เครื่องยนต์จรวด หรือเรียกสั้น ๆ ว่า “จรวด” คือ เครื่องยนต์ไอพ่น ที่ใช้มวลเชื้อเพลิงจรวดที่ถูกเก็บไว้โดยเฉพาะสำหรับการสร้างแรงขับดันไอพ่น (Jet Propulsion) อัตราเร็วสูง เครื่องยนต์จรวดคือ เครื่องยนต์แห่งแรงปฏิกิริยา (reaction engine) และได้รับแรงผลักดันที่สอดคล้องกับกฎข้อที่สามของนิวตัน เนื่องจากพวกมันไม่จำเป็นต้องใช้วัสดุภายนอกในรูปแบบเครื่องยนต์ไอพ่น (เช่น อากาศที่ใช้ในการเผาไหม้ในชั้นบรรยากาศ แต่มีก๊าซอ๊อกซิเจนที่เป็นของเหลวบรรทุกติดตัวจรวดไปด้วย) เครื่องยนต์จรวดสามารถนำไปใช้ได้กับการขับเคลื่อนยานอวกาศและใช้เกี่ยวกับภาคพื้นโลก เช่น ขีปนาวุธ เครื่องยนต์จรวดส่วนใหญ่เป็นเครื่องยนต์สันดาปภายใน แม้ว่าจะไม่ใช่รูปแบบของการสันดาปหลัก ๆ อย่างที่มีอยู่ก็ตาม
เครื่องยนต์จรวดเป็นกลุ่มของเครื่องยนต์ที่มีไอเสียที่มีอัตราเร็วสูง โดยที่มีน้ำหนักเบามาก, และมีประสิทธิภาพของพลังงานสูงสุด (สูญเสียพลังงานน้อยที่อัตราความเร็วที่สูงมาก) ของชนิดของเครื่องยนต์ไอพ่นทุกชนิด อย่างไรก็ดี แรงผลักดันที่ให้ออกมาทำให้เกิดไอเสียที่มีความเร็วสูง และมีอัตราสัมพัทธ์ของพลังงานจำเพาะของเชื้อเพลิงที่ใช้ขับเคลื่อนจรวดต่ำ มันเผาผลาญเชื้อเพลิงให้หมดไปภายในระยะเวลาอันรวดเร็ว
จรวดเคมี (Chemical rockets) คือจรวดที่ขับเคลื่อนโดยปฏิกิริยาทางเคมีที่เกิดจากการคายความร้อน (exothermic) ของเชื้อเพลิงจรวด
เครื่องยนต์จรวด (Rocket motor) (หรือเครื่องยนต์จรวดเชื้อเพลิงแข็ง) เป็นคำที่ตรงกันกับเครื่องยนต์ที่มักจะหมายถึงเครื่องยนต์จรวดที่เป็นของแข็ง
จรวดของเหลว (Liquid rockets) (หรือเครื่องยนต์จรวดเชื้อเพลิงเหลว) ใช้เชื้อเพลิงเหลวจำนวนหนึ่งหรือมากกว่านั้นที่เก็บไว้ในถังก่อนที่จะมีการเผาไหม้
จรวดไฮบริด (Hybrid rockets) ที่มีเครื่องยนต์จรวดเชื้อเพลิงที่เป็นของแข็งในห้องเผาไหม้และเป็นของเหลวที่สองหรือเครื่องยนต์จรวดเชื้อเพลิงก๊าซจะถูกเพิ่มเติมเข้าไปและยอมให้มีการเผาไหม้มัน
จรวดความร้อน (Thermal rockets) คือ จรวดที่ถูกกระตุ้นด้วยแรงเฉื่อยจากความร้อน แต่เป็นความร้อนโดยใช้แหล่งพลังงานต่างๆ เช่นพลังงานแสงอาทิตย์หรือพลังงานนิวเคลียร์หรือการเปล่งลำพลังงานรังสี (beamed energy) อื่น ๆ
จรวดเชื้อเพลิงเดี่ยว (Monopropellant rockets) เป็นจรวดที่ใช้เพียงหนึ่งเชื้อเพลิง, สลายตัวไปด้วยตัวเร่งปฏิกิริยา (catalyst) เชื้อเพลิงเดี่ยวที่พบมากที่สุดคือไฮดราซีน (hydrazine) และไฮโดรเจนเพอร์ออกไซด์ (hydrogen peroxide)
เครื่องยนต์จรวดสร้างแรงขับดันโดยเผาไหม้เชื้อเพลิงเหลวให้กลายเป็นของไหลไอเสียที่มีอัตราเร็วสูง ของเหลวนี้เกือบจะเป็นแก๊สได้ตลอดเวลา ซึ่งสร้างแรงดันสูง (10 – 200 บาร์) จากการเผาไหม้ของเชื้อเพลิงแข็งหรือเชื้อเพลิงเหลว อันประกอบไปด้วยส่วนประกอบของเชื้อเพลิงและตัวอ๊อกซิไดส์ (ตัวช่วยในการเผาไหม้) ภายในห้องเผาไหม้ของเครื่องยนต์ ของไหลไอเสียนั้นจะถูกส่งผ่านไปยังหัวฉีดแรงขับ (propelling nozzle)ด้วยอัตราเร็วเหนือเสียงที่ใช้พลังงานความร้อนของก๊าซเพื่อเร่งไอเสียให้มีอัตราเร็วที่สูงมากและแรงปฏิกิริยาที่เกิดขึ้นนี้จะผลักดันเครื่องยนต์ไปในทิศทางตรงกันข้าม ในเครื่องยนต์จรวด อุณหภูมิและความดันสูงคือสิ่งที่ต้องการสูงสุดสำหรับสมรรถนะที่ดีที่ยอมให้มีหัวฉีดขนาดยาวได้ถูกติดตั้งเข้ากับเครื่องยนต์ ซึ่งจะให้ไอเสียที่มีอัตราเร็วสูงและมีค่าสัมประสิทธิ์ทางอุณหพลศาสตร์ที่ดีกว่า
เชื้อเพลิงขับเคลื่อนจรวดคือ มวลสารที่ได้ถูกเก็บไว้ มักจะอยู่ในรูปแบบของถังเก็บเชื้อเพลิง ก่อนที่จะถูกพ่นออกมาจากเครื่องยนต์ในรูปแบบของเปลวไอพ่นซึ่งจะทำให้เกิดแรงผลักดัน เชื้อเพลิงขับเคลื่อนจรวดเคมีเป็นสิ่งที่ถูกใช้กันโดยทั่วไปมากที่สุด ซึ่งต้องประสบสิ่งผิดปกติธรรมดากับปฏิกิริยาทางเคมีซึ่งจะสร้างแก๊สร้อนให้กับจรวดสำหรับแรงขับเคลื่อนตามที่ต้องการ ทางเลือกหนึ่ง คือ มวลแห่งปฏิกิริยาความเฉื่อยทางเคมีสามารถสร้างให้เกิดความร้อนขึ้นได้โดยใช้แหล่งกำเนิดกำลังพลังงานสูงโดยผ่านทางตัวแลกเปลี่ยนความร้อน และดังนั้นจึงไม่ต้องใช้งานห้องเผาไหม้แต่อย่างใด
เชื้อเพลิงของจรวดเชื้อเพลิงแข็งถูกตระเตรียมให้อยู่ในรูปของส่วนผสมของเชื้อเพลิงและตัวอ๊อกซิไดซ์เรียกว่า “เกรน” และเชื้อเพลิงที่ถูกบรรจุไว้ภายในสิ่งหุ้มห่อนี้ได้กลายมาเป็นห้องเผาไหม้ได้อย่างมีประสิทธิภาพ จรวดเชื้อเพลิงเหลว จะใช้เครื่องปั๊มแยกส่วนกันระหว่างเชื้อเพลิงเหลวและตัวอ๊อกซิไดซ์ อันจะเป็นส่วนประกอบกันภายในห้องเผาไหม้ ที่ซึ่งพวกมันจะผสมรวมตัวกันและเกิดการเผาไหม้ เครื่องยนต์จรวดไฮบริด (Hybrid rocket engine) ใช้เชื้อเพลิงผสมกันระหว่างของแข็งและของเหลว หรือก๊าซ ทั้งจรวดของเหลวและจรวดไฮบริด ใช้หัวจ่ายเชื้อเพลิงเป็นตัวจ่ายเชื้อเพลิงจรวดส่งผ่านไปสู่ห้องเผาไหม้ นี่คือพลังไอพ่น อย่างง่าย ๆ ที่มักจะทำให้เกิดช่องว่างทะลุผ่านซึ่งเชื้อเพลิงจะหลีกพ้นผ่านไปได้ภายใต้ความกดดัน แต่บางครั้งก็อาจจะมีปัญหาซับซ้อนมากกว่านั้น เมื่อหัวฉีดเชื้อเพลิงตั้งแต่สองอันหรือมากกว่านั้นมักจะเกิดการพุ่งมาชนกันของเชื้อเพลิงทำให้เกิดการเผาไหม้ได้ยาก ทางแก้คือ การทำให้หัวฉีด ๆ เชื้อเพลิงให้เป็นฝอยขนาดเล็กทำให้เผาไหม้ได้ง่ายขึ้น
สำหรับจรวดเคมี ห้องเผาไหม้ปกติเป็นเพียงทรงกระบอกธรรมดา และมีกระป๋องเปลวไฟ (flame holder) เป็นสิ่งที่ถูกใช้ที่ไม่ธรรมดา รูปทรงของห้องเผาไหม้ที่เป็นรูปทรงกระบอกนั้น เป็นสิ่งที่ทำให้เชื้อเพลิงขับดันจรวดสามารถถูกเผาไหม้ได้อย่างสมบูรณ์ ความแตกต่างของชนิดของเชื้อเพลิงจรวดที่ใช้นั้นจึงทำให้เกิดความแตกต่างของขนาดของห้องเผาไหม้ด้วย สิ่งนี้จึงทำให้เกิดจำนวนที่เรียกว่า :
การรวมตัวกันของอุณหภูมิและความดันเป็นตัวอย่างที่มักจะแสดงถึงความสุดขั้วในห้องเผาไหม้ตามมาตรฐานที่กำหนด ซึ่งแตกต่างจากอากาศที่ใช้สำหรับการหายใจที่ใช้ในเครื่องยนต์ไอพ่น ไม่มีไนโตรเจนในบรรยากาศที่เป็นปัจจุบันเพื่อการเผาไหม้ที่เจือจางและเย็นภายในห้องเผาไหม้ และอุณหภูมิที่สามารถบรรลุถึง สภาวะสตอยชิโอแมทริก (stoichiometric) ได้อย่างแท้จริง นี่จะเป็นการรวมกันกับความกดดันที่สูง, ซึ่งหมายความว่าอัตราการนำความร้อนผ่านผนังมีค่าสูงมาก
รูปร่างลักษณะรูปทรงระฆังขนาดใหญ่หรือหัวฉีดที่มีรูปร่างทรงกรวยจะมีผลขยายตัวขณะเกิดการสันดาปของเชื้อเพลิงในเครื่องยนต์จรวด
ในจรวด ก๊าซร้อนที่ผลิตได้ในห้องเผาไหม้จะได้รับอนุญาตที่จะหนีออกจากห้องเผาไหม้ผ่านช่องเปิด ("ลำคอ"), ภายในหัวฉีดนั้น จะมีอัตราส่วนการขยายตัว 'เดลีวาล' ที่สูง (high expansion-ratio 'de Laval' nozzle)
ความดันที่เพียงพอที่มีให้กับหัวฉีด (ประมาณ 2.5 ถึง 3 เท่าของบรรยากาศ) โช้กหัวฉีด (nozzle chokes) และเจ็ตความเร็วเหนือเสียงจะเกิดขึ้น, ก๊าซจะถูกเร่งให้มีความเร็วอย่างรวดเร็ว, ส่วนใหญ่จะถูกแปลงจากพลังงานความร้อนให้กลายเป็นพลังงานจลน์
อัตราเร็วของไอเสียแตกต่างกันไปขึ้นอยู่กับอัตราส่วนการขยายตัวในหัวฉีดที่ถูกออกแบบขึ้น, แต่อัตราเร็วของไอเสียสูงถึงสิบเท่าของอัตราเร็วเสียงในอากาศที่ระดับน้ำทะเล (speed of sound of sea level air) อย่างไม่ได้ผิดปกติแต่อย่างใด
ประมาณครึ่งหนึ่งของแรงผลักดันในเครื่องยนต์จรวดมาจากความดันที่ไม่สมดุลภายในห้องเผาไหม้และส่วนที่เหลือมาจากความดันที่กระทำอยู่ภายในหัวฉีด (ดูแผนภาพ) โดยที่ก๊าซที่ขยายตัวออก เรียกว่า กระบวนการแอเดียแบติก (adiabatically) เกิดเป็นความดันที่กระทำกับผนังหัวฉีดของแรงในเครื่องยนต์จรวดในทิศทางหนึ่งขณะที่มีความเร่งของก๊าซในทิศทางอื่น ๆ
สำหรับเครื่องยนต์จรวดที่จะมีเชื้อเพลิงขับดันจรวดที่มีประสิทธิภาพนั้น, เป็นสิ่งที่สำคัญมากที่ความดันสูงสุดที่เป็นไปได้จะถูกสร้างขึ้นบนผนังของห้องเผาไหม้และหัวฉีดตามค่าจำนวนจำเพาะของเชื้อเพลิงขับดันจรวด; จึงเป็นแหล่งที่มาของแรงผลักดัน ทั้งหมดนี้สามารถทำได้คือ:
เนื่องจากทุก ๆ สิ่งเหล่านี้จะช่วยลดมวลของจรวดที่ใช้, และเนื่องจากความดันเป็นสัดส่วนกับมวลของเชื้อเพลิงจรวดแสดงว่าจะต้องใช้ความเร่งของมวลของเชื้อเพลิงนี้ผลักดันเครื่องยนต์, และเนื่องจากจากกฎข้อที่สามของนิวตัน ความดันที่กระทำกับเครื่องยนต์ยังกระทำซึ่งกันและกันกับเชื้อเพลิงจรวด, แต่มันก็กลับกลายเป็นว่าสำหรับเครื่องยนต์จรวดใด ๆ ก็ตามอัตราเร็วที่เชื้อเพลิงขับดันจรวดไหลออกจากห้องเผาไหม้จะไม่ได้รับผลกระทบจากความดันในห้องเผาไหม้ (แม้ว่าแรงผลักดันจะได้สัดส่วนอยู่ก็ตาม) (อัตราเร็วไอเสียไม่ขึ้นกับความดันในห้องเผาไหม้) อย่างไรก็ตาม อัตราเร็วนั้นได้รับผลกระทบอย่างมีนัยสำคัญโดยทั้งสามปัจจัยข้างต้นและอัตราเร็วไอเสียนั้นเป็นมาตรวัดที่ยอดเยี่ยมของประสิทธิภาพเครื่องยนต์จรวด สิ่งนี้เรียกว่าความเร็วไอเสีย, และหลังจากหักค่าเผื่อเหลือเผื่อขาดที่กระทำสำหรับปัจจัยตัวแปรต่าง ๆ แล้ว สามารถจะช่วยลดขนาดมวลของจรวดได้ ประสิทธิภาพความเร็วไอเสีย (effective exhaust velocity) เป็นหนึ่งในตัวแปรที่สำคัญที่สุดของเครื่องยนต์จรวด (อย่างไรก็ตาม น้ำหนักของจรวด, ค่าใช้จ่าย, ความสะดวกในการผลิต ฯลฯ มักจะยังมีความสำคัญมาก)
สำหรับเหตุผลในทางหลักอากาศพลศาสตร์ที่กระแสการไหลของไอเสียจะไหลไปกับคลื่นเสียง ("โช้ก") ที่ส่วนที่แคบที่สุดของหัวฉีด, ในส่วนที่เรียกกันว่า 'คอ' นั้น เนื่องมาจากหลักการที่ว่าอัตราเร็วของเสียงในก๊าซสามารถถูกทำให้เพิ่มมากขึ้นได้ด้วยรากที่สองของอุณหภูมิ การใช้ก๊าซไอเสียที่ร้อนนั้นช่วยเพิ่มสมรรถนะของเครื่องยนต์จรวดเป็นอย่างมาก โดยเปรียบเทียบ, ที่อุณหภูมิห้องอัตราเร็วของเสียงในอากาศประมาณ 340 เมตร ต่อ วินาที ในขณะที่อัตราเร็วของเสียงในก๊าซร้อนของเครื่องยนต์จรวดสามารถมีได้มากกว่า 1,700 เมตร ต่อ วินาที; ส่วนใหญ่ของสมรรถนะการทำงานนี้เป็นเพราะอุณหภูมิที่สูงขึ้น, แต่นอกเหนือจากนี้เชื้อเพลิงขับดันจรวดจะถูกเลือกให้มีขนาดของมวลโมเลกุลที่มีค่าน้อย, และนี่ยังช่วยทำให้เกิดความเร็วที่สูงเมื่อเทียบกับอากาศ
การขยายตัวของก๊าซร้อนในหัวฉีดจรวดนั้นยังช่วยเพิ่มทวีคูณอัตราเร็วของก๊าซ, ปกติระหว่าง 1.5 ถึง 2 เท่าทำให้เกิดเจ็ทไอเสียในระดับไฮเปอร์โซนิกที่เป็นลำขนานอย่างยิ่ง การเพิ่มความเร็วไอเสียของหัวฉีดจรวดส่วนใหญ่จะถูกกำหนดโดยอัตราส่วนพื้นที่การขยายตัวของก๊าซร้อน—คือ อัตราส่วนของพื้นที่ของลำคอของหัวฉีดต่อพื้นที่ตรงส่วนทางออกของไอเสีย, แต่รายละเอียดคุณสมบัติของก๊าซก็ยังคงมีความสำคัญอยู่ หัวฉีดอัตราส่วนขนาดใหญ่คือมีขนาดหัวฉีดที่ใหญ่กว่า แต่สามารถที่จะสกัดกั้นความร้อนได้มากขึ้นจากการเผาไหม้ก๊าซ, และยังช่วยเพิ่มความเร็วไอเสียอีกด้วย
ประสิทธิภาพหัวฉีดได้รับผลกระทบจากการทำงานในชั้นบรรยากาศเพราะการเปลี่ยนแปลงความดันบรรยากาศตามระดับความสูงเหนือผิวโลก; แต่เนื่องจากอัตราเร็วเหนือเสียงของก๊าซที่ออกจากเครื่องยนต์จรวด, ความดันของไอพ่นอาจจะเป็นได้ทั้งต่ำกว่าหรือสูงกว่าสภาพแวดล้อม และสมดุลระหว่างทั้งสองแบบนี้จะไม่อาจบรรลุไปถึงที่ทุกระดับความสูงได้ (ดูแผนภาพ)
เพื่อสมรรถนะของเครื่องยนต์จรวดที่ดีที่สุด ความดันของก๊าซที่ปลายของหัวฉีดนั้นก็ควรจะเท่ากับความดันบรรยากาศ: ถ้าความดันไอเสียมีค่าต่ำกว่าความดันบรรยากาศ, แล้วยานพาหนะจะชะลอความเร็วลงจากความแตกต่างของความดันระหว่างด้านบนของเครื่องยนต์และทางออกของไอเสีย; ในอีกแง่หนึ่ง ถ้าความดันไอเสียมีค่าสูงกว่าแล้ว ความดันไอเสียที่ควรจะได้รับการแปลงเป็นแรงผลักดันจะไม่ถูกแปลงและพลังงานจะสูญเสียไปเปล่า
เพื่อรักษาอุดมคติของความเท่าเทียมกันระหว่างความดันไอเสียทางออกและความดันบรรยากาศนี้, เส้นผ่าศูนย์กลางของหัวฉีดจะต้องเพิ่มขึ้นตามระดับความสูงในชั้นบรรยากาศ, โดยให้ความดันแก่หัวฉีดต่อไปอีก (และการลดความดันทางออกและอุณหภูมิลง) การเพิ่มขึ้นของเส้นผ่าศูนย์กลางของหัวฉีดนี้เป็นเรื่องยากจะจัดการให้อยู่ในรูปแบบลักษณะที่จะทำให้ตัวเครื่องยนต์นั้นมีน้ำหนักที่เบาได้ถึงแม้ว่าจะกระทำได้อย่างจำเจกับรูปแบบอื่น ๆ ของเครื่องยนต์เจ็ทก็ตาม ในวิทยาการที่เกี่ยวกับจรวด, หัวฉีดที่พอจะอนุโลมได้ว่ามีน้ำหนักเบานั้นโดยทั่วไปแล้วก็จะถูกนำมาใช้งานและก็โดยลดประสิทธิภาพการทำงานในชั้นบรรยากาศบางอย่างลง ซึ่งจะเกิดขึ้นเมื่อนำมาใช้ในงานอย่างอื่นนอกเหนือจาก ' การออกแบบตามระดับความสูง ' หรือเมื่อมีการผ่อนคันเร่ง
อากาศยานโดยปกติมักจะต้องใช้แรงขับดันโดยรวมเพื่อสำหรับการที่จะเปลี่ยนทิศทางของการเคลื่อนที่ที่มีขนาดเกินกว่าระยะเวลาของการเผาไหม้ของเชื้อเพลิง มีหลายวิธีที่แตกต่างกันเพื่อให้บรรลุผลนี้:
เทคโนโลยีจรวดสามารถผสมผสานแรงผลักดันที่มีค่าสูงมากได้ (ขนาดเมกกะนิวตัน), ความเร็วไอเสียที่สูงมาก (ประมาณ 10 เท่าของความเร็วของเสียงในอากาศที่ระดับน้ำทะเล) และอัตราส่วนแรงผลักดัน/น้ำหนักที่มีค่าสูงมาก (> 100) พร้อม ๆ กันไปกับความสามารถทำงานนอกชั้นบรรยากาศได้, และในขณะที่อนุญาตให้ใช้ความดันต่ำและด้วยเหตุนี้จึงใช้ตัวถังและโครงสร้างที่มีน้ำหนักเบา
จรวดสามารถถูกปรับแต่งการทำงานเพิ่มเติมได้เพื่อเพิ่มประสิทธิภาพการทำงานที่สุดขั้วได้มากยิ่งขึ้นตามจำนวนแนวแกนของจรวดขับดันที่ใช้ที่มีจำนวนหนึ่งแนวแกนหรือมากกว่านั้นโดยที่มีค่าใช้จ่ายที่เพิ่มมากขึ้นตามไปด้วยเป็นเงาตามตัว
ตัวชี้วัดประสิทธิภาพของเครื่องยนต์จรวดที่สำคัญที่สุดคือ แรงดลต่อหน่วยของเชื้อเพลิงจรวด สิ่งนี้เรียกว่าแรงดลจำเพาะ (specific impulse) (มักเขียนเป็น ) นี้คือการวัดทั้งเป็นความเร็ว (ประสิทธิภาพความเร็วไอเสีย เมตร/วินาที หรือ ฟุต/วินาที) หรือเป็นทั้งเวลา (วินาที) เครื่องยนต์ที่ให้แรงดลจำเพาะได้มากนั้นโดยปกติแล้วจะเป็นสิ่งที่พึงปรารถนาอย่างมาก
แรงดลจำเพาะที่สามารถบรรลุฟังก์ชันการทำงานส่วนใหญ่ของเชื้อเพลิงจรวดผสม (และในที่สุดจะมาเป็นตัวจำกัดแรงดลจำเพาะเอง), แต่ข้อจำกัดในทางปฏิบัติเกี่ยวกับความดันในห้องเผาไหม้และอัตราส่วนการขยายตัวของหัวฉีดจะเป็นตัวลดสมรรถนะการทำงานของเครื่องยนต์ที่สามารถจะทำได้
เนื่องจาก, มีความแตกต่างจากเครื่องยนต์ไอพ่น, เครื่องยนต์จรวดแบบดั้งเดิมจะปราศจากระบบควบคุมอากาศเข้าสู่ห้องเผาไหม้ (air intake), ที่จะไม่มี 'แรมฉุดลาก' (ram drag) ที่จะเป็นตัวหักลบออกจากแรงผลักดันโดยรวม ดังนั้นแรงผลักดันสุทธิของเครื่องยนต์จรวดจะเท่ากับแรงผลักดันขั้นต้น (นอกเหนือจากความดันย้อนกลับคงที่)
เนื่องจากแรงดลจำเพาะมีความแตกต่างกันที่ความดัน, เป็นปริมาณที่ง่ายเปรียบเทียบและคำนวณที่จะเป็นประโยชน์ยิ่งขึ้น เพราะโช้คจรวดที่ตรงส่วนคอคอดและเพราะก๊าซไอเสียความเร็วเหนือเสียงจะช่วยป้องกันไม่ให้ความดันภายนอกมีอิทธิพลเดินทางสวนกระแสกับก๊าซไอเสีย
จรวดสามารถบีบอัดก๊าซไอเสียได้ โดยควบคุมอัตราการเผาไหม้เชื้อเพลิงจรวด (มักจะวัดในหน่วยกิโลกรัม/วินาที หรือปอนด์/วินาที) ในจรวดเชื้อเพลิงเหลวและจรวดไฮบริด, เชื้อเพลิงจรวดจะไหลเข้าสู่ห้องเผาไหม้ที่มีการควบคุมโดยใช้วาล์ว, ในจรวดเชื้อเพลิงแข็งมันจะถูกควบคุมโดยเปลี่ยนแปลงพื้นที่ของเชื้อเพลิงจรวดที่ถูกเผาไหม้และนี่สามารถถูกออกแบบให้เป็นแบบเม็ดเชื้อเพลิงจรวด (propellant grain) (และด้วยเหตุนี้จึงไม่สามารถควบคุมได้ในแบบเรียลไทม์)
ในเครื่องยนต์จรวด, มันคือทั้งหมดทุก ๆ อย่างของเครื่องยนต์เจ็ท โดยแท้ที่จริงแล้วจัดว่าเป็นธรรมชาติของเครื่องยนต์ทุก ๆ ชนิด, ที่จะมีอัตราส่วนของแรงผลักดันต่อน้ำหนักที่สูงที่สุด นี่คือหลักความจริงโดยเฉพาะอย่างยิ่งสำหรับเครื่องยนต์จรวดเชื้อเพลิงเหลว
เพื่อเหตุผลสำหรับประสิทธิภาพของการทำงานและเพราะความสามารถทางกายภาพของตัวเครื่องยนต์เองอีกด้วย, จรวดจะทำงานด้วยอุณหภูมิการเผาไหม้ที่สามารถทนได้ถึงประมาณ 3500 เคลวิน (หรือ 3227 องศาเซลเซียส หรือ 5840 องศาฟาเรนไฮต์)
เครื่องยนต์เจ็ทอื่น ๆ ส่วนใหญ่ จะมีกังหันก๊าซเทอร์ไบน์ (gas turbine) ติดตั้งอยู่ภายในไอเสียร้อน เนื่องจากพื้นที่ผิวที่มีขนาดใหญ่ขึ้น, มันก็มีความยากที่จะสามารถทำการระบายความร้อนออกไปได้มากขึ้นเป็นเงาตามตัว และด้วยเหตุนี้จึงมีความจำเป็นที่จะต้องดำเนินการกระบวนการเผาไหม้ที่อุณหภูมิต่ำกว่ามาก, ทำให้เกิดการสูญเสียประสิทธิภาพ
เกิดขึ้นได้กับเครื่องยนต์จรวดทุก ๆ เครื่องแต่มีขนาดความดังของเสียงที่เบามาก, เมื่อเทียบกับเครื่องยนต์ชนิดอื่น ๆ โดยทั่วไปที่มีระดับเสียงที่ดังกว่ามาก
ขนนกจรวด (rocket plume) คือ "จรวดช่วยพยุง" หรือ จรวดขับดันขนาดเล็กสำหรับการช่วยพยุงน้ำหนักหรือช่วยขับเคลื่อนตัวจรวดหรือยานอวกาศให้เคลื่อนที่ไปมาได้ภายใต้ชั้นบรรยากาศในระดับต่ำ ๆ ใกล้พื้นผิวของดาวเคราะห์ดวงนั้น ๆ ซึ่งจะมีความแตกต่างกันไปขึ้นอยู่กับเครื่องยนต์จรวดแต่ละเครื่อง, การออกแบบตามระดับความสูงในชั้นบรรยากาศ, ระดับความสูงในชั้นบรรยากาศ, แรงขับดันและปัจจัยอื่น ๆ อีก
ไอเสียที่อุดมไปด้วยคาร์บอนจากเชื้อเพลิงน้ำมันก๊าดมักจะมีสีส้มเนื่องจากการแผ่รังสีจากวัตถุดำ (black body radiation) ของอนุภาคที่ถูกเผาไหม้, นอกเหนือไปจากแถบหงส์ (Swan band) สีน้ำเงิน เปอร์ออกไซด์ (Peroxide) นั้น เป็นตัวออกซิไดซ์ หรือ ตัวช่วยในการเผาไหม้ของเชื้อเพลิงขั้นพื้นฐานที่สุดของจรวดและขนนกจรวดไฮโดรเจน (hydrogen rocket plume) อันประกอบด้วยไอน้ำ (steam) ซะเป็นส่วนใหญ่และเกือบจะมองไม่เห็นได้ด้วยตาเปล่า แต่เปล่งประกายสว่างเจิดจ้าได้ในรังสีอัลตราไวโอเลตและรังสีอินฟราเรด ขนนกจรวดที่สร้างขึ้นจากจรวดเชื้อเพลิงแข็ง (solid rocket) เวลาที่เชื้อเพลิงของจรวดเที่มักจะประกอบไปด้วยธาตุที่เป็นโลหะอย่างเช่น อะลูมิเนียม เมื่อเวลาที่เชื้อเพลิงนั้นถูกเผาไหม้แล้ว จะปรากฏให้เห็นเป็นเปลวไฟสีส้ม-ขาว สามารถมองเห็นด้วยตาเปล่าได้อย่างชัดเจน และยังช่วยเพิ่มพลังงานให้กับกระบวนการเผาไหม้ได้อีกด้วย