รูปสามเหลี่ยม (อังกฤษ: triangle) เป็นหนึ่งในรูปร่างพื้นฐานในเรขาคณิต คือรูปหลายเหลี่ยมซึ่งมี 3 มุมหรือจุดยอด และมี 3 ด้านหรือขอบที่เป็นส่วนของเส้นตรง รูปสามเหลี่ยมที่มีจุดยอด A, B, และ C เขียนแทนด้วย ?ABC
ในเรขาคณิตแบบยุคลิด จุด 3 จุดใดๆ ที่ไม่อยู่ในเส้นตรงเดียวกัน จะสามารถสร้างรูปสามเหลี่ยมได้เพียงรูปเดียว และเป็นรูปที่อยู่บนระนาบเดียว (เช่นระนาบสองมิติ)
ข้อเท็จจริงเบื้องต้นเกี่ยวกับรูปสามเหลี่ยมได้แสดงไว้ในหนังสือชื่อ Elements เล่ม 1-4 เมื่อประมาณ 300 ปีก่อนคริสตกาล รูปสามเหลี่ยมเป็นรูปหลายเหลี่ยมชนิดหนึ่ง และเป็น 2-ซิมเพล็กซ์ (2-simplex) รูปสามเหลี่ยมทุกรูปเป็นรูปสองมิติ
มุมภายในของรูปสามเหลี่ยมในปริภูมิแบบยุคลิดจะรวมได้ 180? เสมอ ด้วยข้อเท็จจริงนี้ทำให้เราสามารถหาขนาดของมุมที่สาม เมื่อเราทราบขนาดของมุมแล้วสองมุม มุมภายนอกของรูปสามเหลี่ยม (คือมุมที่อยู่ติดกับมุมภายใน โดยต่อความยาวด้านหนึ่งออกไป) จะมีขนาดเท่ากับมุมภายในที่ไม่ได้อยู่ติดกับมุมภายนอกรวมกัน สิ่งนี้เรียกว่าทฤษฎีบทมุมภายนอก มุมภายนอกทั้งสามจะรวมกันได้ 360? เช่นเดียวกับรูปหลายเหลี่ยมนูนอื่นๆ
ผลบวกของความยาวของสองด้านใดๆ ในรูปสามเหลี่ยม จะมากกว่าความยาวของด้านที่สามเสมอ สิ่งนี้เรียกว่าอสมการอิงรูปสามเหลี่ยม (กรณีพิเศษของการเท่ากันคือ มุมสองมุมถูกยุบให้มีขนาดเป็นศูนย์ รูปสามเหลี่ยมจะลดตัวลงเป็นเพียงส่วนของเส้นตรง)
รูปสามเหลี่ยมสองรูปจะเรียกว่า คล้ายกัน ก็ต่อเมื่อทุกมุมของรูปหนึ่ง มีขนาดเท่ากับมุมที่สมนัยกันของอีกรูปหนึ่ง ซึ่งในกรณีนี้ ด้านที่สมนัยกันจะเป็นสัดส่วน (proportional) ต่อกัน ตัวอย่างกรณีนี้เช่น รูปสามเหลี่ยมสองรูปที่มีมุมร่วมกันมุมหนึ่ง และด้านตรงข้ามมุมนั้นขนานกัน เป็นต้น
สำหรับรูปสามเหลี่ยมสองรูปที่สมภาคต่อกัน (หรือเรียกได้ว่า เท่ากันทุกประการ) ซึ่งหมายความว่ามุมและด้านมีขนาดเท่ากันทั้งหมด ก็ยังมีสัจพจน์และทฤษฎีบทเกี่ยวกับเรื่องนี้
ถึงแม้ว่ามุมทั้งสามของรูปสามเหลี่ยมจะสมภาคกัน (มุม-มุม-มุม) เรายังไม่สามารถสรุปได้ว่ารูปสามเหลี่ยมทั้งสองสมภาคต่อกัน เพียงแค่คล้ายกัน
การใช้รูปสามเหลี่ยมมุมฉากและแนวคิดเรื่องความคล้าย ฟังก์ชันตรีโกณมิติอย่างไซน์และโคไซน์จึงถูกนิยามขึ้น ซึ่งเป็นฟังก์ชันของมุมที่ใช้ในการตรวจสอบเรื่องตรีโกณมิติ
ทฤษฎีบทพีทาโกรัส (Pythagorean theorem) เป็นอีกทฤษฎีบทหนึ่งที่สำคัญ กล่าวว่าในรูปสามเหลี่ยมมุมฉากใดๆ กำลังสองของความยาวของด้านตรงข้ามมุมฉาก จะเท่ากับผลรวมของกำลังสองของความยาวของทั้งสองด้านที่เหลือ ถ้าด้านตรงข้ามมุมฉากยาว c หน่วย และด้านประกอบมุมฉากยาว a และ b หน่วย ดังนั้นทฤษฎีบทนี้จึงให้ความหมายว่า
บทกลับของทฤษฎีบทนี้ก็ยังคงเป็นจริง นั่นคือถ้าความยาวของด้านทั้งสามตรงตามเงื่อนไขในสมการข้างต้น ดังนั้นรูปสามเหลี่ยมนั้นจะเป็นรูปสามเหลี่ยมมุมฉาก
เส้นแบ่งครึ่งตั้งฉาก (perpendicular bisector) คือ เส้นตรงที่ลากผ่านจุดกึ่งกลางของด้าน และตั้งฉากกับด้านนั้น นั่นคือ ทำมุมฉากกับด้านนั้น เส้นแบ่งครึ่งตั้งฉากทั้งสามจะพบกันที่จุดเดียว คือ ศูนย์กลางวงล้อม (circumcenter) ของรูปสามเหลี่ยม จุดนี้เป็นจุดศูนย์กลางของวงกลมล้อม (circumcircle) ซึ่งเป็นวงกลมที่ลากผ่านจุดยอดทั้งสาม
ทฤษฎีบทของธาลีส (Thales' theorem) กล่าวว่า ถ้าศูนย์กลางวงล้อมอยู่บนด้านใดด้านหนึ่งของรูปสามเหลี่ยมแล้ว มุมตรงข้ามด้านนั้นจะเป็นมุมฉาก นอกจากนี้ ถ้าศูนย์กลางวงล้อมอยู่ในรูปสามเหลี่ยมแล้ว รูปสามเหลี่ยมนั้นเป็นรูปสามเหลี่ยมมุมแหลม ถ้าศูนย์กลางวงล้อมอยู่นอกรูปสามเหลี่ยมแล้ว รูปสามเหลี่ยมนั้นเป็นรูปสามเหลี่ยมมุมป้าน
ส่วนสูง (altitude) ของรูปสามเหลี่ยม คือ เส้นตรงที่ลากผ่านจุดยอดและตั้งฉาก (ทำมุมฉาก) กับด้านตรงข้าม ด้านตรงข้ามนั้นเรียกว่าฐาน (base) ของส่วนสูง และจุดที่ส่วนสูงตัดกับฐาน (หรือส่วนที่ขยายออกมา) นั้นเรียกว่า เท้า (foot) ของส่วนสูง ความยาวของส่วนสูงคือระยะทางระหว่างฐานกับจุดยอด ส่วนสูงทั้งสามจะตัดกันที่จุดเดียว เรียกจุดนั้นว่า จุดออร์โทเซนเตอร์(orthocenter) ของรูปสามเหลี่ยม จุดออร์โทเซนเตอร์จะอยู่ในรูปสามเหลี่ยมก็ต่อเมื่อรูปสามเหลี่ยมนั้นไม่เป็นรูปสามเหลี่ยมมุมป้าน จุดยอดทั้งสามและจุดออร์โทเซนเตอร์นั้นอยู่ในระบบออร์โทเซนตริก (orthocentric system)
เส้นแบ่งครึ่งมุม (angle bisector) คือ เส้นตรงที่ลากผ่านจุดยอด ซึ่งแบ่งมุมออกเป็นครึ่งหนึ่ง เส้นแบ่งครึ่งมุมทั้งสามจะตัดกันที่จุดเดียว คือ จุดศูนย์กลางของวงกลมแนบใน (incircle) ของรูปสามเหลี่ยม วงกลมแนบในคือวงกลมที่อยู่ในรูปสามเหลี่ยม และสัมผัสด้านทั้งสาม มีอีกสามวงกลมที่สำคัญคือ วงกลมแนบนอก (excircle) คือวงกลมที่อยู่นอกรูปสามเหลี่ยมและสัมผัสกับด้านหนึ่งด้านและส่วนที่ขยายออกมาทั้งสอง จุดศูนย์กลางของวงกลมแนบในและวงกลมแนบนอกอยู่ในระบบออร์โทเซนตริก
เส้นมัธยฐาน (median) ของรูปสามเหลี่ยม คือ เส้นตรงที่ลากผ่านจุดยอดและจุดกึ่งกลางของด้านตรงข้าม ซึ่งจะแบ่งรูปสามเหลี่ยมออกเป็นพื้นที่ที่เท่ากัน เส้นมัธยฐานทั้งสามจะตัดกันที่จุดเดียว คือ เซนทรอยด์ (centroid) ของรูปสามเหลี่ยม จุดนี้จะเป็นศูนย์ถ่วง (center of gravity) ของรูปสามเหลี่ยมด้วย ถ้ามีไม้ที่เป็นรูปสามเหลี่ยม คุณสามารถทำให้มันสมดุลได้ที่เซนทรอยด์ของมันหรือเส้นใดๆที่ลากผ่านเซนทรอยด์ เซนทรอยด์จะแบ่งเส้นมัธยฐานด้วยอัตราส่วน 2:1 นั่นคือระยะทางระหว่างจุดยอดกับเซนทรอยด์ จะเป็นสองเท่าของระยะทางระหว่างเซนทรอยด์กับจุดกึ่งกลางของด้านตรงข้าม
จุดกึ่งกลางของด้านทั้งสาม และเท้าของส่วนสูงทั้งสาม จะอยู่บนวงกลมเดียวกัน คือ วงกลมเก้าจุด (nine point circle) ของรูปสามเหลี่ยม อีกสามจุดที่เหลือคือจุดกึ่งกลางระหว่างจุดยอดกับจุดออร์โทเซนเตอร์ ซึ่งเป็นส่วนหนึ่งของส่วนสูง รัศมีของวงกลมเก้าจุดจะเป็นครึ่งหนึ่งของรัศมีวงกลมล้อม มันจะสัมผัสวงกลมแนบใน (ที่จุด Feuerbach) และสัมผัสวงกลมแนบนอก
เซนทรอยด์ (สีเหลือง) , จุดออร์โทเซนเตอร์ (สีน้ำเงิน) , ศูนย์กลางวงล้อม (สีเขียว) และจุดศูนย์กลางของวงกลมเก้าจุด (จุดสีแดง) ทั้งหมดจะอยู่บนเส้นเดียวกัน ที่เรียกว่า เส้นออยเลอร์ (Euler's line) (เส้นสีแดง) จุดศูนย์กลางของวงกลมเก้าจุดจะอยู่กึ่งกลางระหว่างจุดออร์โทเซนเตอร์กับศูนย์กลางวงล้อม ระยะทางระหว่างเซนทรอยด์กับศูนย์กลางวงล้อมจะเป็นครึ่งหนึ่งของระยะทางระหว่างเซนทรอยด์กับจุดออร์โทเซนเตอร์
ภาพสะท้อนของเส้นมัธยฐานที่เส้นแบ่งครึ่งมุมของจุดยอดเดียวกัน เรียกว่า symmedian symmedianทั้งสามจะตัดกันที่จุดเดียว คือ จุด symmedian (symmedian point) ของรูปสามเหลี่ยม
การคำนวณพื้นที่ของรูปสามเหลี่ยมเป็นปัญหาพื้นฐานที่มักจะพบในสถานการณ์ที่แตกต่างกัน สูตรที่ง่ายและเป็นที่รู้จักมากที่สุดคือ
เมื่อ S หมายถึงพื้นที่ b คือความยาวของฐาน และ h คือความสูงหรือส่วนสูงของรูปสามเหลี่ยม คำว่าฐานในที่นี้สามารถหมายถึงด้านในด้านหนึ่งของรูปสามเหลี่ยม และส่วนสูงคือระยะที่วัดจากมุมที่อยู่ตรงข้ามด้านนั้นตั้งฉากไปยังฐาน
ถึงแม้ว่าสูตรนี้จะง่าย แต่ก็ใช้ประโยชน์ได้เฉพาะเมื่อสามารถหาความสูงของรูปสามเหลี่ยมได้โดยง่าย ตัวอย่างเช่นการรังวัดที่ดินที่มีลักษณะเป็นรูปสามเหลี่ยม จะวัดความยาวของด้านทั้งสามแล้วสามารถคำนวณหาพื้นที่ได้โดยไม่ต้องวัดส่วนสูงเป็นต้น วิธีการที่หลากหลายถูกใช้ในทางปฏิบัติ ขึ้นอยู่กับว่าเรารู้อะไรเกี่ยวกับรูปสามเหลี่ยมบ้าง วิธีต่อไปนี้เป็นสูตรหาพื้นที่ของรูปสามเหลี่ยมที่ใช้กันบ่อยๆ
พื้นที่ของรูปสี่เหลี่ยมด้านขนานสามารถคำนวณได้ด้วยเวกเตอร์ กำหนดให้ AB และ AC เป็นเวกเตอร์ที่ชี้จาก A ไป B และ A ไป C ตามลำดับ พื้นที่ของรูปสี่เหลี่ยมด้านขนาน ABCD คือ ซึ่งเป็นขนาดของผลคูณไขว้ระหว่างเวกเตอร์ AB กับ AC และ มีค่าเท่ากับ เมื่อ h แทนส่วนสูงที่เป็นเวกเตอร์
ส่วนสูงของรูปสามเหลี่ยมหาได้ด้วยตรีโกณมิติ จากรูปทางซ้าย ส่วนสูงจะเท่ากับ h = a sin ? นำไปแทนในสูตร S = ?bh ที่ได้จากข้างต้น พื้นที่ของรูปสามเหลี่ยมจึงแสดงได้เป็น
ถ้าจุดยอด A อยู่ที่จุดกำเนิด (0, 0) ในระบบพิกัดคาร์ทีเซียน และกำหนดให้พิกัดของอีกสองจุดยอดอยู่ที่ แล้วพื้นที่ S จะคำนวณได้จาก ? เท่าของค่าสัมบูรณ์ของดีเทอร์มิแนนต์
ในสามมิติ พื้นที่ของรูปสามเหลี่ยม คือผลบวกพีทาโกรัสของพื้นที่ของรูปสามเหลี่ยมที่ฉายไปบนระนาบพื้นฐาน ()
โดยทั่วไปแล้ว มีวิธีการที่ได้รับการยอมรับหลากหลายวิธีเพื่อคำนวณความยาวของด้านหรือขนาดของมุม ในขณะที่วิธีการเฉพาะอย่างสามารถใช้ได้ดีกับค่าต่างๆ ของรูปสามเหลี่ยมมุมฉาก ซึ่งวิธีอื่นอาจต้องอยู่ในสถานการณ์ที่ซับซ้อนมากกว่า
รูปสามเหลี่ยมมุมฉากรูปหนึ่งเป็นรูปสามเหลี่ยมมุมฉากแหลงกาง60องศาและด้านที่สั้นที่สุดมีความยาว2รูด3ด้านที่ยาวที่สุดมีความยาวกี่นิ้ว
ในรูปสามเหลี่ยมมุมฉาก อัตราส่วนตรีโกณมิติของไซน์ โคไซน์ และแทนเจนต์สามารถใช้คำนวณหามุมที่ไม่ทราบขนาด หรือความยาวของด้านที่ไม่ทราบได้ ด้านต่างๆ ของรูปสามเหลี่ยมมีดังต่อไปนี้
โปรดสังเกตว่าอัตราส่วนนี้ไม่ได้ขึ้นอยู่กับรูปสามเหลี่ยมมุมฉากเฉพาะรูปใดรูปหนึ่ง แค่เรามีมุมที่สนใจ A บนรูปสามเหลี่ยมนั้นก็เพียงพอ
ฟังก์ชันตรีโกณมิติผกผันสามารถใช้คำนวณมุมภายในของรูปสามเหลี่ยมมุมฉาก เมื่อเราทราบความยาวของด้านสองด้านใดๆ
อาร์กไซน์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านตรงข้ามมุม กับความยาวของด้านตรงข้ามมุมฉาก
อาร์กโคไซน์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านประชิดมุม กับความยาวของด้านตรงข้ามมุมฉาก
อาร์กแทนเจนต์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านตรงข้ามมุม กับความยาวของด้านประชิดมุม
กฎของไซน์ (law of sine) หรือกฎไซน์ (sine rule) ระบุไว้ว่าอัตราส่วนของความยาวของด้าน a ที่สมนัยกับมุม ? (มุมตรงข้าม) จะเท่ากับอัตราส่วนของความยาวของด้าน b ที่สมนัยกับมุม ? ดังนี้
กฎของโคไซน์ (law of cosine) หรือกฎโคไซน์ (cosine rule) เป็นการเชื่อมโยงความสัมพันธ์ระหว่างด้านหนึ่งของรูปสามเหลี่ยมที่ไม่ทราบความยาว ไปยังด้านที่เหลือและมุมที่อยู่ตรงข้าม จากรูปทางซ้ายมือ สมมติว่าเราทราบความยาวของด้าน a และ b และทราบขนาดของมุมตรงข้าม ? ความยาวของด้าน c สามารถคำนวณจากสูตรต่อไปนี้
รูปสามเหลี่ยมที่ไม่อยู่บนระนาบ หมายถึงรูปสามเหลี่ยมที่ไม่ได้ถูกวาดขึ้นบนพื้นผิวที่แบนราบ ตัวอย่างรูปสามเหลี่ยมที่ไม่อยู่บนระนาบเช่น รูปสามเหลี่ยมบนทรงกลมในเรขาคณิตทรงกลม และรูปสามเหลี่ยมเชิงไฮเพอร์โบลาในเรขาคณิตเชิงไฮเพอร์โบลา ซึ่งไม่ได้เป็นส่วนหนึ่งของเรขาคณิตแบบยุคลิด
ในขณะที่รูปสามเหลี่ยมธรรมดา (สองมิติ) มุมภายในรูปสามเหลี่ยมจะรวมกันได้ 180? แต่รูปสามเหลี่ยมที่ไม่อยู่บนระนาบมุมภายในอาจรวมกันได้มากกว่าหรือน้อยกว่านั้น บนพื้นผิวที่มีความโค้งเป็นลบ (บุ๋มลงไป) จะบวกกันได้น้อยกว่า 180? และบนพื้นผิวที่มีความโค้งเป็นบวก (นูนขึ้นมา) จะบวกกันได้มากกว่า 180? นั่นหมายความว่า ถ้าเราวาดรูปสามเหลี่ยมขนาดใหญ่มากบนพื้นผิวโลก มุมภายในจะรวมกันได้มากกว่า 180?