กับสมมติฐานเกี่ยวกับระยะเวลาการก่อสร้างและการจัดหาเงินลงทุนสำหรับโรงไฟฟ้านิวเคลียร์. การประมาณการค่าใช้จ่ายจะต้องนำค่าใช้จ่ายในการรื้อถอนและการเก็บรักษากากนิวเคลียร์หรือค่าใช้จ่ายโรงงานรีไซเคิลเข้ามาคิดด้วยถ้าสร้างในสหรัฐอเมริกาเนื่องจาก'พระราชบัญญัติด้านราคา Anderson'. กับความคาดหวังว่าทั้งหมดของเชื้อเพลิงนิวเคลียร์ใช้แล้ว/"กากนิวเคลียร์"อาจมีศักยภาพในการนำกลับมาใช้ใหม่โดยใช้เครื่องปฏิกรณ์ในอนาคต,เครื่องปฏิกรณ์ generation IV, ที่กำลังออกแบบมาเพื่อปิดวัฏจักรเชื้อเพลิงนิวเคลียร์ได้อย่างสมบูรณ์.
อีกด้านหนึ่ง, ค่าใช้จ่ายในการก่อสร้าง, หรือทุนอื่นๆนอกจากนี้, มาตรการเพื่อลดภาวะโลกร้อนเช่นภาษีคาร์บอนหรือการซื้อขายการปลดปล่อยคาร์บอน, ยิ่งเพิ่มมูลค่าทางเศรษฐศาสตร์ของพลังงานนิวเคลียร์. ประสิทธิภาพที่ก้าวหน้าถูกคาดหวังว่าจะประสบความสำเร็จผ่านการออกแบบเครื่องปฏิกรณ์ขั้นสูงยิ่งขึ้น, เตาปฏิกรณ์นิวเคลียร์ Generation III สัญญาว่าจะเพิ่มประสิทธิภาพด้านเชื้อเพลิงมากขึ้นอย่างน้อย 17%, และมีค่าใช้จ่ายเงินทุนลดลง, ในขณะที่เครื่องปฏิกรณ์ Generation IV ในอนาคตสัญญาว่าจะมีประสิทธิภาพด้านเชื้อเพลิงมากขึ้น 10,000-30,000% และไม่เกิดกากนิวเคลียร์
ในยุโรปตะวันออก, หลายโครงการที่มีการดำเนินงานยืดเยื้อยาวนานกำลังดิ้นรนเพื่อหาเงิน, ที่โดดเด่นคือ Belene ในบัลแกเรียและการเพิ่มเครื่องปฏิกรณ์ที่ Cernavod? ในโรมาเนีย, และผู้สนับสนุนที่มีศักยภาพบางคนมีการถอนตัว. ในขณะที่มีแก๊สราคาถูกให้ใช้ได้และอุปทานในอนาคตค่อนข้างมั่นคง, สิ่งนี้ยังส่อเค้าเป็นปัญหาสำคัญสำหรับโครงการนิวเคลียร์.
การวิเคราะห์ทางเศรษฐศาสตร์ของพลังงานนิวเคลียร์ต้องคำนึงถึงผู้ที่แบกความเสี่ยงของความไม่แน่นอนในอนาคต. ในวันนี้ ทั้งหมดของการดำเนินงานโรงไฟฟ้านิวเคลียร์ได้รับการพัฒนาโดยผูกขาดที่รัฐเป็นเจ้าของหรือรัฐควบคุมยูทิลิตี้ ในขณะที่หลายความเสี่ยงที่เกี่ยวข้องกับค่าใช้จ่ายในการก่อสร้าง, ผลการดำเนินงาน, ราคาเชื่อเพลิง, และปัจจัยอื่นๆ ถูกแบกโดยผู้บริโภคแทนที่จะเป็นผู้ให้บริการ. ขณะนี้หลายประเทศได้เปิดเสรีตลาดไฟฟ้าโดยที่ความเสี่ยงเหล่านี้, และความเสี่ยงของคู่แข่งราคาถูกกว่าที่เกิดขึ้นก่อนที่ค่าใช้จ่ายเงินทุนจะได้รับการกู้คืน, จะตกเป็นภาระของผู้ผลิตและผู้ประกอบการโรงงานมากกว่าผู้บริโภค, ซึ่งนำไปสู่??การประเมินผลที่แตกต่างกันอย่างมีนัยสำคัญของเศรษฐกิจของพลังงานนิวเคลียร์ใหม่.
หลังจากอุบัติเหตุนิวเคลียร์ Fukushima I เมื่อปี 2011, ค่าใช้จ่ายมีแนวโน้มที่จะสูงขึ้นสำหรับการดำเนินงานของโรงไฟฟ้านิวเคลียร์ในปัจจุบันและโรงไฟฟ้านิวเคลียร์ใหม่, เนื่องจากกฏระเบียบที่เพิ่มขึ้นสำหรับการจัดการเชื้อเพลิงใช้แล้วในสถานที่ตั้งและภัยคุกคามพื้นฐานในการออกแบบที่ถูกยกระดับให้สูงขึ้น. อย่างไรก็ตาม การออกแบบหลายอย่าง, เช่นที่อยู่ระหว่างการก่อสร้าง AP1000 ขณะนี้, ใช้ระบบหล่อเย็นแบบ passive nuclear safety, ซึ่งแตกต่างจากระบบของ Fukushima I ซึ่งต้องใช้ระบบหล่อเย็นแบบ active, ระบบ passive นี้จะช่วยลดความจำเป็นอย่างมากที่จะต้องใช้จ่ายมากขึ้นในการใช้อุปกรณ์สำรองเพื่อความปลอดภัยที่ซ้ำซ้อนกัน
มีแลกเปลี่ยนที่จะทำระหว่างความปลอดภัย คุณสมบัติทางเศรษฐกิจและทางเทคนิคของการออกแบบเครื่องปฏิกรณ์ที่แตกต่างกันสำหรับการใช้งานโดยเฉพาะ ในอดีตการตัดสินใจเหล่านี้มักจะถูกทำในภาคเอกชนโดยนักวิทยาศาสตร์ ผู้กำกับดูแลและวิศวกร[ต้องการอ้างอิง] แต่สิ่งนี้อาจได้รับการพิจารณาว่าเป็นปัญหา และตั้งแต่ เชอร์โนบิล และ เกาะทรีไมล์ หลายคนที่เกี่ยวข้องตอนนี้ได้พิจารณาถึงความยินยอมในการแจ้งล่วงหน้าและคุณธรรมที่จะเป็นข้อพิจารณาเบื้องต้นอย่างอิสระ
ในหนังสือของเขา "อุบัติเหตุปกติ" นายชาร์ลส์ Perrow กล่าวว่าความล้มเหลวหลายครั้งและที่ไม่ได้คาดคิดถูกสร้างขึ้นเข้ามาในความซับซ้อนของสังคมและระบบเครื่องปฏิกรณ์นิวเคลียร์ที่มัดกันแน่น อุบัติเหตุดังกล่าวไม่สามารถหลีกเลี่ยงได้และไม่ได้ถูกออกแบบเอาไว้ ทีมสหวิทยาการจากเอ็มไอทีได้มีการประมาณการว่าถ้าให้การเจริญเติบโตที่คาดไว้ของพลังงานนิวเคลียร์จากปี 2005 - 2055 อย่างน้อยสี่อุบัติเหตุนิวเคลียร์ร้ายแรงคาดว่าจะเกิดขึ้นในช่วงนั้น อย่างไรก็ตามการศึกษาของเอ็มไอทีไม่ได้คำนึงถึงการปรับปรุงหลายอย่างในด้านความปลอดภัยตั้งแต่ปี 1970 นับถึงวันนี้ ได้มีอุบัติเหตุร้ายแรง (แกนเสียหาย)เกิดขึ้น 5 ครั้งในโลกตั้งแต่ปี 1970 (หนึ่งที่เกาะสามไมล์ไอส์แลนด์ในปี 1979 สองที่เชอร์โนบิลในปี 1986 และสามที่ฟูกูชิม่า-Daiichi ในปี 2011) สอดคล้องกับจุดเริ่มต้นของการดำเนินงานของเครื่องปฏิกรณ์ generation II สิ่งนี้นำไปสู่??ค่าเฉลี่ยของอุบัติเหตุร้ายแรงที่เกิดขึ้นหนึ่งครั้งทุกๆแปดปีทั่วโลก
โรงไฟฟ้านิวเคลียร์คือบางส่วนของระบบพลังงานที่ทันสมัยและซับซ้อนที่สุดเท่าที่เคยออกแบบ. ระบบที่ซับซ้อนใดๆ ไม่ว่าจะถูกออกแบบและถูกสรรสร้างได้ดีสักเพียงไร ก็ไม่สามารถจะบอกได้ว่ามันจะไม่มีความล้มเหลว นักข่าวและนักประพันธ์อาวุโส สเตฟานี Cooke แย้งว่า:
ตัวเครื่องปฏิกรณ์เองเป็นเครื่องที่ซับซ้อนอย่างยิ่งที่มีหลายสิ่งที่อาจผิดพลาดได้ทุกเมื่อ เมื่อเกิดขึ้นที่เกาะทรีไมล์ในปี 1979 ความผิดพลาดอื่นๆในโลกนิวเคลียร์ก็เริ่มขึ้น ความผิดพลาดอันหนึ่งก็นำไปสู่??ความผิดพลาดอีกอันหนึ่ง แล้วเกิดขึ้นต่อๆกันไปเรื่อยๆ จนกระทั่งแกนของตัวเครื่องปฏิกรณ์เองเริ่มที่จะละลาย และแม้แต่วิศวกรนิวเคลียร์ที่ผ่านการฝึกอบรมมากที่สุดของโลกก็ไม่รู้วิธีการตอบสนอง อุบัติเหตุที่เกิดขึ้นเผยให้เห็นข้อบกพร่องอย่างร้ายแรงในระบบที่ถูกสร้างขึ้นมาให้ปกป้องสุขภาพและความปลอดภัยของประชาชน
อุบัติเหตุนิวเคลียร์เกาะทรีไมล์ในปี 1979 สร้างแรงบันดาลใจให้กับ Perrow ในหนังสือ'อุบัติเหตุปกติ' ในหนังสือเล่มนี้อุบัติเหตุนิวเคลียร์ได้เกิดขึ้น เป็นผลมาจากการทำงานร่วมกันที่ไม่คาดคิดของความล้มเหลวหลายอย่างของระบบที่ซับซ้อน อุบัติเหตุครั้งนั้นเป็นตัวอย่างหนึ่งของการเกิดอุบัติเหตุตามปกติเพราะมันเป็นสิ่งที่ "ที่ไม่คาดคิด เข้าใจยาก ไม่สามารถควบคุมได้และหลีกเลี่ยงก็ไม่ได้"
Perrow สรุปว่าความล้มเหลวที่เกาะทรีไมล์เป็นผลมาจากความซับซ้อนอันยิ่งใหญ่ของระบบ เขาตระหนักว่า ระบบความเสี่ยงสูงที่ทันสมัย??เช่นนั้นมีแนวโน้มที่จะล้มเหลวไม่ว่าพวกมันจะได้รับการจัดการดีอย่างไรก็ตาม มันหลีกเลี่ยงไม่ได้ที่พวกเขาในที่สุดก็จะได้รับสิ่งที่เขาเรียก 'อุบัติเหตุปกติ' ดังนั้น เขาแนะนำว่าเราอาจจะคิดออกแบบใหม่จะดีกว่า หรือถ้าเป็นไปไม่ได้ ก็ละทิ้งเทคโนโลยีดังกล่าวไปทั้งหมด
ปัญหาพื้นฐานที่เอื้อต่อความซับซ้อนของระบบไฟฟ้านิวเคลียร์คืออายุการใช้งานที่ยาวนานมากๆของมัน. ระยะเวลาตั้งแต่เริ่มต้นของการก่อสร้างสถานีพลังงานนิวเคลียร์เชิงพาณิชย์จนถึงการกำจัดที่ปลอดภัยของกากกัมมันตรังสีครั้งสุดท้ายของมันอาจกินเวลาถึง 100-150 ปี
มีความกังวลว่าการรวมกันของข้อผิดพลาดของมนุษย์และของเครื่องกลที่นิวเคลียร์ยูทิลิตื้อาจทำให้เกิดอันตรายที่สำคัญกับผู้คนและสิ่งแวดล้อม:
การดำเนินงานกับเครื่องปฏิกรณ์นิวเคลียร์ประกอบด้วยปริมาณขนาดใหญ่ของผลิตภัณฑ์ฟิชชันที่ปนเปื้อนกัมมันตรังสีซึ่ง ถ้ากระจายออกไป สามารถก่อให้เกิดอันตรายจากรังสีโดยตรง ปนเปื้อนในดินและพืชผัก และถูกบริโภคโดยมนุษย์และสัตว์ การสัมผัสของมนุษย์ในระดับที่สูงพอสามารถทำให้เกิดทั้งการเจ็บป่วยและความตายในระยะสั้นและการเสียชีวิตในระยะยาวจากโรคมะเร็งและโรคอื่นๆ.
มันเป็นไปไม่ได้สำหรับเครื่องปฏิกรณ์นิวเคลียร์เชิงพาณิชย์ที่จะระเบิดเหมือนกับระเบิดนิวเคลียร์เนื่องจากเชื้อเพลิงที่ไม่เคยมีสมรรถนะเพียงพอสำหรับทำให้เกิดขึ้นอย่างนั้น
เครื่องปฏิกรณ์นิวเคลียร์สามารถล้มเหลวได้ในหลายวิธี ความไม่แน่นอนของวัสดุนิวเคลียร์อาจสร้างพฤติกรรมที่ไม่คาดคิด มันอาจส่งผลให้พลังงานกระจัดกระจายออกนอกลู่นอกทางไม่สามารถควบคุมได้ ปกติ ระบบหล่อเย็นในเตาปฏิกรณ์ถุกออกแบบเพื่อให้สามารถที่จะจัดการกับความร้อนส่วนเกินนี้ อย่างไรก็ตาม เตาปฏิกรณ์ยังอาจประสบอุบัติเหตุจากการสูญเสียของน้ำหล่อเย็น ทำให้เชื้อเพลิงละลายหรือทำให้ถังบรรจุเชื้อเพลิงร้อนมากเกินไปจนละลาย เหตุการณ์นี้เรียกว่านิวเคลียร์หลอมละลาย(อังกฤษ: nuclear meltdown).
หลังจากปิดตัวลง บางเวลาเครื่องปฏิกรณ์ยังคงต้องการพลังงานจากภายนอกเพื่อให้พลังงานกับระบบหล่อเย็น โดยปกติพลังงานนี้ถูกจัดให้โดยกริด (ไฟฟ้า) ที่โรงงานถูกเชื่อมต่อด้วย หรือโดยเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉิน ความล้มเหลวที่จะให้พลังงานสำหรับระบบหล่อเย็น อย่างที่เกิดขึ้นใน Fukushima I สามารถก่อให้เกิดอุบัติเหตุร้ายแรงได้
กฎความปลอดภัยนิวเคลียร์ในสหรัฐอเมริกา "ไม่ให้น้ำหนักเพียงพอกับความเสี่ยงของเหตุการณ์สักครั้งเดียวที่จะทำการปลดกระแสไฟฟ้าออกจากกริดและจากเครื่องกำเนิดไฟฟ้าฉุกเฉิน อย่างที่แผ่นดินไหวและสึนามิได้ทำเมื่อเร็วๆนี้ในประเทศญี่ปุ่น" เจ้าหน้าที่กำกับกิจการพลังงานกล่าวในเดือนมิถุนายน 2011
เครื่องปฏิกรณ์นิวเคลียร์กลายเป็นเป้าหมายที่นิยมในช่วงความขัดแย้งทางทหารและ ตลอดสามทศวรรษที่ผ่านมา ได้ถูกโจมตีซ้ำแล้วซ้ำอีกในระหว่างการโจมตีทางอากาศ การเข้าครอบครอง การรุกรานและการรณรงค์:
ในสหรัฐอเมริกา โรงงานจะถูกล้อมรอบด้วยรั้วสูงสองแถวซึ่งมีการเฝ้าดูด้วยระบบอิเล็กทรอนิกส์ บริเวณโรงงานมีการลาดตระเวนโดยยามติดอาวุธจำนวนมาก เกณฑ์"การออกแบบการคุกคามพื้นฐาน"ของ NRC สำหรับโรงงานจะถูกเก็บเป็นความลับและขนาดของแรงโจมตีที่โรงงานสามารถป้องกันได้ไม่เป็นที่รู้จัก อย่างไรก็ตาม เพื่อ scram (ปิดฉุกเฉิน) โรงงานจะใช้เวลาน้อยกว่า 5 วินาทีในขณะที่การรีสตาร์ทที่ไม่มีข้อจำกัดจะใช้เวลาหลายชั่วโมง การขัดขวางการก่อการร้ายจะกระทำอย่างรุนแรงเพื่อสกัดเป้าหมายที่จะปล่อยกัมมันตภาพรังสี
การโจมตีจากทางอากาศเป็นปัญหาที่ได้รับการเน้นตั้งแต่การโจมตี 11 กันยายนในสหรัฐอเมริกา แต่ในปี 1972 นักจี้เครื่องบินสามคนเข้าควบคุมเที่ยวบินโดยสารภายในประเทศตามชายฝั่งตะวันออกของสหรัฐและขู่ว่าจะใช้เครื่องบินพุ่งเข้าชนโรงงานอาวุธนิวเคลียร์ของสหรัฐใน Oak Ridge รัฐเทนเนสซี. เครื่องบินได้เข้าใกล้ที่หมายห่างไป 8,000 ฟุตก่อนที่ความต้องการของนักจี้จะบรรลุ.
สิ่งกีดขวางที่สำคัญที่สุดในการป้องกันการปลดปล่อยกัมมันตภาพรังสีในกรณีที่มีการโจมตีด้วยอากาศยานที่โรงไฟฟ้านิวเคลียร์คืออาคารเก็บกักและโล่ขีปนาวุธของมัน. ประธาน NRC ปัจจุบันเดล ไคลน์ ได้กล่าวว่า "โรงไฟฟ้านิวเคลียร์จะมีโครงสร้างที่แข็งแกร่งโดยธรรมชาติ จากการศึกษาของเราแสดงให้เห็นการป้องกันที่เพียงพอในการโจมตีสมมุติโดยเครื่องบิน. NRC ยังได้ดำเนินการหลายอย่างที่จำเป็นเพื่อให้ผู้ประกอบการโรงไฟฟ้านิวเคลียร์มีความสามารถในการจัดการกับไฟไหม้หรือระเบิดขนาดใหญ่--ไม่ว่าสิ่งนั้นจะเกิดขึ้นจากอะไร".
นอกจากนี้, ผู้สนับสนุนได้ชี้ไปที่การศึกษาขนาดใหญ่ที่ดำเนินการโดย'สถาบันวิจัยพลังงานไฟฟ้าแห่งสหรัฐอเมริกา'ที่ได้ทดสอบความทนทานของทั้งเครื่องปฏิกรณ์และสถานที่เก็บขยะเชื้อเพลิงและพบว่าพวกมันควรจะสามารถที่จะรองรับการโจมตีจากผู้ก่อการร้ายได้เมื่อเทียบกับการโจมตีของผู้ก่อการร้ายเมื่อวันที่ 11 กันยายนในสหรัฐอเมริกา. เชื้อเพลิงใช้แล้วปกติจะเก็บอยู่ภายใน"โซนป้องกัน"ของโรงงาน หรือในถังขนส่งเชื้อเพลิงนิวเคลียร์; การขโมยมันเพื่อนำไปใช้เป็น "ระเบิดสกปรก" จะเป็นเรื่องยากมาก. การสัมผัสกับรังสีที่รุนแรงเกือบจะทำให้หมดสภาพหรือฆ่าใครก็ตามที่พยายามที่จะทำเช่นนั้นอย่างรวดเร็วและแน่นอน.
ในหลายประเทศ, โรงงานมักจะตั้งอยู่บนชายฝั่งเพื่อให้เป็นแหล่งความพร้อมของน้ำหล่อเย็นสำหรับระบบน้ำบริการที่จำเป็น. ผลก็คือ การออกแบบต้องพิจารณาถึงความเสี่ยงของการเกิดน้ำท่วมและคลื่นสึนามิ. สภาพลังงานโลก (WEC) ระบุว่าความเสี่ยงจากภัยพิบัติกำลังเปลี่ยนแปลงและกำลังเพิ่มโอกาสของการเกิดภัยพิบัติเช่นแผ่นดินไหว, พายุไซโคลนเฮอริเคน, ไต้ฝุ่น, น้ำท่วม. อุณหภูมิสูง, ระดับน้ำฝนต่ำและภัยแล้งที่รุนแรงอาจนำไปสู่??การขาดแคลนน้ำจืด. น้ำทะเลเป็นตัวกัดกร่อน, ดังนั้นการจัดหาพลังงานนิวเคลียร์มีโอกาสที่จะได้รับผลกระทบทางลบจากปัญหาการขาดแคลนน้ำจืด. ปัญหาทั่วไปนี้อาจจะมีความสำคัญเพิ่มมากขึ้นเมื่อเวลาผ่านไป. ความผิดพลาดในการคำนวณความเสี่ยงของการเกิดน้ำท่วมได้อย่างถูกต้องนำไปสู่เหตุบังเอิญ??ระดับ 2 ของ 'สเกลเหตุการณ์นิวเคลียร์นานาชาติ'ระหว่าง'เหตุการณ์น้ำท่วมโรงไฟฟ้านิวเคลียร์ที่ Blayais ในปี 1999', และในขณะที่น้ำท่วมเกิดจากแผ่นดินไหวและสึนามิที่ T?hoku ในปี 2011 ที่นำไปสู่การเกิดอุบัติเหตุนิวเคลียร์ Fukushima I.
การออกแบบสำหรับโรงงานที่ตั้งอยู่ในโซนที่ยังมีการสั่นไหวของพื้นโลกอยู่ยังต้องพิจารณาความเสี่ยงของการเกิดแผ่นดินไหวและคลื่นสึนามิด้วย. ญี่ปุ่น, อินเดีย, จีนและสหรัฐอเมริกาอยู่ในกลุ่มประเทศที่มีโรงงานอยู่ในภูมิภาคที่มีแนวโน้มของแผ่นดินไหว. ความเสียหายที่เกิดกับโรงไฟฟ้านิวเคลียร์ Kashiwazaki-Kariwa ของญี่ปุ่นในปี 2007 ระหว่างการเกิดแผ่นดินไหวนอกชายฝั่ง Chuetsu ได้ขีดเส้นใต้แสดงความกังวลโดยผู้เชี่ยวชาญด้านแผ่นดินไหวของประเทศญี่ปุ่นก่อนที่จะเกิดอุบัติเหตุฟูกูชิม่า, เป็นผู้ที่เตือนสิ่งที่เรียกว่า genpatsu-shinsai (ผลกระทบแบบโดมิโนของภัยพิบัติแผ่นดินไหวสำหรับโรงไฟฟ้านิวเคลียร์).
ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิแสดงให้เห็นอันตรายหลายอย่างของการสร้างเครื่องปฏิกรณ์นิวเคลียร์หลายหน่วยติดตั้งอยู่ใกล้ๆกัน. ความใกล้ชิดแบบนี้ก่อให้เกิดอุบัติเหตุและปฏิกิริยาลูกโซ่คู่ขนานที่นำไปสู่??การระเบิดของไฮโดรเจนสร้างความเสียหายต่ออาคารเครื่องปฏิกรณ์และน้ำที่ระบายจากบ่อเชื้อเพลิงใช้แล้วที่เปิดโล่ง--เป็นสถานการณ์หนึ่งที่อาจเป็นอันตรายมากกว่าการสูญเสียการหล่อเย็นของตัวเครื่องปฏิกรณ์เอง. เพราะการตั้งอยู่ใกล้กันของเครื่องปฏิกรณ์ทั้งหลาย, ผู้อำนวยการโรงงาน, มาซาโอะ โยชิดะ "จึงถูกวางในตำแหน่งของความพยายามที่จะรับมือพร้อมกันของการหลอมละลายของแกนของทั้งสามเครื่องปฏิกรณ์และของการสัมผัสกับบ่อเชื้อเพลิงทั้งสามหน่วย".
วัตถุประสงค์หลักสามอย่างของระบบความปลอดภัยนิวเคลียร์ตามที่กำหนดโดยคณะกรรมการกำกับกิจการพลังงานนิวเคลียร์คือการปิดเครื่องปฏิกรณ์, รักษามันอยู่ในสภาพปิด, และป้องกันไม่ให้ปล่อยสารกัมมันตรังสีในช่วงเหตุการณ์และอุบัติเหตุ. วัตถุประสงค์เหล่านี้จะประสบความสำเร็จโดยใช้ความหลากหลายของอุปกรณ์, ซึ่งเป็นชิ้นส่วนของหลายระบบที่แตกต่างกันซึ่งแต่ละระบบก็ทำหน้าที่เฉพาะอย่าง.
ในระหว่างปฏิบัติการเป็นกิจวัตรทุกๆวัน, การปล่อยสารกัมมันตรังสีจากโรงไฟฟ้านิวเคลียร์จะถูกกระทำข้างนอกของโรงงานแม้ว่าพวกมันจะมีในปริมาณที่เล็กน้อยมาก. การปล่อยในแต่ละวันจะปล่อยไปในอากาศ, น้ำ, และดิน.
NRC กล่าวว่า "โรงไฟฟ้านิวเคลียร์บางครั้งก็ปล่อยก๊าซและของเหลวกัมมันตรังสีในสภาพแวดล้อมที่อยู่ภายใต้สภาวะที่ถูกควบคุมและถูกตรวจสอบเพื่อให้แน่ใจว่าพวกมันไม่ก่อให้เกิดอันตรายต่อประชาชนหรือสิ่งแวดล้อม" และ "การปล่อยตามกิจวัตรในระหว่างการดำเนินงานปกติของโรงงานพลังงานนิวเคลียร์ไม่เคยมีพิษรุนแรง".
อ้างถึงสหประชาชาติ (UNSCEAR), การดำเนินงานโรงไฟฟ้านิวเคลียร์ปกติที่รวมถึงวัฏจักรเชื้อเพลิงนิวเคลียร์จะมีการสัมผ้สกับรังสีในที่สาธารณะเฉลี่ยประจำปีจำนวน 0.0002 mSv (มิลลิ Sievert); มรดกของภัยพิบัติเชอร์โนบิลเป็น 0.002 mSv/ปีเป็นค่าเฉลี่ยทั่วโลก ณ รายงานปี 2008; และค่าเฉลี่ยการสัมผ้สรังสีตามธรรมชาติที่ 2.4 mSv/ปี แม้ว่าบ่อยครั้งที่แตกต่างกันขึ้นอยู่กับสถานที่ตั้งของแต่ละบุคคลตั้งแต่ 1-13 mSv
ในประเทศญี่ปุ่น หลายหน่วยงานภาครัฐและบริษัทนิวเคลียร์มีการส่งเสริมตำนานสาธารณะเรื่อง "ความปลอดภัยอย่างสมบูรณ์" ที่ผู้เสนอพลังงานนิวเคลียร์ได้ทนุถนอมตลอดหลายทศวรรษที่ผ่านมา. คลื่นสึนามิที่ก่อให้เกิดภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิน่าจะได้ถูกการคาดการณ์ไว้แล้วล่วงหน้า และในเดือนมีนาคม 2012 นายกรัฐมนตรีโยชิฮิโกะ โนดะได้รับรู้ว่ารัฐบาลญี่ปุ่นได้ร่วมรับการตำหนิสำหรับภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิ โดยบอกว่าเจ้าหน้าที่มองไม่เห็น "ความไม่ถูกต้องทางเทคโนโลยี"ของประเทศ และทุกคนถลำลึกเกินไปกับ "ตำนานความปลอดภัย".
ในประเทศญี่ปุ่น โครงการระดับชาติในการพัฒนาหุ่นยนต์สำหรับใช้ในกรณีฉุกเฉินนิวเคลียร์ถูกยกเลิกกลางคันเพราะมัน "ตีดังเกินไปของอันตรายที่อยู่ข้างใต้". ญี่ปุ่น, ควรจะเป็นพลังสำคัญในเรื่องหุ่นยนต์, ไม่ได้ส่งใครเลยเข้าไปในฟูกูชิม่าในช่วงภัยพิบัติ. ในทำนองเดียวกัน นิวเคลียร์คณะกรรมาธิการความปลอดภัยของญี่ปุ่นได้กำหนดแนวทางความปลอดภัยสำหรับโรงงานนิวเคลียร์น้ำเบาไว้ว่า "ศักยภาพสำหรับการสูญเสียพลังงานที่ขยายออกไปไม่จำเป็นต้องได้รับการพิจารณา". อย่างไรก็ตาม มันชัดเจนว่าเป็นเพราะการสูญเสียพลังงานที่ขยายออกไปให้กับปั๊มหล่อเย็นดังกล่าวที่ทำให้เกิด meltdown ที่โรงงานนิวเคลียร์ฟูกูชิม่า
การอภิปรายพลังงานนิวเคลียร์เป็นเรื่องเกี่ยวกับความขัดแย้ง ซึ่งได้ล้อมรอบการใช้งานและการใช้เครื่องปฏิกรณ์นิวเคลียร์ฟิชชันในการผลิตไฟฟ้าจากเชื้อเพลิงนิวเคลียร์สำหรับพลเรือน. การอภิปรายเกี่ยวกับพลังงานนิวเคลียร์ขึ้นสู่จุดสูงสุดในช่วงปี 1970 และ 1980 เมื่อมัน "ถึงจุดของความเข้มข้นเป็นประวัติการณ์ในประวัติศาสตร์ของการถกเถียงทางเทคโนโลยี" ในบางประเทศ.
ฝ่ายเสนอยืนยันว่าพลังงานนิวเคลียร์เป็นแหล่งพลังงานที่ยั่งยืนซึ่งช่วยลดการปล่อยก๊าซคาร์บอนไดออกไซด์และสามารถเพิ่มความมั่นคงด้านพลังงานถ้าการใช้ของมันสามารถทดแทน การพึ่งพาการนำเข้าเชื้อเพลิงได้. ฝ่ายเสนอให้แนวคิดเพิ่มเติมว่าพลังงานนิวเคลียร์แทบจะไม่ได้ผลิตมลพิษทางอากาศ, ในทางตรงกันข้ามกับทางเลือกที่ใช้งานอยู่ของเชื้อเพลิงฟอสซิลชั้นนำ. ฝ่ายเสนอยังเชื่อว่าพลังงานนิวเคลียร์เป็นแนงทางที่เป็นไปได้เพียงอย่างเดียวเท่านั้นเพื่อบรรลุความเป็นอิสระด้านพลังงานสำหรับประเทศตะวันตกส่วนใหญ่. พวกเขาเน้นว่ามีความเสี่ยงทั้งหลายในการจัดเก็บขยะเป็นเรื่องเล็กน้อยและสามารถลดความเสี่ยงลงต่อไปได้อีกโดยใช้เทคโนโลยีใหม่ล่าสุดในเครื่องปฏิกรณ์รุ่นใหม่และความปลอดภัยในการปฏิบัติงานในโลกตะวันตกได้รับการบันทึกว่าได้ผลเป็นเลิศเมื่อเทียบกับโรงไฟฟ้าชนิดอื่น ๆ ที่สำคัญ.
ฝ่ายค้านกล่าวว่าพลังงานนิวเคลียร์ส่อเค้าที่จะสร้างภัยคุกคามจำนวนมากกับมนุษย์และสิ่งแวดล้อม. ภัยคุกคามเหล่านี้รวมถึงความเสี่ยงต่อสุขภาพและความเสียหายด้านสิ่งแวดล้อมจากการทำเหมืองแร่ยูเรเนียม, กระบวนการผลิตและการขนส่ง, ความเสี่ยงของการแพร่ขยายการใช้งานเพื่อใช้เป็นอาวุธนิวเคลียร์หรือการก่อวินาศกรรม, และปัญหาที่ยังแก้ไขไม่ได้ของกากนิวเคลียร์กัมมันตรังสี. พวกเขายังยืนยันว่าตัวเครื่องปฏิกรณ์เองเป็นเครื่องที่มีความซับซ้อนอย่างมากที่หลายสิ่งหลายอย่างสามารถทำงานผิดได้และได้ทำผิดจริงๆ, มีได้เกิดอุบัติเหตุนิวเคลียร์ร้ายแรงขึ้นแล้วหลายครั้ง. นักวิจารณ์ไม่เชื่อว่าความเสี่ยงเหล่านี้สามารถลดลงได้ด้วยเทคโนโลยีใหม่. พวกเขาแย้งว่าเมื่อพิจารณาถึงทุกขั้นตอนที่ใช้พลังงานอย่างเข้มข้นของห่วงโซ่เชื้อเพลิงนิวเคลียร์แล้ว,ตั้งแต่การทำเหมืองแร่ยูเรเนียมจนถึงการรื้อถอนนิวเคลียร์, พลังงานนิวเคลียร์ไม่ได้เป็นแหล่งผลิตกระแสไฟฟ้าที่ปล่อยคาร์บอนต่ำ.
เทคโนโลยีการนำกลับไปเข้ากระบวนการใหม่ได้รับการพัฒนาที่จะแยกและกู้คืนพลูโตเนียมที่สามารถทำฟิชชั่นได้ทางเคมีจากเชื้อเพลิงนิวเคลียร์ที่ผ่านการฉายรังสี. การนำกลับไปเข้ากระบวนการใหม่มีวัตถุประสงค์หลายอย่างที่ความสำคัญที่เกี่ยวข้องกันมีการเปลี่ยนแปลงเมื่อเวลาผ่านไป. การนำกลับไปเข้ากระบวนการใหม่แต่เดิมถูกใช้แต่เพียงอย่างเดียวในการสกัดพลูโตเนียมในการผลิตอาวุธนิวเคลียร์. ด้วยการทำในเชิงพาณิชย์ของพลังงานนิวเคลียร์, พลูโตเนียมที่ถูกนำกลับไปเข้ากระบวนการใหม่จะถูกรีไซเคิลกลับไปเป็นเชื้อเพลิงนิวเคลียร์ MOX สำหรับ'เครื่องปฏิกรณ์ร้อน'. ยูเรเนียมที่ถูกนำกลับไปเข้ากระบวนการใหม่, ซึ่งรวมต้วเป็นกลุ่มของวัสดุเชื้อเพลิงใช้แล้ว, ในหลักการสามารถที่จะถูกนำกลับมาใช้เป็นเชื้อเพลิงใหม่ได้เช่นกัน, แต่นั่นเป็นเพียงเพื่อการประหยัดเท่านั้นถ้ายูเรเนียมมีราคาสูงหรือการกำจัดมันมีราคาแพง. ในที่สุดเครื่องปฏิกรณ์แบบ breeder สามารถใช้เชื้อเพลิงไม่เพียงจากพลูโตเนียมและยูเรเนียมที่รีไซเคิลในเชื้อเพลิงใช้แล้วเท่านั้น, แต่ actinides ทั้งหมด, เป็นการปิดท้ายวัฏจักรเชื้อเพลิงนิวเคลียร์และอาจทวีคูณพลังงานที่สกัดจากยูเรเนียมธรรมชาติได้มากกว่า 60 เท่า.
การนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่จะช่วยลดปริมาณของเสียระดับสูง, แต่โดยตัวมันเอง มันไม่ได้ลดกัมมันตภาพรังสีหรือลดการกำเนิดความร้อนและดังนั้นจึงย้งมีความจำเป็นในการเก็บของเสียใต้ธรณี. การนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่ได้เป็นความขัดแย้งทางการเมืองมานานเพราะมันมีศักยภาพที่จะนำไปสู่การแพร่ขยายนิวเคลียร์เพื่อใช้เป็นอาวุธ, ศักยภาพที่จะเป็นอ่อนแอก่อการร้ายนิวเคลียร์, การท้าทายหลายอย่างทางการเมืองของการหาที่ตั้งสำหรับพื้นที่เก็บของเสีย (ปัญหาที่เกิดเท่าเทียมกับการกำจัดเชื้อเพลิงใช้แล้วโดยตรง) และเนื่องจากค่าใช้จ่ายที่สูงเมื่อเทียบกับการผ่านกระบวนการเชื้อเพลิงเพียงครั้งเดียว. ในสหรัฐอเมริกา ฝ่ายบริหารของโอบามาก้าวถอยหลังจากแผนการของประธานาธิบดีบุชในเรื่องขนาดเชิงพาณิชย์ของการนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่และได้หวนกลับไปยังโครงการที่เน้นการวิจัยทางวิทยาศาสตร์ที่เกี่ยวข้องกับการนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่แทน.
'อนุสัญญากรุงเวียนนาเรื่องการรับผิดทางแพ่งสำหรับความเสียหาย'ถูกนำมาใช้ในกรอบระหว่างประเทศสำหรับความรับผิดชอบด้านนิวเคลียร์. อย่างไรก็ตาม รัฐต่างๆที่มีส่วนใหญ่ของโรงไฟฟ้านิวเคลียร์ของโลก, รวมทั้งสหรัฐอเมริกา, รัสเซีย, จีน, และญี่ปุ่นจะไม่ได้เป็นส่วนหนึ่งของอนุสัญญาการรับผิดด้านนิวเคลียร์ระหว่างประเทศ.
ในสหรัฐอเมริกา ประกันสำหรับอุบัติเหตุนิวเคลียร์หรือรังสีจะครอบคลุม(สำหรับสิ่งอำนวยความสะดวกได้รับอนุญาตจนถึงปี 2025) โดย'พรบ.การคุ้มครองอุตสาหกรรมนิวเคลียร์ Price-Anderson'.
ภายใต้'นโยบายพลังงานแห่งสหราชอาณาจักร'ผ่าน'พระราชบัญญัติการติดตั้งนิวเคลียร์'ปี 1965, ความรับผิดถูกควบคุมสำหรับความเสียหายด้านนิวเคลียร์ที่ผู้ได้รับอนุญาตดำเนินการด้านนิวเคลียร์ในสหราชอาณาจักรเป็นผู้รับผิดชอบ. พระราชบัญญัตินี้ต้องการการชดเชยที่จะต้องจ่ายสำหรับความเสียหายสูงถึงขีดจำกัดที่ ?150 ล้าน โดยผู้ประกอบการต้องรับผิดเป็นเวลาสิบปีหลังจากเหตุการณ์ที่เกิดขึ้น. ระหว่างสิบถึงสามสิบปีหลังจากนั้น รัฐบาลผูกพันกับข้อตกลงนี้. รัฐบาลยังต้องรับผิดสำหรับหนี้สินข้ามพรมแดนที่จำกัดเพิ่มเติม (ประมาณ?300 ล้าน) ภายใต้อนุสัญญาระหว่างประเทศ (อนุสัญญากรุงปารีสในการรับผิดของบุคคลที่สามในด้านพลังงานนิวเคลียร์และอนุสัญญาบรัสเซลส์เพิ่มเติมกับอนุสัญญากรุงปารีส).
การรื้อถอนนิวเคลียร์คือการแยกส่วนโรงไฟฟ้านิวเคลียร์และลบล้างการปนเปื้อนของสถานที่ตั้งจนอยู่ในสภาวะที่ไม่ต้องมีการป้องกันรังสีสำหรับประชาชนทั่วไปอีกต่อไป. ความแตกต่างหลักจากการแยกส่วนของโรงไฟฟ้าแบบอื่นๆคือการปรากฏตัวของวัสดุกัมมันตรังสีที่ต้องระมัดระวังเป็นพิเศษ
ระยะเวลาการรับประกันของการดำเนินงานของโรงไฟฟ้านิวเคลียร์คือ 30 ปี. หนึ่งมาจากปัจจัย(การสึกหรอ)เป็นการทำลายของเปลือกเครื่องปฏิกรณ์ภายใต้การกระทำของรังสีที่มีการ ionizing.
โดยทั่วไป โรงไฟฟ้านิวเคลียร์ได้รับการออกแบบให้มีชีวิตประมาณ 30 ปี[ต้องการอ้างอิง]. โรงงานที่ใหม่กว่าถูกออกแบบมาสำหรับการใช้งานที่ 40 ถึง 60 ปี[ต้องการอ้างอิง].
การรื้อถอนจะเกี่ยวข้องกับการบริหารและการดำเนินการทางเทคนิคจำนวนมาก. มันรวมถึงการทำความสะอาดกัมมันตภาพรังสีทั้งหมดและการรื้อถอนต่อเนื่องของโรงงาน. ทันทีที่สถานที่ตั้งถูกรื้อถอน, มันไม่ควรจะเกิดอันตรายจากอุบัติเหตุกัมมันตภาพรังสีใดๆหรือแก่บุคคลใดๆที่เข้ามาเยี่ยมชมอีกต่อไป. หลังจากที่สิ่งอำนวยความสะดวกทั้งหมดถูกปลดประจำการอย่างสมบูรณ์, สถานที่นั้นจะหลุดออกจากการควบคุมของผู้กำกับดูแล, และผู้ได้รับใบอนุญาตของโรงงานไม่ต้องมีความรับผิดชอบต่อความปลอดภัยนิวเคลียร์อีกต่อไป
อุตสาหกรรมนิวเคลียร์บอกว่าเทคโนโลยีใหม่และการกำกับดูแลได้ทำให้โรงไฟฟ้านิวเคลียร์มีความปลอดภัยมากยิ่งขึ้น, แต่อุบัติเหตุเล็กๆ 57 ครั้งได้เกิดขึ้นนับตั้งแต่เกิดภัยพิบัติเชอร์โนบิลในปี 1986 จนถึงปี 2008. สองในสามของความผิดพลาดเหล่านี้เกิดขึ้นในสหรัฐอเมริกา. สำนักงานพลังงานปรมาณูฝรั่งเศส (CEA) ได้ข้อสรุปว่านวัตกรรมทางเทคนิคไม่สามารถกำจัดความเสี่ยงจากการผิดพลาดของมนุษย์ในการดำเนินงานโรงไฟฟ้านิวเคลียร์ได้[ต้องการอ้างอิง].
ตามที่เบนจามิน Sovacool จากทีมสหวิทยาการเอ็มไอทีในปี 2003 ได้คาดว่าถ้าการเจริญเติบโตของพลังงานนิวเคลียร์ในช่วงปี 2005-2055 เป็นไปตามที่คาดหวัง, อย่างน้อยสี่อุบัติเหตุนิวเคลียร์ร้ายแรงคาดว่าจะเกิดในช่วงนั้น อย่างไรก็ตามการศึกษาที่เอ็มไอทียังไม่ได้คำนึงถึงการปรับปรุงหลายอย่างในด้านความปลอดภัยตั้งแต่ปี 1970.
มักจะมีการอ้างว่าสถานีนิวเคลียร์มีความยืดหยุ่นในการส่งออกพลังงาน, หมายความว่ารูปแบบอื่นๆของพลังงานจะต้องตอบสนองความต้องการสูงสุด. ขณะที่มันเป็นจริงสำหรับเครื่องปฏิกรณ์ส่วนใหญ่จำนวนมาก, สิ่งนี้อาจไม่เป็นจริงอีกต่อไปอย่างน้อยก็สำหรับการออกแบบที่ทันสมัยบางแบบ.
โรงไฟฟ้านิวเคลียร์จะถูกใช้เป็นประจำในโหมด'ตามโหลด'ในขนาดที่ใหญ่ในประเทศฝรั่งเศส, แม้ว่า "มันเป็นที่ยอมรับกันโดยทั่วไปว่านี่ไม่ใช่สถานการณ์ทางเศรษฐกิจที่เหมาะสำหรับโรงไฟฟ้านิวเคลียร์". หน่วย A ที่โรงไฟฟ้านิวเคลียร์ Biblis ของเยอรมันถูกออกแบบมาเพื่อให้มี-และลดการส่งออกพลังงานที่ 15% ต่อนาทีระหว่าง 40 และ 100% ของพลังงานโดยประมาณของมัน. เครื่องปฏิกรณ์น้ำเดือดปกติมีความสามารถแบบ'ตามโหลด', ดำเนินการโดยเปลี่ยนแปลงการไหลของน้ำหมุนเวียน[ต้องการอ้างอิง].
มีการออกแบบใหม่จำนวนมากสำหรับการผลิตไฟฟ้านิวเคลียร์, รวมกันเรียกว่าเตาปฏิกรณ์นิวเคลียร์รุ่นที่สี่(อังกฤษ: Generation IV reactor), เป็นเรื่องของการวิจัยที่ขันแข็งและอาจถูกนำมาใช้ในการผลิตไฟฟ้าในทางปฏิบัติในอนาคต. หลายแบบของการออกแบบใหม่เหล่านี้เป็นความพยายามโดยเฉพาะที่จะทำให้การทำให้เครื่องปฏิกรณ์นิวเคลียร์สะอาดยิ่งขึ้น, ปลอดภัยยิ่งขึ้นและ/หรือลดความเสี่ยงในการแพร่กระจายของอาวุธนิวเคลียร์. โรงงานที่ปลอดภัยแบบพาสซีฟ (เช่น Economic Simplified Boiling Water Reactor (ESBWR)) พร้อมที่จะถูกสร้างขึ้น และการออกแบบอื่น ๆ ที่เชื่อว่าจะค่อนข้างปราศจากความโง่กำลังอยู่ระหว่างการค้นคว้า. เครื่องปฏิกรณ์แบบฟิวชั่น, ซึ่งอาจจะเป็นไปได้ในอนาคต, จะช่วยลดหรือขจัดความเสี่ยงจำนวนมากที่เกี่ยวข้องกับนิวเคลียร์ฟิชชั่น.
เครื่องปฏิกรณ์แบบแรงดันของยุโรปรุ่น 1600 MWe กำลังถูกสร้างขึ้นใน Olkiluoto, ฟินแลนด์. ความพยายามร่วมกันของเ AREVA ของฝรั่งเศสและซีเมนส์เอจีของยอรมัน, มันจะเป็นเครื่องปฏิกรณ์ที่ใหญ่ที่สุดในโลก. ในเดือนธันวาคมปี 2006 การก่อสร้างช้าไปประมาณ 18 เดือนจากที่กำหนดไว้และตาดว่าจะเสร็จราวปี 2010-2011.
ในเดือนพฤศจิกายน 2011 กัลฟ์เพาเวอร์ระบุว่าเมื่อสิ้นปี 2012 บริษัทหวังว่าจะเสร็จสิ้นการซื้อที่ดิน 4000 เอเคอร์ทางตอนเหนือของ Pensacola, ฟลอริด้าเพื่อสร้างโรงไฟฟ้านิวเคลียร์ให้เป็นไปได้.
รัสเซียได้เริ่มการก่อสร้างโรงไฟฟ้านิวเคลียร์แห่งแรกของโลกที่ลอยน้ำได้. เรือมูลค่า ? 100 ล้านชื่อ Lomonosov, เป็นโรงงานแรกในเจ็ดโรงงานที่ทางการมอสโกกล่าวว่า[ใคร?] มันจะนำแหล่งทรัพยากรพลังงานที่สำคัญไปยังภูมิภาคของรัสเซียที่อยู่ห่างไกล.
ในปี 2025, ประเทศในเอเชียตะวันออกเฉียงใต้จะมีโรงไฟฟ้านิวเคลียร์ทั้งหมด 29 โรง, อินโดนีเซียจะมี 4 โรงไฟฟ้านิวเคลียร์, มาเลเซีย 4, ประเทศไทย 5, และเวียดนาม 16 จากที่ไม่มีอะไรเลยในปี 2011.
การขยายตัวของโรงไฟฟ้านิวเคลียร์ 2 โรงในสหรัฐ, Plant Vogtle และ โรงไฟฟ้านิวเคลียร์ V. C. Summer, ที่ตั้งอยู่ในรัฐจอร์เจียและเซาท์แคโรไลนาตามลำดับ, มีกำหนดจะแล้วเสร็จในระหว่างปี 2016 และ 2019. ใหม่เครื่องปฏิกรณ์ 2 เครื่องใหม่ของ Plant Vogtle และเครื่องปฏิกรณ์สองเครื่องใหม่ที่โรงไฟฟ้านิวเคลียร์ Virgil C. Summer, เป็นตัวแทนโครงการก่อสร้างโรงไฟฟ้านิวเคลียร์ครั้งแรกในประเทศสหรัฐอเมริกาตั้งแต่เกิดอุบัติเหตุนิวเคลียร์ที่เกาะทรีไมล์ในปี 1979.
คณะกรรมการนโยบายพลังงานแห่งชาติ ได้บรรจุในแผนพัฒนากำลังผลิตไฟฟ้า โดยโรงไฟฟ้านิวเคลียร์ กำหนดให้มีโรงไฟฟ้าในปี พ.ศ. 2563-2564 รวมกำลังผลิต 4,000 เมกะวัตต์ หรือจะเท่ากับปริมาณโรงไฟฟ้านิวเคลียร์ 4 โรงนั้น ระยะเวลาการก่อสร้างต่อโรงอยู่ที่ประมาณ 6-7 ปี
อ่านบทความฉบับสมบูรณ์ได้ที่ http://th.wikipedia.org/wiki/โรงไฟฟ้าพลังงานนิวเคลียร์