ค้นหา
  
Search Engine Optimization Services (SEO)

เซมิคอนดักเตอร์

สารกึ่งตัวนำ (อังกฤษ: semiconductor) คือ วัสดุที่มีคุณสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวน เป็นวัสดุที่ใช้ทำอุปกรณ์อิเล็คทรอนิกส์ มักมีตัวประกอบของ germanium, selenium, silicon วัสดุเนื้อแข็งผลึกพวกหนึ่งที่มีสมบัติเป็นตัวนำ หรือสื่อไฟฟ้าก้ำกึ่งระหว่างโลหะกับอโลหะหรือฉนวน ความเป็นตัวนำไฟฟ้าขึ้นอยู่กับอุณหภูมิ และสิ่งไม่บริสุทธิ์ที่มีเจือปนอยู่ในวัสดุพวกนี้ ซึ่งอาจเป็นธาตุหรือสารประกอบก็มี เช่น ธาตุเจอร์เมเนียม ซิลิคอน ซีลีเนียม และตะกั่วเทลลูไรด์ เป็นต้น วัสดุกึ่งตัวนำพวกนี้มีความต้านทานไฟฟ้าลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งเป็นลักษณะตรงข้ามกับโลหะทั้งปวง

ที่อุณหภูมิ ศูนย์ เคลวิน วัสดุพวกนี้จะไม่ยอมให้ไฟฟ้าไหลผ่านเลย เพราะเนื้อวัสดุเป็นผลึกโควาเลนต์ ซึ่งอิเล็กตรอนทั้งหลายจะถูกตรึงอยู่ในพันธะโควาเลนต์หมด (พันธะที่หยึดเหนี่ยวระหว่างอะตอม) แต่ในอุณหภูมิธรรมดา อิเล็กตรอนบางส่วนมีพลังงาน เนื่องจากความร้อนมากพอที่จะหลุดไปจากพันธะ ทำให้เกิดที่ว่างขึ้น อิเล็กตรอนที่หลุดออกมาเป็นสาเหตุให้สารกึ่งตัวนำ นำไฟฟ้าได้เมื่อมีมีสนามไฟฟ้ามาต่อเข้ากับสารนี้

สารกึ่งตัวนำไม่บริสุทธิ์ เป็นสารที่เกิดขึ้นจากการเติมสารเจือปนลงไปในสารกึ่งตัวนำแท้ เช่น ซิลิกอน หรือเยอรมันเนียม เพื่อให้ได้สารกึ่งตัวนำที่มีสภาพการนำไฟฟ้าที่ดีขึ้น สารกึ่งตัวนำไม่บริสุทธิ์นี้แบ่งออกเป็น 2 ประเภทคือ สารกึ่งตัวนำประเภทเอ็น (N-Type) และสารกึ่งตัวนำประเภทพี (P-Type)

สารกึ่งตัวนำที่นำมาใช้ผลิตอุปกรณ์อิเล็กทรอนิกส์ คือ ซิลิกอน (Si) และเจอเมเนียม (Ge) ธาตุทั้งสองอยู่ในแถวที่ 4 ของตารางธาตุ มีวาเลนซ์อิเล็กตรอน 4 ตัว ในสภาวะปกติอยู่ในรูปผลึกเรียงตัวแบบเตตระฮีดรอล (tetrahedral) อะตอมตัวหนึ่งของสารกึ่งตัวนำจะจับกับอะตอมอื่นอีก 4 อะตอม การรวมตัวกันโดยพันธะโควาเลนต์ คือใช้วาเลนซ์อิเล็กตรอนร่วมกัน จึงเหมือนกับว่าอะตอมหนึ่งของสารกึ่งตัวนำมีวาเลนซ์อิเล็กตรอน 8 ตัว วาเลนซ์อิเล็กตรอน 4 ตัว เป็นของอะตอมสารกึ่งตัวนำในอะตอมนั้น ส่วนวาเลนซ์อิเล็กตรอนอีก 4 ตัว ใช้ร่วมกับอะตอมอื่น ดังนั้นอิเล็กตรอนของสารกึ่งตัวนำจึงยึดแน่นกับอะตอมมาก สารกึ่งตัวนำจึงเป็นตัวนำไฟฟ้าที่ไม่ดี อย่างไรก็ตามเมื่ออุณหภูมิสูงขึ้น อิเล็กตรอนได้รับพลังงานความร้อนหลุดจากอะตอมได้บ้าง ทำให้พบอิเล็กตรอนในแถบพลังงานนำ สารกึ่งตัวนำจึงนำไฟฟ้าได้ การนำไฟฟ้าของสารกึ่งตัวนำจะขึ้นกับอุณหภูมิ ถ้าอุณหภูมิสูงอิเล็กตรอนในแถบนำมากจะนำไฟฟ้าได้ดี ถ้าอุณหภูมิต่ำจะเป็นตัวนำไฟฟ้าที่ไม่ดี

เมื่ออิเล็กตรอนหลุดจากอะตอม ทำให้พันธะโควาเลนซ์เกิดช่องว่างขึ้น อิเล็กตรอนจากที่อื่นสามารถเคลื่อนที่เข้ามาแทนที่ได้มีลักษณะคล้ายกับหลุมที่อิเล็กตรอนอาจจะตกลงไป จึงเรียกช่องว่างนี้ว่า โฮล (Hole) ถ้าหากว่าอิเล็กตรอนของอะตอมข้างเคียงมีพลังงานเคลื่อนที่เข้ามาแทนที่โฮล อิเล็กตรอนข้างเคียงก็จะเกิดโฮลขึ้น คล้ายกับว่าโฮลเคลื่อนจากอะตอมเดิมไปยังอะตอมข้างเคียง ถ้ายังมีอิเล็กตรอนจากอะตอมอื่นเคลื่อนเข้ามาแทนที่โฮลต่อเนื่องกันหลาย ๆอะตอม โฮลจะเคลื่อนที่ไปตามอะตอมเหล่านั้น เนื่องจากอะตอมที่เกิดโฮลมีสภาพเป็นบวกเพราะขาดอิเล็กตรอน โฮลจึงเป็นตัวพาประจุบวกในสารกึ่งตัวนำ ซึ่งในสารกึ่งตัวนำนี้จะมีตัวพาประจุ 2 ชนิด คืออิเล็กตรอนพาประจุลบ และโฮลพาประจุบวก

ในสารกึ่งตัวนำมีพาหะของประจุอยู่ 2 ชนิด คือ อิเล็กตรอนและโฮล ความหนาแน่นกระแสจะขึ้นกับปริมาณพาหะทั้ง 2 ชนิด ดังนั้น

J = ( n μ n + p μ p ) e E = σ E {\displaystyle J=(n\mu _{n}+p\mu _{p})eE=\sigma E}

σ = ( n μ n + p μ p ) e {\displaystyle \sigma =(n\mu _{n}+p\mu _{p})e}

ในสารกึ่งตัวนำบริสุทธิ์ (pure semi-conductor, intrinsic semiconductor) จำนวนโฮลเท่ากับจำนวนอิเล็กตรอน เพราะว่า โฮลเกิดจากการแตกตัวของอิเล็กตรอนจากอะตอม

เมื่อ n i {\displaystyle n_{i}} = ปริมาณพาหะ (โฮล หรือ อิเล็กตรอน) ในสารกึ่งตัวนำบริสุทธิ์

f ( E ) = 1 1 + e ( E − E f ) k T {\displaystyle f(E)={\frac {1}{1+e^{\frac {(E-E_{f})}{kT}}}}}

d N = m h 3 2 m E 8 π d E {\displaystyle dN={\frac {m}{h^{3}}}{\sqrt {2mE}}8\pi dE}

∫ 0 E f d N = n ⟶ n = ∫ 0 E ′ m h 3 2 m E 8 π d E 1 + e ( E − E f ) k T {\displaystyle \int \limits _{0}^{E_{f}}dN=n\longrightarrow n=\int \limits _{0}^{E'}{\frac {{\frac {m}{h^{3}}}{\sqrt {2mE}}8\pi dE}{1+e^{\frac {(E-E_{f})}{kT}}}}}

เนื่องจาก ( E − E f ) / k T {\displaystyle (E-E_{f})/kT} มากกว่า 1 มาก ดังนั้น เราอาจประมาณว่า

1 1 + e ( E − E f ) k T ≈ e − ( E − E f ) k T {\displaystyle {\frac {1}{1+e^{\frac {(E-E_{f})}{kT}}}}\thickapprox e^{-}{\frac {(E-E_{f})}{kT}}}

n = ∫ 0 ∞ m h 3 2 m E 8 π e − ( E − E f ) k T d E {\displaystyle n=\int \limits _{0}^{\infty }{\frac {m}{h^{3}}}{\sqrt {2mE}}8\pi e^{-}{\frac {(E-E_{f})}{kT}}dE}

p = ∫ 0 E v m h 3 2 m E 8 π e − ( E − E f ) k T d E {\displaystyle p=\int \limits _{0}^{E_{v}}{\frac {m}{h^{3}}}{\sqrt {2mE}}8\pi e^{-}{\frac {(E-E_{f})}{kT}}dE}

n 1 = 2 ( 2 π m n k T h 2 ) 3 2 e − ( E f − E v ) k T = N c e − ( E f − E v ) k T {\displaystyle n_{1}=2{\biggl (}{\frac {2\pi m_{n}kT}{h^{2}}}{\biggr )}^{\frac {3}{2}}e^{-}{\tfrac {(E_{f}-E_{v})}{kT}}=N_{c}e^{-}{\tfrac {(E_{f}-E_{v})}{kT}}}

p 1 = n 1 = 2 ( 2 π m p k T h 2 ) 3 2 e − ( E f − E v ) k T = N v e − ( E f − E v ) k T {\displaystyle p_{1}=n_{1}=2{\biggl (}{\frac {2\pi m_{p}kT}{h^{2}}}{\biggr )}^{\frac {3}{2}}e^{-}{\tfrac {(E_{f}-E_{v})}{kT}}=N_{v}e^{-}{\tfrac {(E_{f}-E_{v})}{kT}}}

เมื่อ N c , N v {\displaystyle N_{c},N_{v}} = ความหนาแน่นของสเตทในแถบนำและแถบวาเลนซ์

ปริมาณอิเล็กตรอนและโฮลที่เกิดจากพลังงานความร้อนและแสงสว่าง ยังคงมีจำนวนน้อยเกินไป ทำให้สารกึ่งตัวนำบริสุทธิ์นำไฟฟ้าได้ไม่ดีเท่าที่ควร ในทางปฏิบัติจะเติมอะตอมอื่นที่มีวาเลนซ์อิเล็กตรอน 3 หรือ 5 ลงในสารกึ่งตัวนำบริสุทธิ์ เพื่อทำให้ปริมาณอิเล็กตรอนหรือโฮลเพิ่มขึ้น อะตอมที่เติมลงไปมีชื่อว่า อะตอมสารเจือ (impurity atom) การเติมสารเจือ เรียกว่าการโด๊ป (Doping) สารกึ่งตัวนำที่มีอะตอมสารเจือ เจือปนอยู่ เรียกว่า สารกึ่งตัวนำไม่บริสุทธิ์ (extrinsic semiconductor) หรือสารกึ่งตัวนำสารเจือ (doping semiconductor)

สารกึ่งตัวนำไม่บริสุทธิ์มี 2 ชนิดคือ สารกึ่งตัวนำไม่บริสุทธิ์ชนิดเอ็น (N-type semiconductor) และสารกึ่งตัวนำไม่บริสุทธิ์ชนิดพี (P-type semiconductor)

สารกึ่งตัวนำไม่บริสุทธิ์ชนิดเอ็นเป็นสารกึ่งตัวนำที่มีอิเล็กตรอนจำนวนมาก เกิดจากการเติมอะตอมที่มีวาเลนซ์อิเล็กตรอน 5 ตัว เช่น แอนติโมนี, ฟอสฟอรัส หรือ อาเซนิก

อะตอมสารเจือสามารถให้อิเล็กตรอนได้จึงมีชื่อเรียกว่า อะตอมผู้ให้ (donor atom) อะตอมสารเจือประมาณหนึ่งต่อล้านเป็นชนิดเอ็นเพราะว่ามีอิเล็กตรอนซึ่งเป็นพาหะของประจุลบอยู่มาก อย่างไรก็ตามในแถบวาเลนซ์ก็มีโฮลอยู่บ้าง สารกึ่งตัวนำชนิดเอ็นมีอิเล็กตรอนในแถบนำเป็นพาหะส่วนใหญ่ (majority carrier) มีโฮลเป็นพาหะส่วนน้อย

สารกึ่งตัวนำไม่บริสุทธิ์ชนิดพี เป็นสารกึ่งตัวนำที่มีโฮลอยู่มาก เกิดจากการเติมอะตอมที่มีวาเลนซ์อิเล็ก 3 ตัว เช่น โบรอน, เจอเมเนียม หรืออินเดียม

เป็นสารกึ่งตัวนำที่เกิดจากการจับตัวของอะตอมซิลิกอนกับอะตอมของอะลูมิเนียม ทำให้เกิดที่ว่างซึ่งเรียกว่า โฮล (Hole) ขึ้นในแขนร่วมของอิเล็กตรอน อิเล็กตรอนข้างโฮลจะเคลื่อนที่ไปอยู่ในโฮลทำให้ดูคล้ายกับโฮลเคลื่อนที่ได้จึงทำให้กระแสไหลได้


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

แรง (ฟิสิกส์) ความยาว การเคลื่อนที่ ทฤษฎีเคออส กลศาสตร์แบบลากรางช์ เอนริโก แฟร์มี สมมาตรยิ่งยวด CERN Large Hadron Collider ไอน์สไตน์ ทฤษฎีสัมพัทธภาพทั่วไป กาลิเลโอ ฟิสิกส์อนุภาค วิศวกรรมวัสดุ เซมิคอนดักเตอร์ นาโนเมตร วัสดุนาโน วัสดุฉลาด วัสดุเชิงก้าวหน้า วัสดุชีวภาพ พอลิเมอร์ เซรามิก สเปกโตรสโกปี อุณหเคมี ไฟฟ้าเคมี เคมีเชิงฟิสิกส์ โลหะอินทรีย์เคมี เคมีพอลิเมอร์ เคมีนิวเคลียร์ ชีววิทยาโมเลกุล เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24187