เครื่องบิน หรือ (อังกฤษ: airplane or aeroplane) คือ พาหนะสำหรับเดินทางที่สามารถบินไปในอากาศได้ (อากาศยาน) โดยเครื่องบินเป็นอากาศยานที่หนักกว่าอากาศ เครื่องบินสามารถบินได้โดยอาศัยแรงยกจากปีกตามหลักการของอากาศพลศาสตร์และถูกขับเคลื่อนไปข้างหน้าโดยแรงผลักจากเครื่องยนต์ไอพ่นหรือใบพัด (อากาศยานที่เบากว่าอากาศถูกเรียกว่า "เรือเหาะ") เครื่องบินมีหลายขนาด, หลายรูปทรง, และปีกหลายแบบ ลักษณะการใช้งานจะเป็นการใช้เพื่อการพักผ่อน, การขนส่งสินค้าและการโดยสาร, ใช้ในการเกษตร, การทหาร, และการวิจัย. เครื่องบินมีทั้งแบบที่ใช้เครื่องยนต์ และไม่ใช้เครื่องยนต์ เครื่องบินแบบที่ไม่ใช้เครื่องยนต์จะมีชื่อเรียกอีกชื่อว่า เครื่องร่อน
เครื่องบินที่มีใช้งานอยู่ส่วนใหญ่เป็นอากาศยานปีกคงที่ (อังกฤษ: fixed-wing aircraft) ขับโดยนักบินที่อยู่ในเครื่อง บางชนิดถูกออกแบบให้ทำงานด้วยระบบคอมพิวเตอร์หรือการควบคุมระยะไกลโดยไม่ต้องมีนักบินภายในเครื่อง. ส่วนอากาศยานปีกหมุน/เฮลิคอปเตอร์ หรือที่บางแห่งเรียกว่า เครื่องบินปีกหมุน เป็นอากาศยานอีกชนิดหนึ่งที่มีจำนวนรองลงไป
หลักฐานครั้งแรกเกิดขึ้นในประเทศอังกฤษในปลายศตวรรษที่ 19 (ก่อนที่จะมีการบินที่ขับเคลื่อนด้วยเครื่องยนต์ที่บินได้จริงเป็นครั้งแรก), คำว่า airplane หรือ aeroplane มาจากภาษาฝรั่งเศส, ซึ่งมาจากภาษากรีก ??? (a?r), "air" กับคำว่า planus, "level", ในภาษาลาติน หรือคำว่า (planos), "wandering" ในภาษากรีก ??????. คำว่า"เครื่องบิน" เดิมหมายถึงเฉพาะปีกเท่านั้นและมันเป็นรูปแนวราบ(อังกฤษ: plane)ที่เคลื่อนที่ไปในอากาศได้.
ในประเทศสหรัฐอเมริกาและแคนาดา, คำว่า "airplane" ถูกใช้สำหรับอากาศยานปีกคงที่ที่ใช้เครื่องยนต์. ในสหราชอาณาจักรและส่วนใหญ่ของเครือจักรภพอังกฤษ, จะใช้คำว่า "aeroplane"
หลายเรื่องตั้งแต่สมัยโบราณจะเกี่ยวข้องกับการบิน, เช่นตำนานกรีกแห่งอิคารัสและเดดาลัส, และ Vimana ในมหากาพย์อินเดียโบราณ. ประมาณ 400 ก่อนคริสตกาลในกรีซ, Archytas ได้ชื่อว่าเป็นผู้ออกแบบและสร้างอุปกรณ์การบินขับเคลื่อนด้วยตัวเองของเทียมตัวแรก, เป็นรูปแบบของนกขับเคลื่อนด้วยไอพ่นที่น่าจะเป็นไอน้ำ, ได้รับการกล่าวขานว่าได้ทำการบินดัวยระยะทางประมาณ 200 เมตร (660 ฟุต). เครื่องนี้น่าจะถูกระงับไม่ให้มีการบินอีกต่อไป.
บางส่วนของความพยายามด้วยเครื่องร่อนที่ถูกบันทึกไว้ก่อนหน้านั้นไกลที่สุดคือจากความพยายามโดยกวีในศตวรรษที่ 9 ชื่อ อับบาส อิบัน Firnas และพระในศตวรรษที่ 11 ชื่อ Eilmer แห่ง Malmesbury; การทดลองทั้งสองได้ทำให้นักบินได้รับบาดเจ็บ. Leonardo da Vinci ได้วิจัยการออกแบบปีกของนกและได้ออกแบบเครื่องบินพลังมนุษย์ในหนังสือCodex on the Flight of Birds (1502).
ในปี ค.ศ. 1799 เซอร์จอร์จ เคย์ลีกำหนดแนวคิดของเครื่องบินที่ทันสมัยว่า??เป็นเครื่องยนต์ปีกคงที่ที่บินได้ด้วยระบบการยกตัว, การขับเคลื่อน, และการควบคุมแยกต่างหาก. เคย์ลีได้สร้างและบินแบบจำลองของยานอากาศปีกคงที่ตอนต้นปึ 1803, และเขาได้สร้างเครื่องร่อนบรรทุกผู้โดยสารได้ประสบความสำเร็จใน 1853. ในปี 1856 ชาวฝรั่งเศส ฌอง-มารี เลอ บริซทำการบินด้วยการขับเคลื่อนด้วยกำลังงานเป็นครั้งแรกโดยใช้เครื่องร่อนของเขาชื่อ "L'Albatros artificiel" ลากโดยม้าหนึ่งตัวบนชายหาด.[ต้องการอ้างอิง]. จากนั้น Alexander F. Mozhaisky ยังได้ทำการออกแบบด้วยนวัตกรรมบางอย่าง. ในปี 1883 ชาวอเมริกัน จอห์น เจ Montgomery ทำการบินด้วยเครื่องร่อนแบบควบคุม[ต้องการอ้างอิง]. นักบินอื่นๆที่ทำการบินที่คล้ายกันในช่วงเวลานั้นก็มี Otto Lilienthal, Percy Pilcher, และ Octave Chanute.
เซอร์ไฮแรม Maxim สร้างยานลำหนึ่งที่มีน้ำหนัก 3.5 ตัน, ที่มีความยาวปีก 110 ฟุต (34 เมตร) ขับเคลื่อนด้วยเครื่องยนต์ไอน้ำขนาด 360 แรงม้า (270 กิโลวัตต์) สองเครื่องเพื่อขับสองใบพัด. ในปี 1894, เครื่องของเขาได้รับการทดสอบกับรางเหนือศีรษะเพื่อป้องกันไม่ให้มันพุ่งขึ้นฟ้า. การทดสอบแสดงให้เห็นว่ามันมีแรงยกมากพอที่จะใช้ในการทะยานขึ้น. ยานนี้ไม่สามารถควบคุมได้, ซึ่ง Maxim คาดว่าจะรู้ดีเพราะเขาได้ละทิ้งงานนี้ในที่สุด
ในยุค 1890s Lawrence Hargrave ได้ดำเนินการวิจัยเกี่ยวกับโครงสร้างของปีกและพัฒนาว่าวรูปกล่องที่ยกน้ำหนักของคนคนหนึ่ง. การออกแบบว่าวรูปกล่องของเขาถูกนำมาใช้กันอย่างแพร่หลาย. แม้ว่าเขายังได้พัฒนาเครื่องยนต์อากาศยานหมุนประเภทหนึ่ง, เขาก็ไม่ได้สร้างและบินอากาศยานปีกคงที่ขับเคลื่อนด้วยกำลัง.
ระหว่างปี 1867 ถึง 1896 ผู้บุกเบิกชาวเยอรมันเรื่องการบินของมนุษย์ Otto Lilienthal ได้พัฒนายานบินที่หนักกว่าอากาศ. เขาเป็นคนแรกที่ทำเป็นเอกสารและสำเนาด้านการบินด้วยเครื่องร่อนที่ประสพความสำเร็จได้อย่างดี.
มีหลายทฤษฎีที่ใช้อธิบายการบินของเครื่องบิน (แต่จนถึงวันนี้ยังมีการโต้แย้งว่าคำอธิบายต่างๆ ยังไม่สมบูรณ์)
การบินของพี่น้องตระกูลไรท์ในปี 1903 เป็นที่ยอมรับโดย F?d?ration A?ronautique Internationale (FAI) เรื่องการตั้งค่าและตัวเก็บบันทึกข้อมูลมาตรฐานสำหรับการบินในอากาศ, ว่าเป็น "การบินขับเคลื่อนด้วยกำลังด้วยยานที่หนักกว่าอากาศอย่างต่อเนื่องและควบคุมได้เป็นครั้งแรก". เมื่อปี 1905, Wright Flyer III สามารถทำการบินที่อยู่ในการควบคุมได้อย่างเต็มที่และมั่นคงสำหรับช่วงเวลาที่ต่อเนื่อง. พี่น้องตระกูลไรท์ยกเครดิตให้กับ Otto Lilienthal ว่าเป็นแรงบันดาลใจที่สำคัญในการตัดสินใจของพวกเขาที่จะค้นหาวิธีทำการบินที่มีมนุษย์ควบคุม.
ในปี 1906, Alberto Santos Dumont ทำสิ่งที่อ้างว่าเป็นการบินด้วยเครื่องบินเป็นครั้งแรกที่ไม่มีใครช่วยเหลือโดยใช้เครื่องขว้างหินโบราณ(อังกฤษ: catapult) และได้สร้างสถิติโลกครั้งแรกที่ได้รับการยอมรับโดย Aero-club de France โดยทำการบินระยะทาง 220 เมตร (720 ฟุต) ในเวลาน้อยกว่า 22 วินาที. การบินครั้งนี้ก็ยังได้รับการรับรองโดย FAI อีกด้วย.
การออกแบบยานอากาศในตอนต้นที่ได้นำมารวมกันของรูปแบบหัวลากปีกชั้นเดียว(อังกฤษ: monoplane tractor configuration)ที่ทันสมัย??คือการออกแบบของ Bleriot VIII ในปี 1908. มันมีพื้นผิวหางที่เคลื่อนที่ได้เพื่อควบคุมทั้งการหันเหและระยะห่าง, รูปแบบหนึ่งของการควบคุมการม้วนที่จัดโดยบิดของปีกหรือโดยใช้ปีกเสริมและถูกควบคุมโดยนักบินที่มีจอยสติ๊กและแท่งหางเสือ. มันเป็นบรรพบุรุษที่สำคัญอันหนึ่งของเครื่อง Bleriot XI รุ่นต่อมาที่เป็นยานอากาศที่บินข้ามช่องแคบอังกฤษในช่วงฤดูร้อนปี 1909.
หลังจากที่ทำงานไปมากยานอากาศ Vlaicu nr. 1 ก็สร้างเสร็จในปี 1909, และได้รับการทดสอบการบินเมื่อวันที่ 17 มิถุนายน 1910. จากการบินครั้งแรก เครื่องบินไม่มีความจำเป็นในการเปลี่ยนแปลงใดๆ. เครื่องบินที่ถูกสร้างขึ้นจากอะลูมิเนียมชิ้นเดียวมีความยาว 10 เมตรซึ่งใช้รองรับเครื่องบินทั้งลำ, ทำให้มันง่ายมากที่จะบิน. เครื่องบินสิบเครื่องถูกสร้างขึ้นมาสำหรับกองทัพอากาศโรมาเนีย, ทำให้มันเป็นกองทัพอากาศลำดับที่สองที่เคยมีมาในโลก.
สงครามโลกครั้งที่หนึ่งถูกใช้เป็นสนามทดสอบสำหรับการใช้เครื่องบินเป็นอาวุธ. เครื่องบินได้แสดงให้เห็นถึงศักยภาพของพวกเขาที่เป็นนั่งร้านเพื่อการสังเกตเคลื่อนที่, จากนั้นมันได้รับการพิสูจน์ว่าตัวมันเองเป็นเครื่องจักรของสงครามที่มีความสามารถในการก่อให้เกิดการบาดเจ็บล้มตายให้กับศัตรู. ชัยชนะทางอากาศที่เก่าแก่ที่สุดเท่าที่เคยรู้จักกันที่มีการใช้เครื่องบินรบติดอาวุธปืนทำงานแบบซิงโครไนซ์ได้เกิดขึ้นในปี 1915, โดยเรืออากาศโทเยอรมัน Luftstreitkr?fte Leutnant เคิร์ต Wintgens. เครื่องบินขับไล่เอซปรากฏตัวขึ้น; ที่ยิ่งใหญ่ที่สุด (โดยจำนวนของชัยชนะการต่อสู้ทางอากาศ) เป็นของ Manfred von Richthofen.
หลังจากสงครามโลกครั้งที่หนึ่ง เทคโนโลยีอากาศยานยังคงพัฒนาต่อไป. Alcock and Brown บินข้ามมหาสมุทรแอตแลนติกโดยไม่หยุดเป็นครั้งแรกในปี 1919. เที่ยวบินพาณิชย์นานาชาติครั้งแรกเกิดขึ้นระหว่างสหรัฐอเมริกาและแคนาดาในปี 1919[ต้องการอ้างอิง].
เครื่องบินมีการแสดงตนอยู่ในการต่อสู้ที่สำคัญทุกครั้งของสงครามโลกครั้งที่สอง. พวกมันเป็นองค์ประกอบสำคัญของกลยุทธ์การทหารในช่วงเวลานั้น, เช่น'การรบสายฟ้าแลบของเยอรมัน'หรือการรบด้วยเรือบรรทุกเครื่องบินระหว่างอเมริกาและญี่ปุ่นในสงครามมหาสมุทรแปซิฟิก.
เครื่องบินเจ็ทที่ทำงานได้เครื่องแรกคือ Heinkel He 178 ของเยอรมัน, ซึ่งได้รับการทดสอบในปี 1939. ในปี 1943, Messerschmitt Me 262, เครื่องบินรบเจ็ทที่ทำงานได้เครื่องแรกได้รับการบรรจุเพื่อให้บริการในกองทัพเยอรมัน. ในเดือนตุลาคมปี 1947, Bell X-1 เป็นเครื่องบินลำแรกที่บินได้เร็วกว่าเสียง[ต้องการอ้างอิง]
สายการบินเจ็ทสายแรก, de Havilland Comet ได้รับการแนะนำในปี 1952. Boeing 707, เป็นเครื่องเจ็ทเชิงพาณิชย์เตรื่องแรกที่ประสบความสำเร็จอย่างกว้างขวาง, ให้บริการเชิงพาณิชย์มานานกว่า 50 ปี, จากปี 1958 ถึง 2010. Boeing 747 เป็นเครื่องบินโดยสารที่ใหญ่ที่สุดในโลกตั้งแต่ปี 1970 จนกระทั่งมันถูกแซงหน้าโดย Airbus A380 ในปี 2005.
เครื่องบินใบพัดที่มีขนาดเล็กกว่าและเก่ากว่าใช้ประโยชน์ของเครื่องยนต์ที่เคลื่อนขึ้นลงสลับกัน (หรือเครื่องยนต์ลูกสูบ) เพื่อหมุนใบพัดเพื่อสร้างแรงผลักดัน. ปริมาณของแรงผลักดันที่ใบพัดสร้างจะถูกกำหนดโดยพื้นที่จาน - พื้นที่ที่ใบพัดหมุน. ถ้าพื้นที่มีขนาดเล็กเกินไป, ประสิทธิภาพก็จะต่ำ, และถ้าพื้นที่มีขนาดใหญ่มาก, ใบพัดจะต้องหมุนที่ความเร็วต่ำมากเพื่อหลีกเลี่ยงไม่ให้เร็วเหนือเสียงและการสร้างเสียงรบกวนจำนวนมากและสร้างแรงผลักดันไม่มาก. เนื่องจากข้อจำกัดเหล่านี้, การใช้ใบพัดจึงเป็นที่ชื่นชอบสำหรับเครื่องบินที่เดินทางที่ต่ำกว่า 0.5 เท่าของความเร็วเสียง, ในขณะที่เครื่องยนต์เจ็ทจะเป็นทางเลือกที่ดีกว่าสำหรับความเร็วที่สูงกว่านั้น. เครื่องยนต์ใบพัดอาจจะเงียบกว่าเครื่องยนต์เจ็ท (แม้ว่าจะไม่เสมอไป) และอาจมีค่าใช้จ่ายน้อยกว่าที่จะซื้อหรือบำรุงรักษาและยังคงเป็นเครื่องสามัญสำหรับการบินขนาดเบาทั่วไปเช่น Cessna 172. เครื่องบินใบพัดที่ทันสมัยขนาดใหญ่เช่น Dash 8 ใช้เครื่องยนต์เจ็ทเพื่อหมุนใบพัด, เหตุผลเบิ้องต้นก็คือเครื่องยนต์ลูกสูบที่มีกำลังเทียบเท่าจะมีขนาดใหญ่มากและซับซ้อนมากกว่า.
เครื่องบินเจ็ทถูกขับเคลื่อนด้วยเครื่องยนต์เจ็ทเพราะข้อจำกัดทางอากาศพลศาสตร์ของใบพัดไม่สามารถใช้กับเครื่องยนต์ไอพ่นได้. เครื่องยนต์เหล่านี้จะมีประสิทธิภาพมากกว่าเครื่องยนต์ลูกสูบในขนาดหรือน้ำหนักที่เท่ากัน, มีความเงียบและค่อนข้างทำงานได้ดีที่ระดับความสูงที่สูงกว่า. เครื่องบินเจ็ทที่ทันสมัยส่วนใหญ่??ใช้เครื่องยนต์ไอพ่นแบบ turbofan ซึ่งสมดุลกับข้อได้เปรียบต่างๆของใบพัด, ขณะที่รักษาความเร็วและพลังของเจ็ท. นี้เป็นหลักสำคัญที่ใบพัดที่ถูกทำเป็นท่อที่แนบมากับเครื่องยนต์เจ็ท, เหมือน turboprop, แต่มีเส้นผ่าศูนย์กลางขนาดเล็กกว่า. เมื่อติดตั้งบนเครื่องบิน, มันจะมีประสิทธิภาพตราบเท่าที่มันยังคงรักษาความเร็วต่ำกว่าความเร็วของเสียง (หรือ subsonic). เครื่องบินรบเจ็ทและเครื่องบินความเร็วเหนือเสียงอื่นๆ ที่ไม่ได้ใช้เวลาอย่างมากที่ความเร็วเหนือเสียงก็มักจะใช้ turbofans, แต่เพื่อให้ทำงาน, ท่อนำอากาศเข้าเป็นสิ่งจำเป็นเพื่อชะลอความเร็วของอากาศเพื่อที่ว่าเมื่ออากาศมาถึงที่ด้านหน้าของ turbofan, มันจะเป็น subsonic. เมื่อผ่านเข้าไปในเครื่องยนต์, มันจะถูกเร่งความเร็วกลับไปที่ความเร็วเหนือเสียง. เพื่อเพิ่มการส่งออกพลังงานให้มากขึ้นไปอีก, เชื้อเพลิงถูกอัดเข้าไปในกระแสไอเสีย, มันจะจุดระเบิดที่นั่น. ขบวนการนี้เรียกว่าต้วเผาทีหลัง(อังกฤษ: afterburner) และถูกนำมาใช้ทั้งเครื่องบินเจ็ตที่บริสุทธิ์และเครื่องบิน turbojet แม้ว่าปกติมันจะถูกใช้ในเครื่องบินรบเท่านั้นเนื่องจากปริมาณน้ำมันเชื้อเพลิงที่ใช้, และมันอาจจะถูกใช้เพียงช่วงระยะเวลาสั้นๆเท่านั้น. สายการบินความเร็วเหนือเสียง (เช่นคองคอร์ด) ไม่ได้อยู่ในการใช้งานอย่างกว้างขวางอีกต่อไปเพราะการบินที่ความเร็วเหนือเสียงสร้างโซนิคบูมซึ่งเป็นสิ่งต้องห้ามในพื้นที่ที่มีประชากรหนาแน่น, และเพราะการบริโภคน้ำมันเชื้อเพลิงที่สูงกว่ามากถ้าต้องบินด้วยความเร็วเหนือเสียง.
เครื่องบินเจ็ตมีความเร็วสูงแบบ cruising speed ที่ 700-900 กิโลเมตร/ชั่วโมง (430-560 ไมล์ต่อชั่วโมง)และที่ความเร็ว 150-250 กิโลเมตร/ชั่วโมง (93-155 ไมล์ต่อชั่วโมง)สำหรับบินขึ้น(อังกฤษ: takeoff)และลงพื้น(อังกฤษ: landing). เนื่องจากความเร็วที่จำเป็นสำหรับการบินขึ้นและลงพื้น, เครื่องบินเจ็ทใช้ปีกที่ขยับได้(อังกฤษ: flap)และอุปกรณ์ที่มีขอบโค้งมน(อังกฤษ: leading edge device)ในการควบคุมการยกตัวและความเร็ว. มีหลายลำที่ยังใช้ตัวสลับทิศแรงขับดัน(อังกฤษ: thrust reverser)เพื่อชะลอความเร็วเมื่อเครื่องบินลงพื้น.
เครื่องบินไฟฟ้าทำงานด้วยมอเตอร์ไฟฟ้าแทนที่จะเป็นเครื่องยนต์สันดาปภายใน, โดยกระแสไฟฟ้าได้มาจากเซลล์เชื้อเพลิง, เซลล์แสงอาทิตย์, ตัวเก็บประจุยิ่งยวด, power beaming หรือแบตเตอรี่. ปัจจุบัน เครื่องบินไฟฟ้าส่วนใหญ่ยังเป็นเครื่องต้นแบบอยู่ระหว่างการทดลอง, รวมทั้งยานพาหนะทางอากาศที่มีคนขับและไม่มีคนขับ.
ในสงครามโลกครั้งที่สอง, เยอรมันใช้เครื่องบินขับเคลื่อนด้วยจรวด Messerschmitt Me 163. เครื่องบินลำแรกที่จะทำลายกำแพงเสียงเป็นเครื่องบินจรวด - Bell X-1. ต่อมา North American X-15 ทำลายสถิติความเร็วและระดับความสูงหลายครั้งและได้วางรากฐานจำนวนมากสำหรับอากาศยานและการออกแบบยานอวกาศในภายหลัง. เครื่องบินจรวดไม่ได้อยู่ในการใช้งานทั่วไปในวันนี้, ถึงแม้ว่าการ takeoff โดยใช้จรวดช่วยจะถูกนำมาใช้สำหรับเครื่องบินทหารบางครั้ง. เครื่องบินจรวดล่าสุดรวมถึง SpaceShipOne และ XCOR EZ-Rocket.
Ramjet คือรูปแบบหนึ่งของเครื่องยนต์เจ็ทที่ไม่มีชิ้นส่วนที่เคลื่อนไหวที่สำคัญและเป็นประโยชน์เฉพาะอย่างในการใช้งานที่ต้องใช้เครื่องยนต์ขนาดเล็กและเรียบง่ายสำหรับการใช้ความเร็วสูงเช่นใช้กับขีปนาวุธ. Ramjet ต้องการการเคลื่อนที่ไปข้างหน้าก่อนที่มันจะสามารถสร้างแรงผลักดันและเพื่อทำอย่างนั้น มันมักจะถูกใช้ร่วมกับรูปแบบอื่นๆของการขับเคลื่อน, หรือกับวิธีการภายนอกเพื่อบรรลุความเร็วที่เพียงพอ. ล็อกฮีด D-21 เป็นเครื่อง drone สอดแนมที่ขับเคลื่อนด้วย ramjet ที่มีความเร็วเป็น 3+ ของความเร็วเสียงที่ถูกปล่อยออกจากยานแม่. Ramjet จะใช้การเคลื่อนไหวไปข้างหน้าของยานแม่เพื่อบังคับให้อากาศวิ่งผ่านเครื่องยนต์โดยไม่ต้องหันไปพึ่งกังหันหรือใบพัด. เชื้อเพลิงจะถูกเพิ่มเข้าไปและจุดระเบิด, ซึ่งทำให้อากาศร้อนและขยายตัวเพื่อสร้างแรงผลักดัน.
Scramjet เป็น ramjet เหนือเสียงและมีความแตกต่างนอกเหนือจากการรับมือกับการไหลของอากาศความเร็วเหนือเสียงภายในที่ทำงานเหมือน ramjet ธรรมดา. ประเภทของเครื่องยนต์นี้ต้องใช้ความเร็วเริ่มต้นที่สูงมากเพื่อให้มันทำงานได้. นาซ่า X-43, scramjet ทดลองที่ไม่มีคนขับ, ได้ทำสถิติโลกด้านความเร็วในปี 2004 สำหรับเครื่องบินเจ็ทด้วยความเร็ว 9.7 เท่าของความเร็วเสียง, เกือบ 7,500 ไมล์ต่อชั่วโมง (12,100 กิโลเมตร/ชั่วโมง).
เครื่องบินส่วนใหญ่จะสร้างขึ้นโดยหลายบริษัทที่มีวัตถุประสงค์ในการผลิตให้กับลูกค้าในปริมาณที่ต้องการ. ขั้นตอนการออกแบบและการวางแผน, รวมถึงการทดสอบความปลอดภัย, อาจใช้เวลายาวนานถึงสี่ปีสำหรับเครื่องบินใบพัดขนาดเล็กหรือนานกว่านั้นสำหรับเครื่องบินขนาดใหญ่.
ในระหว่างกระบวนการนี้, วัตถุประสงค์และข้อกำหนดการออกแบบของเครื่องบินจะมีการจัดตั้งขึ้น. ขั้นแรก บริษัทผู้ผลิตจะใช้ภาพวาดและสมการต่างๆ, การจำลอง, การทดสอบในอุโมงค์ลม, และประสบการณ์เพื่อทำนายพฤติกรรมของเครื่องบิน. คอมพิวเตอร์หลายเครื่องจะถูกใช้เพื่อวาดแบบ, วางแผนและทำแบบจำลองเบื้องต้นของเครื่องบิน. จากนั้น รูปแบบขนาดเล็กและแบบจำลอง(อังกฤษ: mockup) ทั้งหมดหรือบางส่วนของเครื่องบินจะมีการทดสอบในอุโมงค์ลมเพื่อตรวจสอบทางอากาศพลศาสตร์ของมัน.
เมื่อการออกแบบได้'ผ่าน'กระบวนการเหล่านี้, บริษัทจะผลิตต้นแบบออกมาจำนวนจำกัดสำหรับการทดสอบบนพื้นดิน. ผู้แทนจากหน่วยงานกำกับการบินมักจะทำการบินเที่ยวแรก. การทดสอบการบินจะดำเนินต่อไปจนกว่าเครื่องบินจะได้ปฏิบัติตามข้อกำหนดทั้งหมด. จากนั้นหน่วยงานของรัฐที่กำกับดูแลการบินของประเทศจะอนุญาตให้บริษัทเริ่มต้นการผลิตได้.
ในประเทศสหรัฐอเมริกา, หน่วยงานนี้คือ Federal Aviation Administration (FAA) และในสหภาพยุโรปคือ European Aviation Safety Agency (EASA). ในแคนาดา หน่วยงานของรัฐที่รับผิดชอบและอนุญาตให้ทำการผลิตแบบมวลของเครื่องบินได้คือ Transport Canada.
ในกรณีที่มีการซื้อขายระหว่างประเทศ, ใบอนุญาตจากหน่วยงานการบินของรัฐหรือการขนส่งของประเทศที่เครื่องบินนี้จะถูกนำใช้นี้ยังเป็นสิ่งจำเป็น. ตัวอย่างเช่นเครื่องบินที่ผลิตโดยบริษัท ยุโรป, Airbus, จะต้องได้รับการรับรองโดย FAA เพื่อบินในประเทศสหรัฐอเมริกา, และเครื่องบินที่ทำโดยบริษ้ทBoeing ในสหรัฐจำเป็นที่จะต้องได้รับอนุมัติจาก EASA เพื่อบินในสหภาพยุโรป.
เครื่องบินที่เงียบมากขึ้นได้กลายเป็นสิ่งจำเป็นมากขึ้นเรื่อยๆเนื่องจากการเพิ่มขึ้นของการจราจรทางอากาศโดยเฉพาะอย่างยิ่งในพื้นที่เมืองที่มลพิษทางเสียงของเครื่องบินเป็นความกังวลหลัก.
เครื่องบินขนาดเล็กสามารถได้รับการออกแบบและสร้างโดยมือสมัครเล่นเป็นแบบ homebuilts. เครื่องบินแบบ homebuilt อื่นๆสามารถประกอบโดยใช้ชุดคิทสำเร็จรูปที่ชิ้นส่วนสามารถนำมาประกอบเป็นเครื่องบินขั้นพื้นฐานและต้องแล้วเสร็จสมบูรณ์โดยผู้สร้าง.
มีเพียงไม่กี่บริษัทที่ผลิตเครื่องบินเป็นบริษัทขนาดใหญ่. อย่างไรก็ตามการผลิตเครื่องบินให้กับ บริษัทหนึ่งๆจริงๆแล้วเป็นกระบวนการที่เกี่ยวข้องกับบริษัทและโรงงานอื่นๆหลายสิบหรือหลายร้อยบริษัทที่ผลิตชิ้นส่วนประกอบขึ้นเป็นเครื่องบิน. ตัวอย่างเช่น บริษัทหนึ่งอาจผู้รับผิดชอบสำหรับการผลิตของเกียร์แลนดิ้ง, ในขณะที่อีกบริษัทหนึ่งรับผิดชอบสำหรับเรดาร์. การผลิตชิ้นส่วนดังกล่าวไม่ได้จำกัดอยู่ในเมืองเดียวกันหรือประเทศนั้นๆ, ในกรณีของบริษ้ทผู้ผลิตเครื่องบินขนาดใหญ่ผู้ผลิตชิ้นส่วนดังกล่าวอาจมาจากทั่วทุกมุมโลก.
ชิ้นส่วนทั้งหลายจะถูกส่งไปยังโรงงานหลักของบริษัทผลิตเครื่องบินที่สายการผลิตตั้งอยู่. ในกรณีของเครื่องบินขนาดใหญ่, สายการผลิตอาจทุ่มเทให้กับการประกอบเฉพาะบางส่วนของเครื่องบิน, โดยเฉพาะอย่างยิ่งปีกและลำตัว.
เมื่อเสร็จสมบูรณ์, เครื่องบินจะถูกตรวจสอบอย่างเข้มงวดเพื่อค้นหาสิ่งผิดปกติและข้อบกพร่อง. หลังจากที่ได้รับการอนุมัติโดยผู้ตรวจสอบ, เครื่องบินจะถูกส่งไปยังหลายชุดของการทดสอบการบินเพื่อให้มั่นใจว่าระบบทั้งหมดจะทำงานอย่างถูกต้องและว่าเครื่องบินทำงานได้อย่างถูกต้อง. เมื่อ'ผ่าน'การทดสอบเหล่านี้, เครื่องบินก็พร้อมที่จะทำการ "touchups สุดท้าย" (การตั้งค่าภายใน, การพ่นสี, ฯลฯ ) และจะพร้อมสำหรับลูกค้า.
ชิ้นส่วนโครงสร้างทั้งหลายของเครื่องบินปีกคงที่เรียกว่าแอร์เฟรม. ชิ้นส่วนหลายอย่างในปัจจุบันจะแตกต่างกันตามชนิดและวัตถุประสงค์ของเครื่องบิน. หลายชนิดในยุคแรกมักจะทำจากไม้ที่มีพื้นผิวปีกเป็นผ้า. เมื่อเครื่องยนต์ถูกนำมาใช้ในการขับเคลื่อนเครื่องบินราวร้อยปีที่ผ่านมา, แท่นเครื่องของมันจึงทำจากโลหะ. จากนั้นเมื่อความเร็วเพิ่มขึ้น ชิ้นส่วนจำนวนมากกลายเป็นโลหะจนในตอนท้ายของสงครามโลกครั้งที่สองอากาศยานที่เป็นโลหะทั้งหมดเป็นเรื่องปกติ. ในยุคปัจจุบันมีการนำวัสดุคอมโพสิตมาใช้งานเพิ่มขึ้น.
ปีกของเครื่องบินปีกคงที่เป็นแผ่นราบอยู่กับที่ขยายออกในแต่ละข้างของเครื่องบิน. เมื่อเครื่องบินเคลื่อนที่ไปข้างหน้า, อากาศจะไหลเหนือปีกที่มีรูปทรงเพื่อสร้างแรงยก. รูปร่างนี้เรียกว่า airfoil และมีรูปร่างเหมือนปีกนก
เครื่องบินจะมีพื้นผิวปีกที่ยืดหยุ่นซึ่งทอดยาวตลอดโครงและถูกทำให้แข็งโดยแรงยกที่กระทำโดยไหลของอากาศเหนือปีก. เครื่องบินขนาดใหญ่กว่ามีพื้นผิวปีกที่แข็งที่ให้ความแข็งแรงเพิ่มเติม.
ไม่ว่าจะมีความยืดหยุ่นหรือแข็ง, ปีกส่วนใหญ่จะมีโครงที่แข็งแกร่งเพื่อสร้างรูปร่างให้มันและเพื่อถ่ายโอนแรงยกจากพื้นผิวปีกไปยังส่วนที่เหลือของเครื่องบิน. องค์ประกอบโครงสร้างหลักเป็นเสากระโดงเรือหนึ่งเสาหรือมากกว่าวิ่งจากโคนจรดปลาย, และซี่โครงหลายซี่วิ่งจากขอบนำ(อังกฤษ: leading edge)(ด้านหน้า) จนถึงขอบท้าย(อังกฤษ: trailing edge) (ด้านหลัง).
เครื่องยนต์ของเครื่องบินยุคแรกมีกำลังน้อยและน้ำหนักเบาซึ่งเป็นเรื่องสำคัญมาก. นอกจากนี้, ส่วน airfoil ยุคต้นก็บางมาก, และไม่สามารถมีโครงที่แข็งแกร่งที่ติดตั้งอยู่ภายใน. ดังนั้น จนกระทั่งปี 1930s ปีกส่วนใหญ่มีน้ำหนักเบาเกินไปที่จะมีความแข็งแรงเพียงพอและต้องเพิ่มเสาค้ำยันภายนอกและลวด. เมื่อเครื่องยนต์มีให้ใช้ได้เพิ่มขึ้นในช่วงปี 1920s และ 1930s, ปีกสามารถถูกสร้างให้หนักและแข็งแรงพอที่การค้ำยันไม่มีจำเป็นต้องมีอีกต่อไป. ประเภทของปีก ที่ไม่ต้องค้ำยันนี้เรียกว่า cantilever wing.
จำนวนและรูปร่างของปีกมีหลายประเภทแตกต่างกันอย่างกว้างขวาง. ปีกของเครื่องบินอาจจะเต็มช่วงหรือแบ่งครึ่งตรงลำตัวส่วนกลางเป็นปีกพอร์ต (ซ้าย) และปีกกราบขวา(อังกฤษ: starboard) (ขวา). เป็นครั้งคราวที่ปีกมีมากกว่าหนึ่งปีก, เช่น Triplane มีสามปีกที่ประสบความสำเร็จมีชื่อเสียงเล็กน้อยในสงครามโลกครั้งที่หนึ่ง, quadruplane มีสี่ปีกและการออกแบบ multiplane อื่นๆมีความสำเร็จเล็กน้อย.
monoplane มีปีกชั้นเดียว, biplane มีปีกสองชั้นซ้อนกัน, tandem wing มีปีกคู้หนึ่งวางต่อข้างหลังทั้งสองข้าง. เมื่อเครื่องยนต์มีให้ใช้ได้เพิ่มขึ้นในช่วงปี 1920s และ 1930s และการค้ำยันไม่เป็นที่ต้องการอีกต่อไป, monoplane ที่ไม่มีเสาค้ายัน หรือแบบ cantilever ได้กลายเป็นรูปแบบที่พบมากที่สุดของเครื่องบินประเภทขับเคลื่อนด้วยเครื่องยนต์.
planform ของปีกคือรูปร่างของปีกเมื่อมองจากด้านบน. เพื่อให้มีประสิทธิภาพด้านอากาศพลศาสตร์, ปีกควรมีลักษณะตรงโดยมีความยาวปีก(อังกฤษ: wingspan)มากกว่าความกว้างของปีก(อังกฤษ: chord)มาก(aspect ratio สูง). แต่การที่จะมีประสิทธิภาพทางโครงสร้างและมีน้ำหนักเบาด้วย, ปีกต้องสั้น แต่ยังคงมีพื้นที่เพียงพอที่จะสร้างแรงยก (aspect ratio ต่ำ)
ที่ความเร็ว transonic (ใกล้ความเร็วของเสียง) ปีกจะลู่ไปข้างหลังหรือไปข้างหน้าเพื่อลดแรงต้านจากคลื่นช็อกเหนือเสียง(อังกฤษ: supersonic shock wave)ที่กำลังถูกสร้างขึ้น. ปีกลู่เป็นเพียงปีกตรงที่ลู่ไปข้างหลังหรือไปข้างหน้า.
Delta wing เป็นปีกรูปสามเหลี่ยมซึ่งอาจถูกนำมาใช้ด้วยเหตุผลหลายประการ. เมื่อเป็นปีก Rogallo ยืดหยุ่น มันจะเป็นรูปร่างที่มั่นคงภายใต้แรงอากาศพลศาสตร์, และดังนั้น มันมักจะใช้สำหรับอากาศยานชนิดเบาและแม้กระทั่งว่าว. เมื่อเป็นปีกเหนือเสียง มันรวบรวมความแข็งแรงที่สูงเข้ากับแรงต้านที่ต่ำและดังนั้น มันมักจะใช้สำหรับเครื่องบินไอพ่นความเร็วสูง.
ปีกเรขาคณิตแปรได้(อังกฤษ: variable geometry wing)สามารถเปลี่ยนแปลงได้ในขณะบินไปยังรูปร่างที่แตกต่างไป. ปีกลู่แปรได้(อังกฤษ: variable-sweep wing)จะแปลงระหว่างรูปแบบตรงที่มีประสิทธิภาพสำหรับการบินขึ้นและลงจอด, ไปเป็นรูปแบบลู่ที่มีแรงต้านต่ำสำหรับการบินความเร็วสูง. รูปแบบอื่นๆของ planform ที่แปรได้ได้นำมาทดลองการบิน, แต่ไม่มีแบบไหนที่ไปไกลเกินกว่าขั้นตอนการวิจัย.
"ลำตัว"มีรูปร่างยาว, บาง, มักจะมีปลายเรียวหรือโค้งมนเพื่อทำให้รูปร่างของมันราบเรียบตามหลักอากาศพลศาสตร์. ลำตัวอาจบรรทุกลูกเรือการบิน, ผู้โดยสาร, สินค้าหรือสัมภาระ, น้ำมันเชื้อเพลิงและเครื่องยนต์. นักบินของเครื่องบินที่มีคนบังคับจะควบคุมการทำงานของเครื่องบินจากห้องนักบิน(อังกฤษ: cockpit)ที่อยู่ที่ด้านหน้าหรือด้านบนของลำตัวและติดตั้งอุปกรณ์ควบคุมและเครื่องมือ. เครื่องบินอาจจะมีมากกว่าหนึ่งลำตัวหรือมันอาจจะติดตั้งด้วย booms ที่มีหางอยู่ระหว่าง booms เพื่อให้ด้านหลังสุดของลำตัวเป็นประโยชน์สำหรับวัตถุประสงค์ที่หลากหลาย.
ปีกบินเป็นเครื่องบินที่ไม่มีหางและไม่มีลำตัวชัดเจน. ส่วนใหญ่ของลูกเรือ, สัมภาระและอุปกรณ์จะตั้งอยู่ภายในโครงสร้างปีกหลัก.
รูปแบบของปีกบินได้รับการศึกษาอย่างกว้างขวางในช่วงทศวรรษที่ 1930 และ 1940, โดยเฉพาะอย่างยิ่งโดย Jack Northrop และ Cheston L. Eshelman ในสหรัฐอเมริกา, และ Alexander Lippisch และพี่น้อง Horten ในเยอรมนี. หลังจากสงคราม การออกแบบเพื่อการทดลองจำนวนมากอยู่บนพื้นฐานของแนวคิดปีกบิน, แต่ความยากลำบากที่รู้ๆกันยังคงดื้อดึง. ความสนใจทั่วไปบางอย่างยังคงมีต่อเนื่องไปจนถึงช่วงต้นทศวรรษ 1950 แต่การออกแบบไม่ได้เสนอความได้เปรียบอย่างมากในพิสัยการทำงานและนำเสนอปัญหาทางเทคนิคจำนวนมากที่นำไปสู่??การยอมรับของโซลูชั่น "ธรรมดา" เช่น Convair B-36 และ B-52 Stratofortress. เนื่องจากความจำเป็นในทางปฏิบัติสำหรับปีกลึก(อังกฤษ: deep wing), แนวคิดปีกบินจึงเป็นจริงมากที่สุดสำหรับการออกแบบในพิสัยความเร็วที่ช้าถึงปานกลาง, และมีความสนใจอย่างต่อเนื่องในการใช้มันกับการออกแบบ'เครื่องบินขนส่งทางอากาศแบบยุทธวิธี'(อังกฤษ: tactical airlifter).
ความสนใจในปีกบินได้รับการต่ออายุในปี 1980s เนื่องจากศักยภาพการสะท้อนเรดาร์ของมันที่ค่อนข้างต่ำ. เทคโนโลยี Stealth พึ่งพารูปร่างที่สะท้อนคลื่นเรดาร์ในบางทิศทางเท่านั้น, ดังนั้น มันจึงทำให้เครื่องบินยากในการตรวจสอบเว้นแต่ว่าตัวรับเรดาร์จะอยู่ที่ตำแหน่งเฉพาะที่สัมพันธ์กับเครื่องบิน - ตำแหน่งที่มีการเปลี่ยนแปลงอย่างต่อเนื่องในขณะที่เครื่องบินเคลื่อนที่. วิธีการนี้ในที่สุดก็นำไปสู่เครื่อง Northrop B-2 Spirit, เครื่องบินทิ้งระเบิดแบบ Stealth. ในกรณีนี้ข้อได้เปรียบด้านอากาศพลศาสตร์ของปีกบินไม่ได้เป็นความต้องการหลัก. อย่างไรก็ตาม ระบบ fly-by-wire ที่ควบคุมด้วยคอมพิวเตอร์??ที่ทันสมัยได้ยอมให้หลายข้อบกพร่องทางอากาศพลศาสตร์ของปีกบินได้ถูกทำให้น้อยที่สุด, เพื่อให้เครื่องบินทิ้งระเบิดระยะไกลมีประสิทธิภาพและมีความเสถียร.
เครื่องบินที่มีลำตัวผสมกับปีกจะมีรูปร่างที่แบนแบบ airfoil ที่สร้างแรงยกส่วนมากเพื่อให้ตัวมันเองลอยขึ้น, และมีโครงสร้างปีกที่แตกต่างกันและแยกออกจากกันแม้ว่าปีกจะถูกผสมได้อย่างกลมกลืนกับลำตัว.
ดังนั้นเครื่องบินที่มีลำตัวผสมกับปีกจะผนวกคุณสมบัติการออกแบบจากทั้งลำตัวและปีกบินในอนาคต. ข้อดีที่อ้างของวิธีการของลำตัวผสมกับปีกคือปีกสร้างแรงยกสูงอย่างมีประสิทธิภาพและลำตัวจะเป็นรูป airfoil ที่กว้าง. สิ่งนี้จะช่วยให้ลำตัวทั้งหมดมีส่วนร่วมในการสร้างแรงยกที่มีผลให้มีศักยภาพที่จะประหยัดน้ำมันเชื้อเพลิงได้มากยิ่งขึ้น.
บทความหลัก: Lifting body ลำตัวยกคือรูปแบบที่ลำตัวของมันเองสร้างแรงยกขึ้นมา. ในทางตรงกันข้ามกับปีกบิน, ซึ่งเป็นปีกที่มีลำตัวแบบที่ใช้กันทั่วไปน้อยที่สุดหรือไม่มีเลย, ลำตัวยกสามารถคิดได้ว่าเป็นลำตัวที่มีปีกแบบที่ใช้กันทั่วไปน้อยหรือไม่มีเลย. ในขณะที่ปีกบินพยายามที่จะเพิ่มประสิทธิภาพการล่องเรือให้สูงสุดที่ความเร็วใกล้เสียงโดยขจัดพื้นผิวที่ไม่สร้างแรงยก, ลำตัวยกโดยทั่วไปจะลดให้น้อยที่สุดของแรงต้านและโครงสร้างของปีกสำหรับการบินความเร็วใกล้เสียง, ความเร็วเสียง, และความเร็วเหนือเสียงหรือยานอวกาศ. ทั้งหมดของระบอบการบินเหล่านี้ก่อให้เกิดความท้าทายเพื่อสร้างความมั่นคงการบินที่เหมาะสม.
ลำตัวยกเป็นพื้นที่สำคัญของการวิจัยในปี 1960s และ 1970s โดยเป็นวิธีที่จะสร้างยานอวกาศที่มีมนุษย์ควบคุมขนาดเล็กและน้ำหนักเบา. สหรัฐได้สร้างเครื่องบินจรวดลำตัวยกที่มีชื่อเสียงจำนวนมากเพื่อทดสอบแนวความคิด, เช่นเดียวกับที่หลายๆยานพาหนะที่ยิงขึ้นด้วยจรวดที่ได้รับการทดสอบเหนือมหาสมุทรแปซิฟิก. ความสนใจจางหายไปเมื่อกองทัพอากาศสหรัฐหมดความสนใจในภารกิจที่มีมนุษย์ควบคุม, และการพัฒนาที่สำคัญได้สิ้นสุดระหว่างขั้นตอนการออกแบบกระสวยอวกาศเมื่อมันกลายเป็นที่ชัดเจนว่าลำตัวที่ถูกสร้างรูปอย่างสูงทำให้มันเป็นเรื่องยากที่จะใส่ถังเชื้อเพลิงเข้าไปให้พอดีได้.
ปีกส่วน airfoil ที่คลาสสิกจะไม่เสถียรในการบินและยากที่จะควบคุม. ประเภทของปีกที่มีความยืดหยุ่นมักจะพึ่งพาสายสมอหรือน้ำหนักของนักบินที่แขวนอยู่ข้างใต้เพื่อรักษาการวางตัวที่ถูกต้อง. การบินอิสระบางประเภทใช้ airfoil ที่ถูกปรับให้มีเสถียรภาพหรือกลไกที่หลักแหลมอื่น ๆ รวมทั้งตัวสร้างความมั่นคงเทียมที่ใช้อิเล็กทรอนิกส์เมื่อเร็ว ๆ นี้
แต่เพื่อให้บรรลุการทรงตัว, เสถียรภาพและการควบคุม, ปีกแบบคงที่ส่วนมากมีแพนหางแนวตั้งหนึ่งอันที่ประกอบด้วยครีบและหางเสือซึ่งทำหน้าที่ในแนวนอน, และแพนหางแนวนอนหรือ tailplane และตัวยก(อังกฤษ: elevator)ซึ่งทำหน้าที่ในแนวตั้ง. สิ่งนี้เป็นเรื่องธรรมดามากโดยรู้จักกันว่าเป็นเลย์เอาท์แบบเดิม. บางครั้งอาจจะมีครีบสองอันหรือมากกว่า, ระยะห่างออกไปตามแนว tailplane
บางชนิดมีปีกหน้าแนวนอน "canard" อยู่ข้างหน้าของปีกหลัก, แทนที่จะอยู่ข้างหลังมัน. foreplane นี้อาจมีส่วนช่วยในการยกตัว, การทรงตัว, หรือการควบคุมของเครื่องบิน, หรือทุกอย่างเหล่านี้.
ข้อมูลเพิ่มเติม: เครื่องบินปีกคงที่การควบคุมอากาศยานและเครื่องบินปีกคงที่เครื่องมือวัดห้องนักบิน
เครื่องบินมีระบบควบคุมการบินที่ซับซ้อนหลายระบบ. การควบคุมหลักช่วยให้นักบินนำเครื่องบินในอากาศโดยควบคุมการทรงตัว (ม้วน, เงยและหันเห) และแรงขับของเครื่องยนต์.
บนเครื่องบินที่มีคนบังคับ, เครื่องมือในห้องนักบินให้ข้อมูลกับนักบิน, รวมทั้งข้อมูลการบิน, กำลังส่งออกของเครื่องยนต์, การนำทาง, การสื่อสารและระบบอากาศยานอื่นๆที่อาจจะถูกติดตั้ง.
เมื่อความเสี่ยงถูกวัดจากจำนวนการเสียชีวิตต่อผู้โดยสารกิโลเมตร, การเดินทางทางอากาศจะปลอดภัยกว่าการเดินทางโดยรถบัสหรือรถไฟอยู่ที่ประมาณ 10 เท่า. อย่างไรก็ตามเมื่อใช้สถิติจำนวนการเสียชีวิตเดินทาง, การเดินทางทางอากาศเป็นอันตรายมากกว่าการเดินทางด้วยรถ, ระบบราง, หรือรถบัสอย่างมีนัยสำคัญ. การประกันการเดินทางทางอากาศค่อนข้างมีราคาแพงด้วยเหตุผลนี้ - บริษัทประกันโดยทั่วไปใช้สถิติจำนวนการเสียชีวิตเดินทาง. มีความแตกต่างอย่างมีนัยสำคัญระหว่างความปลอดภัยของสายการบินและเครื่องบินส่วนตัวขนาดเล็ก, ด้วยสถิติต่อไมล์แสดงให้เห็นว่าสายการบินปลอดภัยกว่าเครื่องบินขนาดเล็กที่ 8.3 เท่า.