อาร์คิมิดีส (กรีก: ?????????; อังกฤษ: Archimedes; 287-212 ปีก่อนคริสตกาล) เป็นนักคณิตศาสตร์ นักดาราศาสตร์ นักปรัชญา นักฟิสิกส์ และวิศวกรชาวกรีก เกิดเมื่อ 287 ปีก่อนคริสตกาล ในเมืองซีรากูซา ซึ่งในเวลานั้นเป็นนิคมท่าเรือของกรีก แม้จะมีรายละเอียดเกี่ยวกับชีวิตของเขาน้อยมาก แต่เขาก็ได้รับยกย่องว่าเป็นหนึ่งในบรรดานักวิทยาศาสตร์ชั้นนำในสมัยคลาสสิก ความก้าวหน้าในงานด้านฟิสิกส์ของเขาเป็นรากฐานให้แก่วิชา สถิตยศาสตร์ของไหล, สถิตยศาสตร์ และการอธิบายหลักการเกี่ยวกับคาน เขาได้ชื่อว่าเป็นผู้คิดค้นนวัตกรรมเครื่องจักรกลหลายชิ้น ซึ่งรวมไปถึงปั๊มเกลียว (screw pump) ซึ่งได้ตั้งชื่อตามชื่อของเขาด้วย ผลการทดลองในยุคใหม่ได้พิสูจน์แล้วว่า เครื่องจักรที่อาร์คิมิดีสออกแบบนั้นสามารถยกเรือขึ้นจากน้ำหรือสามารถจุดไฟเผาเรือได้โดยอาศัยแถบกระจกจำนวนมาก
อาร์คิมิดีสได้รับยกย่องอย่างกว้างขวางว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดในยุคโบราณ และหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล เช่นเดียวกับ นิวตัน เกาส์ และ ออยเลอร์ เขาใช้ระเบียบวิธีเกษียณ (Method of Exhaustion) ในการคำนวณพื้นที่ใต้เส้นโค้งพาราโบลาด้วยการหาผลรวมของชุดอนุกรมอนันต์ และได้ค่าประมาณที่ใกล้เคียงที่สุดของค่าพาย เขายังกำหนดนิยามแก่วงก้นหอยของอาร์คิมิดีส ซึ่งได้ชื่อตามชื่อของเขา, คิดค้นสมการหาปริมาตรของรูปทรงที่เกิดจากพื้นผิวที่ได้จากการหมุน และคิดค้นระบบสำหรับใช้บ่งบอกถึงตัวเลขจำนวนใหญ่มาก ๆ
อาร์คิมิดีสเสียชีวิตในระหว่างการล้อมซีราคิวส์ (ราว 214-212 ปีก่อนคริสตกาล) โดยถูกทหารโรมันคนหนึ่งสังหาร ทั้ง ๆ ที่มีคำสั่งมาว่าห้ามทำอันตรายแก่อาร์คิมิดีส ซิเซโรบรรยายถึงการเยี่ยมหลุมศพของอาร์คิมิดีสซึ่งมีลูกทรงกลมจารึกอยู่ภายในแท่งทรงกระบอกเหนือหลุมศพ เนื่องจากอาร์คิมิดีสเป็นผู้พิสูจน์ว่า ทรงกลมมีปริมาตรและพื้นที่ผิวเป็น 2 ใน 3 ส่วนของทรงกระบอกที่บรรจุทรงกลมนั้นพอดี (รวมพื้นที่ของฐานทรงกระบอกทั้งสองข้าง) ซึ่งนับเป็นความสำเร็จครั้งยิ่งใหญ่ที่สุดของเขาในทางคณิตศาสตร์
ขณะที่ผลงานประดิษฐ์ของอาร์คิมิดีสเป็นที่รู้จักกันดี แต่งานเขียนทางด้านคณิตศาสตร์กลับไม่ค่อยเป็นที่แพร่หลายนัก นักคณิตศาสตร์จากอเล็กซานเดรียได้อ่านงานเขียนของเขาและนำไปอ้างอิง ทว่ามีการรวบรวมผลงานอย่างแท้จริงเป็นครั้งแรกในช่วง ค.ศ. 530 โดย ไอซิดอร์ แห่งมิเลตุส (Isidore of Miletus) ส่วนงานวิจารณ์งานเขียนของอาร์คิมิดีสซึ่งเขียนขึ้นโดย ยูโตเซียส แห่งอัสคาลอน (Eutocius of Ascalon) ในคริสต์ศตวรรษที่ 6 ช่วยเปิดเผยผลงานของเขาให้กว้างขวางยิ่งขึ้นเป็นครั้งแรก ต้นฉบับงานเขียนของอาร์คิมิดีสหลงเหลือรอดผ่านยุคกลางมาได้ไม่มากนัก แต่ก็เป็นแหล่งข้อมูลสำคัญที่มีอิทธิพลอย่างมากต่อแนวคิดของนักวิทยาศาสตร์ในยุคเรอเนสซองส์ ปี ค.ศ. 1906 มีการค้นพบต้นฉบับงานเขียนของอาร์คิมิดีสที่ไม่เคยมีใครเห็นมาก่อน ใน จารึกของอาร์คิมิดีส (Archimedes Palimpsest) ทำให้เราเห็นมุมมองใหม่ในกลวิธีที่เขาใช้ค้นหาผลลัพธ์ทางคณิตศาสตร์
อาร์คิมิดีสเกิดราว 287 ปีก่อนคริสตกาล ที่เมืองซีรากูซา ซิซิลี ซึ่งเวลานั้นเป็นอาณานิคมปกครองตนเองของมันยากราเซีย วันเกิดของอาร์คิมิดีสนั้นอ้างอิงจากบันทึกของนักประวัติศาสตร์กรีกไบเซนไทน์ จอห์น เซตเซส ซึ่งระบุว่าอาร์คิมิดีสมีอายุ 75 ปี ใน The Sand Reckoner อาร์คิมิดีสบอกว่าบิดาของตนชื่อ ฟิเดียส เป็นนักดาราศาสตร์ ซึ่งไม่ปรากฏข้อมูลใด ๆ เลย พลูตาร์คเขียนเอาไว้ใน Parallel Lives ของเขาว่า อาร์คิมิดีสเป็นญาติกับกษัตริย์เฮียโรที่ 2 แห่งซีรากูซา เพื่อนของอาร์คิมิดีสคนหนึ่งชื่อ เฮราคลีดีส เป็นผู้เขียนหนังสือชีวประวัติของเขา แต่หนังสือเล่มนี้สูญหายไป ทำให้รายละเอียดชีวิตของเขายังเป็นที่คลุมเครือ ดังเช่น ไม่ทราบเลยว่าเขาแต่งงานหรือไม่ หรือมีบุตรหรือไม่ เมื่อยังเยาว์อาร์คิมิดีสอาจได้รับการศึกษาที่อเล็กซานเดรีย เมืองหนึ่งในอาณาจักรอียิปต์โบราณ ร่วมยุคสมัยกับโคนอนแห่งซามอส และเอราทอสเทนีสแห่งไซรีน เพราะเขาเคยอ้างถึงโคนอนแห่งซามอสว่าเป็นสหาย และในงานเขียนของเขา 2 ชิ้น ได้แก่ ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems) และ ปัญหาเรื่องวัวของอาร์คิมิดีส (Cattle Problem) ก็ได้กล่าวถึงเอราทอสเทนีสด้วยa
อาร์คิมิดีสเสียชีวิตเมื่อปีที่ 212 ก่อนคริสตกาลระหว่างสงครามพิวนิกครั้งที่สอง เมื่อกองทัพโรมันภายใต้การนำทัพของนายพลมาร์คัส เคลาดิอัส มาร์เซลลัส เข้ายึดเมืองซีรากูซาได้หลังจากปิดล้อมอยู่ 2 ปี ตามบันทึกอันโด่งดังของพลูตาร์ค อาร์คิมิดีสกำลังขบคิดแผนภาพทางคณิตศาสตร์ชิ้นหนึ่งระหว่างที่นครถูกยึด ทหารโรมันคนหนึ่งสั่งให้เขาออกมาพบกับนายพลมาร์เซลลัส แต่เขาปฏิเสธโดยบอกว่าต้องแก้ปัญหาให้เสร็จเสียก่อน ทหารผู้นั้นจึงบันดาลโทสะและสังหารอาร์คิมิดีสด้วยดาบ พลูตาร์คยังบันทึกเรื่องเล่าอีกเรื่องหนึ่งว่าอาร์คิมิดีสถูกสังหารขณะพยายามจำนนต่อทหารโรมัน ตามเรื่องหลังนี้ อาร์คิมิดีสถือเครื่องมือทางคณิตศาสตร์ชิ้นหนึ่ง และถูกสังหารเนื่องจากทหารนึกว่ามันเป็นสิ่งมีค่า บันทึกเล่าว่านายพลมาร์เซลลัสโกรธมากเมื่อทราบเรื่องการเสียชีวิตของอาร์คิมิดีส ด้วยถือว่าเขาเป็นทรัพย์สมบัติอันเลอค่ายิ่งทางวิทยาศาสตร์ ทั้งยังออกคำสั่งไปแล้วว่าห้ามทำอันตรายแก่เขาโดยเด็ดขาด
คำพูดสุดท้ายของอาร์คิมิดีสตามที่เชื่อกันคือ "อย่ามากวนวงกลมของข้า" (กรีก: ?? ??? ???? ??????? ???????, อังกฤษ: Do not disturb my circles) วงกลมที่พูดถึงนั้นคือภาพคณิตศาสตร์ที่เชื่อว่าเขากำลังศึกษาขบคิดอยู่ขณะที่ถูกทหารโรมันรบกวน คำพูดนี้มักกล่าวถึงในภาษาละตินว่า "Noli turbare circulos meos" แต่ไม่มีหลักฐานที่น่าเชื่อถือว่าอาร์คิมิดีสพูดประโยคนี้จริง ๆ และไม่ได้อยู่ในบันทึกของพลูตาร์คด้วย
หลุมศพของอาร์คิมิดีสบรรจุรูปปั้นมากมายที่แสดงถึงการพิสูจน์ทางคณิตศาสตร์ที่เขาโปรดปราน เช่นทรงกลมที่อยู่ภายในทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน อาร์คิมิดีสได้พิสูจน์ว่าปริมาตรและพื้นที่ผิวของทรงกลมมีขนาดเป็น 2 ใน 3 ของปริมาตรและพื้นที่ผิวของทรงกระบอก (รวมพื้นที่ฐาน) ในปีที่ 75 ก่อนคริสตกาล หลังจากอาร์คิมิดีสเสียชีวิตไปแล้ว 137 ปี ซิเซโรได้เป็นเควสเตอร์แห่งซิซิลี เขาได้ยินเรื่องราวเกี่ยวกับหลุมศพของอาร์คิมิดีส แต่ไม่มีชาวเมืองคนใดบอกตำแหน่งที่ชัดเจนได้ ในเวลาต่อมาเขาพบหลุมศพบริเวณใกล้ประตูอกริเจจนทีนในเมืองซีรากูซาซึ่งถูกทิ้งร้างและคลุมไปด้วยสุมทุมพุ่มไม้ ซิเซโรสั่งการให้ทำความสะอาด จึงสามารถมองเห็นรอยสลักและถ้อยคำจารึก หลุมศพแห่งหนึ่งที่ค้นพบในสนามหญ้าของโรงแรมหนึ่งในซีรากูซาเมื่อต้นคริสต์ทศวรรษ 1960 อ้างตัวว่าเป็นหลุมศพของอาร์คิมิดีส แต่ถึงปัจจุบันนี้ ก็ไม่มีใครทราบตำแหน่งที่แท้จริงแล้ว
บันทึกชีวประวัติของอาร์คิมิดีสฉบับมาตรฐานเขียนขึ้นโดยนักประวัติศาสตร์โรมันหลายคนหลังจากที่เขาเสียชีวิตไปแล้วเป็นเวลานาน บันทึกเรื่องการยึดเมืองซีรากูซาใน Universal History ของโพลิบิอุส เขียนขึ้นประมาณ 70 ปีหลังการเสียชีวิตของอาร์คิมิดีส และต่อมาถูกใช้เป็นแหล่งข้อมูลของพลูตาร์คและลิวี เนื้อหาในบันทึกนี้ให้ข้อมูลเกี่ยวกับชีวิตของอาร์คิมิดีสน้อยมาก ส่วนใหญ่จะกล่าวถึงการใช้เครื่องจักรยนต์ในสงคราม ซึ่งอาร์คิมิดีสสร้างขึ้นเพื่อใช้ป้องกันเมือง
เรื่องเล่าที่รู้จักกันแพร่หลายที่สุดเกี่ยวกับอาร์คิมิดีส คือการที่เขาค้นพบกลวิธีในการหาปริมาตรของวัตถุซึ่งมีรูปร่างแปลก ๆ ตามบันทึกของวิทรูเวียส เล่าว่าวัดแห่งหนึ่งสร้างมงกุฎถวายแด่พระเจ้าเฮียโรที่ 2 โดยพระองค์ทรงจัดหาทองคำบริสุทธิ์ให้ อาร์คิมิดีสถูกร้องขอให้ช่วยตรวจสอบว่ามีการฉ้อโกงโดยผสมเงินลงไปด้วยหรือไม่ การตรวจสอบจะต้องไม่ทำให้มงกุฎเสียหาย ดังนั้นเขาจะหลอมมันให้เป็นรูปทรงปกติเพื่อคำนวณหาค่าความหนาแน่นไม่ได้ วันหนึ่งขณะอาบน้ำ เขาสังเกตว่าระดับน้ำในอ่างเพิ่มสูงขึ้นขณะเขาก้าวลงไป จึงคิดได้ว่าวิธีการนี้สามารถใช้ในการหาปริมาตรของมงกุฎได้ เพราะตามปกติแล้ว น้ำไม่สามารถถูกบีบอัดได้ ดังนั้นมงกุฎที่จุ่มลงไปในน้ำย่อมต้องแทนที่ด้วยปริมาตรของน้ำที่เท่ากับปริมาตรของมงกุฎนั่นเอง เมื่อนำปริมาตรมาหารด้วยมวลของมงกุฎ ก็สามารถหาค่าความหนาแน่นของมงกุฎได้ ถ้ามีการผสมโลหะราคาถูกอื่นเข้าไป ค่าความหนาแน่นนี้จะต่ำกว่าค่าความหนาแน่นของทองคำ อาร์คิมิดีสวิ่งออกไปยังท้องถนนทั้งที่ยังแก้ผ้า ด้วยความตื่นเต้นจากการค้นพบครั้งนี้จนลืมแต่งตัว แล้วร้องตะโกนว่า "ยูเรก้า!" (กรีก: ??????! แปลว่า ฉันพบแล้ว) การทดสอบจัดทำขึ้นอย่างประสบผลสำเร็จ และพิสูจน์ได้ว่ามีการผสมเงินเข้าไปในมงกุฎจริง ๆ
เรื่องของมงกุฏทองคำไม่ปรากฏอยู่ในผลงานของอาร์คิมิดีสที่รู้จักกัน ยิ่งกว่านั้น กลวิธีที่บรรยายเอาไว้ยังทำให้เกิดความสงสัยเกี่ยวกับความแม่นยำอย่างยิ่งยวดในการตรวจวัดค่าของการแทนที่ของน้ำ บางทีอาร์คิมิดีสอาจจะค้นหาวิธีการประยุกต์หลักการที่รู้จักกันในสถิตยศาสตร์ของไหลว่าด้วยเรื่องหลักการของอาร์คิมิดีส ซึ่งเขาบรรยายไว้ในตำราเรื่อง On Floating Bodies หลักการนี้บอกว่า วัตถุที่จุ่มลงในของไหลจะมีแรงลอยตัวเท่ากับน้ำหนักของของไหลที่มันเข้าไปแทนที่ ด้วยหลักการนี้ จึงเป็นไปได้ที่จะเปรียบเทียบความหนาแน่นของมงกุฎทองคำกับทองคำแท่ง โดยถ่วงมงกุฎทองคำกับทองคำที่ใช้อ้างอิง จากนั้นจุ่มอุปกรณ์ทั้งหมดลงในน้ำ ถ้ามงกุฎมีความหนาแน่นน้อยกว่าทองคำแท่ง มันจะแทนที่น้ำด้วยปริมาตรที่มากกว่า ทำให้มีแรงลอยตัวมากกว่าทองคำอ้างอิง แรงลอยตัวที่แตกต่างกันจะทำให้เครื่องถ่วงไม่สมดุล กาลิเลโอเห็นว่าวิธีการนี้ "อาจเป็นวิธีการเดียวกันกับที่อาร์คิมิดีสใช้ เนื่องจากมีความแม่นยำสูง จึงอาจเป็นวิธีทดลองที่อาร์คิมิดีสค้นพบด้วยตนเอง"
งานส่วนใหญ่ของอาร์คิมิดีสทางด้านวิศวกรรมเกิดขึ้นเนื่องจากต้องการตอบสนองต่อบ้านเกิดของเขา คือเมืองซีรากูซา นักเขียนกรีกชื่อ อะธีเนอุส แห่งเนาเครติส บรรยายถึงการที่พระเจ้าเฮียโรที่ 2 ว่าจ้างให้อาร์คิมิดีสออกแบบเรือขนาดยักษ์ ชื่อ ไซราคูเซีย (Syracusia) เพื่อนำไปใช้ในการเดินทางอย่างหรูหรา สามารถบรรทุกเสบียงมาก ๆ และใช้เป็นเรือรบได้ ว่ากันว่าเรือไซราคูเซียนี้เป็นเรือขนาดใหญ่ที่สุดที่เคยสร้างในสมัยโบราณ ตามบันทึกของอะธีเนอุส เรือนี้สามารถบรรทุกคน 600 คน รวมไปถึงเครื่องตกแต่งทองคำ มีโรงฝึกและวัดอุทิศแด่เทพีอโฟรไดท์ รวมถึงสิ่งอำนวยความสะดวกอื่น ๆ เรือที่ใหญ่ขนาดนี้จะกินน้ำผ่านตัวเรือจำนวนมาก จึงมีการพัฒนาเกลียวอาร์คิมิดีสเพื่อใช้ในการขนถ่ายน้ำออกจากท้องเรือ เครื่องจักรของอาร์คิมิดีสเป็นอุปกรณ์ที่มีใบพัดทรงเกลียวหมุนอยู่ภายในทรงกระบอก ใช้มือหมุน และสามารถใช้ขนย้ายน้ำจากที่ใด ๆ ไปยังคลองชลประทานก็ได้ ทุกวันนี้เรายังใช้เกลียวอาร์คิมิดีสอยู่ในการสูบน้ำหรือของแข็งที่เป็นเมล็ด เช่นถ่านหินหรือเมล็ดข้าว เป็นต้น เกลียวอาร์คิมิดีสที่บรรยายในบันทึกของวิทรูเวียสในสมัยโรมันอาจเป็นการพัฒนาเครื่องสูบน้ำแบบเกลียวซึ่งใช้ในการจ่ายน้ำให้แก่สวนลอยแห่งบาบิโลน เรือไอน้ำลำแรกของโลกที่ใช้ใบจักรแบบเกลียว คือ SS Archimedes ออกเรือครั้งแรกในปี ค.ศ. 1839 และตั้งชื่อเพื่อเป็นเกียรติแก่อาร์คิมิดีสและผลงานคิดค้นใบจักรเกลียว
กรงเล็บอาร์คิมิดีส คืออาวุธชนิดหนึ่งที่เขากล่าวไว้ว่าออกแบบมาเพื่อใช้ป้องกันเมืองซีรากูซา บ้างก็รู้จักในชื่อ "เครื่องเขย่าเรือ" ประกอบด้วยแขนกลลักษณะคล้ายเครนโดยมีขอโลหะขนาดใหญ่หิ้วเอาไว้ด้านบน เมื่อปล่อยกรงเล็บนี้ใส่เรือที่มาโจมตี แขนกลจะเหวี่ยงตัวกลับขึ้นด้านบน ยกเรือขึ้นจากน้ำและบางทีก็ทำให้เรือจม มีการทดลองยุคใหม่เพื่อทดสอบความเป็นไปได้ของกรงเล็บนี้ และในสารคดีทางโทรทัศน์ปี 2005 ชื่อเรื่องว่า Superweapons of the Ancient World ได้สร้างกรงเล็บเช่นนี้ขึ้นมา ได้ข้อสรุปว่ามันเป็นเครื่องมือที่ใช้ได้ผลจริง ๆ
เมื่อคริสต์ศตวรรษที่ 2 ลูเชียนเขียนว่าระหว่างการล้อมซีราคิวส์ (214-212 ปีก่อนคริสตกาล) อาร์คิมิดีสทำลายเรือฝ่ายศัตรูด้วยไฟ หลายศตวรรษต่อมา แอนธีมิอุสแห่งทรอลเลส เอ่ยถึงเลนส์รวมแสงว่าเป็นอาวุธของอาร์คิมิดีส อุปกรณ์นี้บางครั้งก็เรียกว่า "รังสีความร้อนของอาร์คิมิดีส" ใช้ในการรวมจุดโฟกัสของแสงอาทิตย์ส่องไปยังเรือที่รุกราน ทำให้เรือเหล่านั้นติดไฟ
อาวุธดังกล่าวนี้เป็นหัวข้อถกเถียงกันเกี่ยวกับผู้คิดค้นมาเป็นเวลานานจนถึงยุคเรอเนสซองส์ เรอเน เดส์คาร์ตส์เห็นว่าเป็นเรื่องหลอก ขณะที่นักวิจัยยุคใหม่หลายคนพยายามสร้างมันขึ้นมาใหม่โดยใช้เครื่องมือเพียงเท่าที่มีอยู่ในยุคของอาร์คิมิดีส ความเห็นบางส่วนเห็นว่า แผงโล่ทองแดงหรือโล่สำริดขัดมันปลาบจำนวนมากสามารถใช้แทนกระจกและโฟกัสแสงอาทิตย์ส่องไปบนเรือ ซึ่งอาจใช้หลักการของจานสะท้อนแบบพาราโบลาในลักษณะที่คล้ายคลึงกับเตารังสีแสงอาทิตย์
เมื่อปี ค.ศ. 1973 มีการทดสอบรังสีความร้อนของอาร์คิมิดีสโดยนักวิทยาศาสตร์ชาวกรีกชื่อ โยแอนนิส ซัคคัส ทำการทดลองที่ฐานทัพเรือสการามากัส (skaramagas) แถบนอกเมืองเอเธนส์ ใช้กระจก 70 ชุด แต่ละชุดมีขนาดราว 5x3 ฟุต เคลือบผิวด้วยทองแดง แผงกระจกพุ่งเป้าไปที่แผ่นไม้บนเรือโรมันที่อยู่ห่างออกไปประมาณ 160 ฟุต เมื่อปรับโฟกัสกระจกให้แม่นยำ เรือก็ลุกเป็นไฟในเวลาเพียงไม่กี่วินาที เรือไม้นั้นทาผิวด้วยยางไม้ ซึ่งอาจช่วยให้ติดไฟได้ง่ายขึ้น
เดือนตุลาคม ค.ศ. 2005 นักศึกษากลุ่มหนึ่งจากสถาบันเทคโนโลยีแมสซาชูเซตส์ ทำการทดลองด้วยกระจกขนาด 1 ฟุต 127 แผ่น มุ่งเป้าไปที่เรือไม้ที่อยู่ห่างออกไป 100 ฟุต เรือสามารถติดไฟได้ แต่ก็เมื่อท้องฟ้าปราศจากเมฆและเรือนั้นอยู่นิ่ง ๆ ประมาณ 10 นาที จึงสรุปได้ว่าเครื่องมือนี้เป็นอาวุธที่เป็นไปได้ภายใต้เงื่อนไข กลุ่มนักศึกษาเอ็มไอทีทำการทดลองซ้ำในรายการโทรทัศน์ MythBusters โดยใช้เรือตกปลาทำจากไม้ในซานฟรานซิสโกเป็นเป้าหมาย เรือนั้นไหม้เกรียมเป็นถ่าน มีเปลวไฟจำนวนเล็กน้อย การที่ไม้จะลุกเป็นไฟจะต้องมีอุณหภูมิสูงถึงจุดติดไฟที่ประมาณ 300 ?C (570 ?F)
เมื่อรายการ MythBusters ออกอากาศผลการทดลองที่ซานฟรานซิสโกเมื่อเดือนมกราคม ค.ศ. 2006 ผลสรุปเรื่องคำกล่าวอ้างนั้นตกเป็น "ล้มเหลว" เนื่องจากระยะเวลาที่ต้องใช้กับเงื่อนไขทางสภาวะอากาศที่จำเป็นลุกไหม้ รายการยังชี้ประเด็นว่าเมืองซีรากูซาตั้งหันหน้าสู่ทะเลทางตะวันออก ดังนั้นกองเรือโรมันจะต้องเข้าโจมตีระหว่างช่วงเช้าเพื่อจะสามารถใช้กระจกรวมแสงได้ผลดีที่สุด MythBusters ยังชี้อีกว่าในระยะที่ใกล้ขนาดนั้น การใช้อาวุธแบบดั้งเดิม เช่นการยิงธนูไฟหรือใช้เครื่องยิงหิน ยังจะทำได้ง่ายกว่าการจุดไฟแบบนี้เสียอีก
เดือนธันวาคม ค.ศ. 2010 รายการ MythBusters ภาคพิเศษโดยบารัค โอบามา ในตอนที่ชื่อว่า President's Challenge ได้ทำการทดลองรังสีความร้อนนี้ซ้ำอีกครั้ง มีการทดลองหลายครั้ง รวมถึงการทดสอบขนาดใหญ่โดยใช้เด็กนักเรียนถึง 500 คนช่วยกันส่องกระจกไปยังเรือโรมันที่ระยะห่าง 400 ฟุต การทดลองทุกครั้งไม่สามารถทำอุณหภูมิได้ถึง 210 ?C เพื่อให้ติดไฟได้เลย ผลลัพธ์จึงสรุปว่า "ล้มเหลว" อีกครั้ง ทางรายการสรุปว่า ผลกระทบประการอื่นจากการใช้กระจกอาจทำให้ทหารบนกองเรือตาพร่าลาย มองไม่เห็น สับสนมึนงง หรือช่วยหันเหความสนใจมากกว่า
แม้อาร์คิมิดีสมิใช่ผู้ค้นพบคาน แต่เขาเป็นผู้อธิบายถึงหลักการของมันในงานเขียนของเขาเรื่อง On the Equilibrium of Planes มีบันทึกก่อนหน้านี้ที่เกี่ยวกับคานพบในสำนักศึกษาเพริพาเททิก (Peripatetic school) ของลูกศิษย์ของอริสโตเติล และมีบางส่วนปรากฏในงานของอาร์คีตัสด้วย ตามบันทึกของพัพพัสแห่งอเล็กซานเดรีย งานของอาร์คิมิดีสเกี่ยวกับคานเป็นที่มาของประโยคอันโด่งดังว่า "หาที่ยืนให้ฉันสิ แล้วฉันจะเคลื่อนโลกให้" (กรีก: ??? ??? ?? ??? ??? ??? ??? ??????) พลูตาร์คเคยบรรยายไว้ว่าอาร์คิมิดีสออกแบบระบบชักรอกอย่างไร ซึ่งทำให้กลาสีสามารถใช้หลักการของคานในการยกวัตถุที่หนักเกินจะยกไหว อาร์คิมิดีสยังได้รับยกย่องในฐานะผู้พัฒนาเครื่องยิงหินให้มีกำลังและความแม่นยำมากขึ้น รวมถึงการประดิษฐ์มาตรวัดออดอมิเตอร์ระหว่างสงครามพิวนิกครั้งที่หนึ่ง ออดอมิเตอร์นี้มีการบรรยายไว้ว่ามีลักษณะเหมือนเกวียนที่มีกลไกฟันเฟืองคอยทิ้งลูกบอลลงในภาชนะบรรจุเมื่อเดินทางไปได้ทุกระยะหนึ่งไมล์
ซิเซโร (106-43 ปีก่อนคริสตกาล) กล่าวถึงอาร์คิมิดีสสั้น ๆ ในงานเขียนประเภทบทสนทนาของเขาเรื่อง De re publica ซึ่งเป็นบทสนทนาสมมุติที่เกิดขึ้นในปี 129 ก่อนคริสตกาล หลังจากการปิดล้อมซีรากูซาเมื่อปีที่ 212 ก่อนคริสตกาลแล้ว เล่ากันว่านายพลมาร์คัส เคลาดิอัส มาร์เซลลัส นำเอาเครื่องกลไก 2 ชิ้นที่ใช้ช่วยในการศึกษาดาราศาสตร์กลับไปยังโรม เครื่องกลไกนี้ช่วยแสดงการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และดาวเคราะห์ 5 ดวง ซิเซโรระบุถึงเครื่องกลไกที่คล้ายคลึงกันนี้ว่าออกแบบโดยทาเลสแห่งไมเลทัส และยูโดซุสแห่งคไนดัส ในงานเขียนนั้นกล่าวว่า มาร์เซลลัสเก็บเครื่องมือชิ้นหนึ่งเอาไว้เป็นของสะสมส่วนตัวจากซีรากูซา ส่วนอีกชิ้นหนึ่งส่งไปยังวิหารแห่งความบริสุทธิ์ในกรุงโรม ตามงานเขียนของซิเซโร ไกอัส ซุพิซิอุส กัลลัส ได้สาธิตเครื่องกลไกของมาร์เซลลัสให้แก่ ลูเชียส ฟูเรียส ฟิลุส ซึ่งบรรยายเอาไว้ว่า
Hanc sphaeram Gallus cum moveret, fiebat ut soli luna totidem conversionibus in aere illo quot diebus in ipso caelo succederet, ex quo et in caelo sphaera solis fieret eadem illa defectio, et incideret luna tum in eam metam quae esset umbra terrae, cum sol e regione. — เมื่อกัลลัสเคลื่อนลูกโลก ดูเหมือนดวงจันทร์บนสิ่งประดิษฐ์สำริดนั้นจะเคลื่อนตามดวงอาทิตย์ไปหลายรอบเหมือนอย่างที่เกิดขึ้นบนท้องฟ้า ทั้งยังทำให้เกิดคราสบนทรงกลมดวงอาทิตย์เหมือนกับบนท้องฟ้าด้วย และดวงจันทร์ก็เคลื่อนมายังตำแหน่งที่ทำให้เกิดเงาบนโลก เมื่อดวงอาทิตย์มาอยู่ในแนวเดียวกัน
นั่นคือคำบรรยายถึงท้องฟ้าจำลองหรือแบบจำลองวงโคจรดาวเคราะห์นั่นเอง พัพพัสแห่งอเล็กซานเดรียระบุว่า อาร์คิมิดีสได้เขียนต้นฉบับลายมือชุดหนึ่ง (ปัจจุบันสูญหายไปแล้ว) เกี่ยวกับการก่อสร้างกลไกเหล่านี้เอาไว้ งานวิจัยยุคใหม่ในสาขานี้ได้มุ่งความสนใจไปที่กลไกอันติคือเธรา ซึ่งเป็นเครื่องมืออีกชนิดหนึ่งจากยุคคลาสสิกที่อาจจะออกแบบขึ้นมาเพื่อวัตถุประสงค์เดียวกัน กลไกการสร้างประเภทนี้จำเป็นต้องใช้ความรู้อันซับซ้อนลึกซึ้งเกี่ยวกับเฟืองขับ ซึ่งครั้งหนึ่งเคยคิดกันว่าอยู่พ้นจากเทคโนโลยีที่เป็นไปได้ในยุคโบราณ แต่การค้นพบกลไกอันติคือเธราในปี ค.ศ. 1902 ช่วยยืนยันว่าเครื่องมือประเภทนี้เป็นที่รู้จักกันตั้งแต่ยุคกรีกโบราณแล้ว
อาร์คิมิดีสมักได้รับยกย่องในฐานะผู้ออกแบบสิ่งประดิษฐ์กลไก แต่เขาก็มีส่วนร่วมในวิทยาการด้านคณิตศาสตร์ไม่น้อย พลูตาร์คเขียนไว้ว่า : "เขาทุ่มเทความรักและความทะเยอทะยานทั้งมวลไว้กับการเสี่ยงโชคอันบริสุทธิ์ ซึ่งปราศจากความจำเป็นแห่งมารยาใด ๆ ในชีวิต"
อาร์คิมิดีสสามารถใช้แนวคิดกณิกนันต์ในวิธีที่คล้ายคลึงกับแคลคูลัสเชิงปริพันธ์ของยุคใหม่ ด้วยการพิสูจน์แย้ง เขาสามารถหาคำตอบของปัญหาที่มีระดับความแม่นยำสูงมาก ๆ ได้โดยกำหนดขอบเขตที่คำตอบนั้นตั้งอยู่ เทคนิคนี้รู้จักกันในชื่อ ระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเขานำมาใช้ในการหาค่าประมาณของ ? (พาย) วิธีการคือวาดภาพหลายเหลี่ยมขนาดใหญ่กว่าอยู่ข้างนอกวงกลม และรูปหลายเหลี่ยมขนาดเล็กกว่าอยู่ข้างในวงกลม ยิ่งจำนวนด้านของรูปหลายเหลี่ยมเพิ่มขึ้น มันก็จะใกล้เคียงกับขอบของวงกลมมากยิ่งขึ้น เมื่อรูปหลายเหลี่ยมมีจำนวนด้านถึง 96 ด้าน เขาคำนวณความยาวของแต่ละด้านรวมกันและแสดงถึงค่าของ ? ที่อยู่ระหว่าง 3 1/7 (ประมาณ 3.1429) กับ 3 10/71 (ประมาณ 3.1408) เทียบกับค่าที่แท้จริงของ ? ที่ประมาณ 3.1416 เขายังพิสูจน์ด้วยว่าพื้นที่ของวงกลมนั้นเท่ากับ ? คูณกับค่ากำลังสองของรัศมีของวงกลม ในงานเขียนเรื่อง On the Sphere and Cylinder อาร์คิมิดีสได้วางหลักเกณฑ์ของคุณสมบัติแบบอาร์คิมิดีสของจำนวนจริง ว่าค่ากนิกนันต์ใด ๆ เมื่อนำมาบวกเข้ากับตัวเองเป็นจำนวนครั้งมากพอ จะมากกว่าค่าอนันต์ของค่านั้น
ในงานเขียน Measurement of a Circle อาร์คิมิดีสให้ค่ารากที่สองของ 3 ไว้ว่าอยู่ระหว่าง 265/153 (ประมาณ 1.7320261) กับ 1351/780 (ประมาณ 1.7320512) โดยค่าที่แท้จริงคือประมาณ 1.7320508 ซึ่งเป็นค่าประมาณการที่ใกล้เคียงมาก เขาบอกค่านี้ออกมาโดยไม่ได้ให้คำอธิบายว่าใช้ระเบียบวิธีใดในการคิด วิธีการทำงานของอาร์คิมิดีสเช่นนี้ทำให้ จอห์น วอลลิส ระบุว่าเขากำลัง "ปกปิดวิธีการในการหาคำตอบ ราวกับว่าไม่ต้องการให้คนรุ่นหลังได้ล่วงรู้ แต่กลับขู่เข็ญให้ยอมรับผลลัพธ์นั้นแต่โดยดี"
ในงานเขียน The Quadrature of the Parabola อาร์คิมิดีสพิสูจน์ว่า พื้นที่ภายใต้เขตล้อมของพาราโบลากับเส้นตรงหนึ่งเส้น มีค่าเท่ากับ 4/3 เท่าของพื้นที่สามเหลี่ยมในเขตเดียวกันนั้น ดังแสดงในรูปทางขวานี้ เขาอธิบายผลลัพธ์ของปัญหานี้ด้วยอนุกรมเรขาคณิตอนันต์ซึ่งมีอัตราส่วนร่วม 1/4:
พจน์แรกของอนุกรมนี้คือพื้นที่ของสามเหลี่ยม พจน์ที่สองเป็นผลรวมของพื้นที่ของสามเหลี่ยม 2 ชิ้นที่มีฐานเท่ากับด้านประกอบที่เล็กกว่า และเป็นเช่นนี้ไปเรื่อย ๆ การพิสูจน์นี้ใช้การแปรค่าของอนุกรมอนันต์ที่ได้ผลรวมเข้าใกล้ 1/3
ในงานเขียน The Sand Reckoner อาร์คิมิดีสทำการคำนวณจำนวนเม็ดทรายที่เอกภพสามารถรองรับได้ การทำเช่นนั้น เขาได้ท้าทายข้อสังเกตว่าจำนวนของเม็ดทรายนั้นมากจนเกินกว่าจะนับได้ เขาเขียนว่า : "มีบางคน เช่นพระเจ้าเกโล (พระเจ้าเกโลที่ 2 โอรสของพระเจ้าเฮียโรที่ 2 แห่งซีรากูซา) ซึ่งคิดว่าจำนวนของเม็ดทรายนั้นมากมายจนเป็นอนันต์ และในความหมายของทรายนั้น ข้ามิได้หมายถึงที่มีอยู่ในซีรากูซาหรือส่วนที่เหลือของซิซิลี แต่รวมถึงส่วนที่พบในท้องถิ่นทุกหนแห่งไม่ว่ามีคนอยู่หรือไม่" ในการแก้ปัญหานี้ อาร์คิมิดีสได้ประดิษฐ์ระบบในการนับขึ้นโดยอ้างอิงจาก มีเรียด คำนี้มาจากภาษากรีกว่า murias หมายถึงจำนวน 10,000 เขาเสนอระบบจำนวนแบบหนึ่งโดยใช้การคูณมีเรียดกับมีเรียด (100 ล้าน) และสรุปว่าจำนวนของเม็ดทรายที่ใช้เติมเอกภพทั้งหมดให้เต็ม เท่ากับ 8 วิจินทิลเลียน หรือ 8?1063
งานเขียนของอาร์คิมิดีสเขียนไว้ในภาษากรีกดอริค (Doric Greek) ซึ่งเป็นภาษาซีรากูซาโบราณ งานเขียนส่วนมากไม่สามารถรอดมาถึงปัจจุบันเหมือนอย่างงานของยูคลิด ตำรา 7 เล่มของเขาเป็นที่รู้จักก็ด้วยการถูกนักเขียนคนอื่น ๆ กล่าวอ้างถึงเท่านั้น พัพพัสแห่งอเล็กซานเดรียพูดถึง On Sphere-Making และงานอื่น ๆ เกี่ยวกับรูปหลายเหลี่ยม ขณะที่ธีออนแห่งอเล็กซานเดรียอ้างถึงใจความสำคัญหนึ่งเกี่ยวกับการหักเหของแสงจากงานเขียนชื่อ Catoptricab ตลอดช่วงชีวิตของอาร์คิมิดีส เขาทำให้งานของตนเป็นที่รู้จักผ่านการสนทนาอภิปรายกับนักคณิตศาสตร์คนอื่น ๆ ในอเล็กซานเดรีย ปี ค.ศ. 530 สถาปนิกชาวไบแซนไทน์คนหนึ่งชื่อ อิซิดอร์แห่งมิเลตุส ได้รวบรวมงานเขียนของอาร์คิมิดีสเข้าด้วยกัน และมีการวิจารณ์ผลงานของอาร์คิมิดีสจากยูโตเซียสแห่งอัสคาลอนในคริสต์ศตวรรษที่ 6 ซึ่งทำให้ผลงานของเขาเป็นที่รู้จักแพร่หลาย มีการแปลงานเขียนของอาร์คิมิดีสไปเป็นภาษาอารบิกโดย Th?bit ibn Qurra (ค.ศ. 836-901) และภาษาละตินโดย Gerard แห่งครีโมนา (ค.ศ. 1114-1187) ระหว่างยุคเรอเนสซองส์มีการตีพิมพ์ Editio Princeps (เอดิชั่นแรก) ในกรุงเบเซิลเมื่อปี ค.ศ. 1544 โดย โจฮันน์ แฮร์เวเกน โดยแสดงงานเขียนของอาร์คิมิดีสทั้งในภาษากรีกและละติน ประมาณปี ค.ศ. 1586 กาลิเลโอ กาลิเลอี คิดค้นสมดุลของสถิตยศาสตร์ของไหลเพื่อใช้ในการชั่งน้ำหนักโลหะในอากาศและในน้ำ โดยเห็นชัดว่าได้รับแรงบันดาลใจจากงานของอาร์คิมิดีส
วัตถุใด ๆ ที่จมอยู่ในของไหลไม่ว่าทั้งหมดหรือบางส่วน จะประสบกับแรงต้านที่เท่ากันกับน้ำหนักของของไหลที่ถูกแทนที่ แต่เป็นไปในทิศทางตรงกันข้าม
ผลงานเรื่อง Book of Lemmas หรือ Liber Assumptorum เป็นหนึ่งในตำราของอาร์คิมิดีสเกี่ยวกับสัดส่วน 15 ประการของธรรมชาติของวงกลม สำเนาชุดที่เก่าแก่ที่สุดเท่าที่รู้จักกันเขียนเอาไว้ในภาษาอารบิก นักวิชาการ ที.แอล.ฮีธ และ มาร์แชล คลาเกตต์ โต้แย้งว่ารูปแบบในปัจจุบันนี้ไม่น่าจะเขียนขึ้นโดยอาร์คิมิดีส เพราะมีการอ้างถึงอาร์คิมิดีสเองด้วย จึงน่าจะเป็นงานดัดแปลงที่เกิดจากผู้เขียนคนอื่น Lemmas อาจเป็นงานที่สร้างขึ้นจากผลงานก่อนหน้านี้ของอาร์คิมิดีสซึ่งปัจจุบันสูญหายไปแล้ว
กล่าวอ้างว่า อาร์คิมิดีสรู้จักสมการของเฮรอนซึ่งใช้ในการคำนวณพื้นที่ของสามเหลี่ยมจากความยาวของด้านทั้งสามc อย่างไรก็ดี หลักฐานอ้างอิงที่เชื่อถือได้ชิ้นแรกเกี่ยวกับสมการนี้ก็เป็นของเฮรอนแห่งอเล็กซานเดรียในคริสต์ศตวรรษที่ 1
เอกสารอันโดดเด่นที่สุดที่บรรจุผลงานของอาร์คิมิดีส ได้แก่ สมุดบันทึกของอาร์คิมิดีส (Archimedes Palimpsest) โจฮัน ลุดวิก ไฮเบิร์ก ศาสตราจารย์ชาวเดนมาร์กได้ไปเยี่ยมเยือนกรุงคอนสแตนติโนเปิลเมื่อปี ค.ศ. 1906 และได้ตรวจสอบบันทึกบนหนังแพะ 174 หน้าที่เขียนขึ้นในคริสต์ศตวรรษที่ 13 เขาค้นพบว่า มันคือ สมุดบันทึกพาลิมเซสต์ (palimpsest) คือเอกสารที่มีการเขียนข้อความซ้ำแล้วซ้ำอีกทับผลงานเขียนเดิม โดยขูดหมึกจากงานเก่าออกแล้วนำแผ่นหนังกลับมาใช้ใหม่ ซึ่งเป็นวิธีการที่ใช้กันอยู่ทั่วไปในยุคกลางเพราะกระดาษหนังสัตว์มีราคาแพงมาก นักปราชญ์ในคริสต์ศตวรรษที่ 10 ได้ตรวจสอบและยืนยันว่างานเขียนเก่าบนพาลิมเซสต์เหล่านี้คือตำราของอาร์คิมิดีสที่ยังไม่มีใครรู้จักมาก่อน แผ่นหนังสัตว์เหล่านี้ถูกเก็บรักษาไว้ที่ห้องสมุดประจำอารามในกรุงคอนสแตนติโนเปิลเป็นเวลาหลายร้อยปี ก่อนจะถูกขายให้แก่นักสะสมเอกชนในราวคริสต์ทศวรรษ 1920 วันที่ 29 ตุลาคม ค.ศ. 1998 มันถูกนำออกประมูลขายไปให้แก่ผู้ซื้อที่ไม่ปรากฏชื่อเป็นเงิน 2 ล้านเหรียญสหรัฐที่บริษัทประมูลคริสตีส์ ในนครนิวยอร์ก ภายในพาลิมเซสต์นี้บรรจุตำรา 7 เล่ม ซึ่งรวมถึงสำเนาชุดเดียวที่เหลือรอดอยู่ของ On Floating Bodies ในต้นฉบับภาษากรีก เป็นแหล่งข้อมูลเดียวเท่าที่รู้จักของ The Method of Mechanical Theorems ซึ่งซุยดาสเคยกล่าวอ้างถึงและเชื่อกันว่าสูญหายไปตลอดกาลแล้ว การค้นพบ Stomachion ก็พบในพาลิมเซสต์นี้เช่นเดียวกัน พร้อมกับการวิเคราะห์ชุดสมบูรณ์ของปริศนาที่เคยพบในตำราอื่นก่อนหน้านี้
ปัจจุบันนี้ สมุดบันทึกพาลิมเซสต์ถูกเก็บรักษาเอาไว้ที่พิพิธภัณฑ์ศิลปะวอลเตอร์ส ที่เมืองบัลติมอร์ รัฐแมริแลนด์ ซึ่งจะต้องถูกตรวจสอบด้วยกรรมวิธีทดสอบสมัยใหม่อีกหลายแบบ เช่นการตรวจด้วยแสงอัลตราไวโอเลตและแสงเอ็กซเรย์เพื่ออ่านข้อความที่ถูกเขียนทับไป
ตำราของอาร์คิมิดีสที่บรรจุอยู่ในสมุดบันทึกพาลิมเซสต์ชุดนี้ ได้แก่ : On the Equilibrium of Planes, On Spirals, Measurement of a Circle, On the Sphere and the Cylinder, On Floating Bodies, The Method of Mechanical Theorems และ Stomachion
แอ่งบนดวงจันทร์แห่งหนึ่งได้รับการตั้งชื่อว่า แอ่งอาร์คิมิดีส (29.7? N, 4.0? W) เพื่อเป็นเกียรติแก่เขา นอกจากนี้มีเทือกเขาบนดวงจันทร์แห่งหนึ่ง ชื่อว่า เทือกเขาอาร์คิมิดีส (Montes Archimedes) (25.3? N, 4.6? W). รวมถึงดาวเคราะห์น้อย 3600 อาร์คิมิดีส ซึ่งตั้งชื่อตามชื่อของเขาด้วย
เหรียญรางวัลฟิลด์ส สำหรับผู้ประสบความสำเร็จอย่างโดดเด่นด้านคณิตศาสตร์ สลักภาพเหมือนของอาร์คิมิดีสไว้บนเหรียญ พร้อมกับการพิสูจน์ของเขาเกี่ยวกับเรื่องของทรงกลมและทรงกระบอก คำจารึกรอบ ๆ ศีรษะของอาร์คิมิดีสคือคำพูดของเขาซึ่งเขียนไว้ในภาษาละตินว่า : "Transire suum pectus mundoque potiri" (จงยืนขึ้นเหนือตนเองและคว้าโลกไว้)
ภาพอาร์คิมิดีสยังปรากฏบนดวงตราไปรษณียากรของเยอรมนีตะวันออก (ค.ศ. 1973), กรีซ (ค.ศ. 1983), อิตาลี (ค.ศ. 1983), นิคารากัว (ค.ศ. 1971), ซานมารีโน (ค.ศ. 1982), และสเปน (ค.ศ. 1963)
คำประกาศของอาร์คิมิดีสว่า ยูเรก้า! กลายเป็นคำขวัญประจำรัฐของแคลิฟอร์เนีย โดยใช้ในความหมายที่อ้างถึงการค้นพบทองคำบริเวณใกล้โรงนาซุตเทอร์ ในปี ค.ศ. 1848 อันเป็นจุดเริ่มต้นยุคการขุดทองในแคลิฟอร์เนีย
ขบวนการเคลื่อนไหวพลเรือนแห่งหนึ่งซึ่งมีเป้าหมายในการเข้าถึงข้อมูลสุขภาพสากลในรัฐออริกอน สหรัฐอเมริกา ใช้ชื่อขบวนการว่า "ขบวนการอาร์คิมิดีส" (Archimedes Movement) นำโดยอดีตผู้ว่าการรัฐออริกอน จอห์น คิตซเฮเบอร์
หมายเหตุ a: ในบทนำของ On Spirals ที่ส่งถึงโอซิธูสแห่งเพลูเซียม อาร์คิมิดีสบอกว่า "หลายปีล่มสลายไปนับแต่โคนอนตาย" โคนอนแห่งซามอสมีชีวิตอยู่ระหว่าง 280-220 ปีก่อนคริสตกาล แสดงว่าตอนที่เขียนงานเหล่านี้ อาร์คิมิดีสคงจะชราแล้ว
หมายเหตุ b: ตำราของอาร์คิมิดีสซึ่งเป็นที่รู้จักกันโดยผ่านการอ้างถึงจากบุคคลอื่น ได้แก่ : On Sphere-Making และผลงานเกี่ยวกับรูปทรงหลายเหลี่ยม ซึ่งถูกกล่าวถึงโดยพัพพัสแห่งอเล็กซานเดรีย, Catoptrica ผลงานเกี่ยวกับแสง กล่าวถึงโดยธีออนแห่งอเล็กซานเดรีย, Principles กล่าวถึงโดยซีซิพพัส และมีการอธิบายระบบจำนวนเอาไว้ใน The Sand Reckoner; On Balances and Levers; On Centers of Gravity; On the Calendar สำหรับผลงานของอาร์คิมิดีสที่หลงเหลือรอดมานั้น ที.แอล.ฮีธ เห็นว่าลำดับในการเขียนเป็นดังต่อไปนี้ : On the Equilibrium of Planes I, The Quadrature of the Parabola, On the Equilibrium of Planes II, On the Sphere and the Cylinder I, II, On Spirals, On Conoids and Spheroids, On Floating Bodies I, II, On the Measurement of a Circle, The Sand Reckoner.
หมายเหตุ c: คาร์ล เบนจามิน บอยเออร์ A History of Mathematics (1991) ISBN 0-471-54397-7 "บัณฑิตชาวอาหรับบอกเราว่า มีสมการหาพื้นที่ที่คล้ายกัน สามารถหาพื้นที่สามเหลี่ยมได้จากความยาวด้านทั้งสาม เรียกชื่อว่า สมการของเฮรอน — k = ? (s (s ? a) (s ? b) (s ? c) ) โดยที่ s คือ semiperimeter — สมการนี้อาร์คิมิดีสรู้มาก่อนแล้วหลายร้อยปีก่อนเฮรอนเกิด บัณฑิตอาหรับยังอ้างถึง 'theorem on the broken chord' ว่าเป็นงานของอาร์คิมิดีส ... ชาวอาหรับรายงานว่าอาร์คิมิดีสได้พิสูจน์ทฤษฎีบทมากมาย"