ก่อนศตวรรษที่ 17 การศึกษาเรื่องแสงเชื่อกันว่า แสงเป็นอนุภาคที่ถูกส่งออกมาจากต้นกำเนิดแสง แสงสามารถผ่านทะลุวัตถุโปร่งใสและสะท้อนจากผิวของวัตถุทึบแสงได้ เมื่ออนุภาคเหล่านี้ผ่านเข้าสู่ตาจะทำให้เกิดความรู้สึกในการมองเห็น
แสง (อังกฤษ: light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเหห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์
ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ
คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ
ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่
แสงคือรังสีแม่เหล็กไฟฟ้าที่อยู่ในช่วง สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า ที่สามารถมองเห็นได้ คือ อยู่ในย่านความถี่ 380 THz (3.8?1014เฮิรตซ์) ถึง 789 THz (7.5?1014เฮิรตซ์) จากความสัมพันธ์ระหว่าง ความเร็ว () ความถี่ ( หรือ ) และ ความยาวคลื่น () ของแสง:
และ ความเร็วของแสงในสุญญากาศมีค่าคงที่ ดังนั้นเราจึงสามารถแยกแยะแสงโดยใช้ตามความยาวคลื่นได้ โดยแสงที่เรามองเห็นได้ข้างต้นนั้นจะมีความยาวคลื่นอยู่ในช่วง 400 นาโนเมตร (ย่อ 'nm') และ 800 nm (ในสุญญากาศ)
การมองเห็นของมนุษย์นั้นเป็นผลมาจากภาวะอนุภาคของแสงโดยเฉพาะ เกิดจากการที่ก้อนพลังงาน (อนุภาคโฟตอน) แสง ไปกระตุ้น เซลล์รูปแท่งในจอตา(rod cell) และ เซลล์รูปกรวยในจอตา (cone cell) ที่จอตา (retina) ให้ทำการสร้างสัญญาณไฟฟ้าบนเส้นประสาท และส่งผ่านเส้นประสาทตาไปยังสมอง ทำให้เกิดการรับรู้มองเห็น
นักฟิสิกส์หลายคนได้พยายามทำการวัดความเร็วของแสง การวัดแรกสุดที่มีความแม่นยำนั้นเป็นการวัดของ นักฟิสิกส์ชาวเดนมาร์ก Ole R?mer ในปี ค.ศ. 1676 เขาได้ทำการคำนวณจากการสังเกตการเคลื่อนที่ของดาวพฤหัสบดี และ ดวงจันทร์ไอโอ ของดาวพฤหัสบดี โดยใช้กล้องดูดาว เขาได้สังเกตความแตกต่างของช่วงการมองเห็นรอบของการโคจรของดวงจันทร์ไอโอ และได้คำนวณค่าความเร็วแสง 227,000 กิโลเมตรต่อวินาที
การวัดความเร็วของแสงบนโลกนั้นกระทำสำเร็จเป็นครั้งแรกโดย Hippolyte Fizeau ในปี ค.ศ. 1849 เขาทำการทดลองโดยส่องลำของแสงไปยังกระจกเงาซึ่งอยู่ห่างออกไปหลายพันเมตรผ่านซี่ล้อ ในขณะที่ล้อนั้นหมุนด้วยความเร็วคงที่ ลำแสงพุ่งผ่านช่องระหว่างซี่ล้อออกไปกระทบกระจกเงา และพุ่งกลับมาผ่านซี่ล้ออีกซี่หนึ่ง จากระยะทางไปยังกระจกเงา จำนวนช่องของซี่ล้อ และความเร็วรอบของการหมุน เขาสามารถทำการคำนวณความเร็วของแสงได้ 313,000 กิโลเมตรต่อวินาที
Albert A. Michelson ได้ทำการพัฒนาการทดลองในปี ค.ศ. 1926 โดยใช้กระจกเงาหมุน ในการวัดช่วงเวลาที่แสงใช้ในการเดินทางไปกลับจาก ยอด Mt. Wilson ถึง Mt. San Antonio ในรัฐแคลิฟอร์เนีย ซึ่งการวัดนั้นได้ 299,796 กิโลเมตร/วินาที
แสงนั้นวิ่งผ่านตัวกลางด้วยความเร็วจำกัด ความเร็วของแสงในสุญญากาศ c จะมีค่า c = 299,792,458 เมตร ต่อ วินาที (186,282.397 ไมล์ ต่อ วินาที) โดยไม่ขึ้นกับว่าผู้สังเกตการณ์นั้นเคลื่อนที่หรือไม่ เมื่อแสงวิ่งผ่านตัวกลางโปร่งใสเช่น อากาศ น้ำ หรือ แก้ว ความเร็วแสงในตัวกลางจะลดลงซึ่งเป็นเหตุให้เกิดปรากฏการณ์การหักเหของแสง คุณลักษณะของการลดลงของความเร็วแสงในตัวกลางที่มีความหนาแน่นสูงนี้จะวัดด้วย ดรรชนีหักเหของแสง (refractive index) n โดยที่
เมื่อลำแสงวิ่งผ่านเข้าสู่ตัวกลางจากสุญญากาศ หรือวิ่งผ่านจากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่ง แสงจะไม่มีการเปลี่ยนแปลงความถี่ แต่เปลี่ยนความยาวคลื่นเนื่องจากความเร็วที่เปลี่ยนไป ในกรณีที่มุมตกกระทบของแสงนั้นไม่ตั้งฉากกับผิวของตัวกลางใหม่ที่แสงวิ่งเข้าหา ทิศทางของแสงจะถูกหักเห ตัวอย่างของปรากฏการณ์หักเหนี้เช่น เลนส์ต่างๆ ทั้งกระจกขยาย คอนแทคเลนส์ แว่นสายตา กล้องจุลทรรศน์ กล้องส่องทางไกล