ในวิชาทฤษฎีความซับซ้อนและคณิตศาสตร์ สัญกรณ์โอใหญ่ (อังกฤษ: Big O notation) เป็นสัญกรณ์คณิตศาสตร์ที่ใช้บรรยายพฤติกรรมเชิงเส้นกำกับของฟังก์ชัน โดยระบุเป็นขนาด (magnitude) ของฟังก์ชันในพจน์ของฟังก์ชันอื่นที่โดยทั่วไปซับซ้อนน้อยกว่า สัญกรณ์โอใหญ่เป็นหนึ่งในสัญกรณ์เชิงเส้นกำกับ หรืออาจเรียกว่า สัญกรณ์ของลันเดา หรือ สัญกรณ์ของบัคแมนน์-ลันเดา (ตั้งชื่อตามเอ็ดมุนด์ ลานเดาและเพาล์ บาคมันน์) สัญกรณ์โอใหญ่ใช้ในการเขียนเพื่อประมาณพจน์ในคณิตศาสตร์ ประยุกต์ใช้ในวิทยาการคอมพิวเตอร์เพื่อใช้อธิบายความเร็วประมาณทำงานของโปรแกรมในกรณีต้องประมวลผลข้อมูลจำนวนมาก และใช้เพื่ออธิบายประสิทธิภาพของขั้นตอนวิธีหรือโครงสร้างข้อมูลนั้น ๆ
สัญกรณ์โอใหญ่ระบุลักษณะของฟังก์ชันตามอัตราการเติบโต ถึงแม้ฟังก์ชันจะต่างกัน แต่ถ้ามีอัตราการเติบโตเท่ากันก็จะมีสัญกรณ์โอใหญ่เท่ากัน สำหรับสัญกรณ์โอใหญ่แล้ว จะพิจารณาเฉพาะขอบเขตบนของอัตราการเติบโตของฟังก์ชัน อาทิฟังก์ชัน
n
2
+
n
{\displaystyle n^{2}+n}
และ
n
+
4
{\displaystyle n+4}
ล้วนมีอัตราการเติบโตน้อยกว่าหรือเท่ากับ
n
2
{\displaystyle n^{2}}
นั่นคืออัตราการเติบโตของฟังก์ชัน
n
2
{\displaystyle n^{2}}
เป็นขอบเขตบนของ
n
2
+
n
{\displaystyle n^{2}+n}
และ
n
+
4
{\displaystyle n+4}
จึงอาจกล่าวได้ว่า
n
2
+
n
{\displaystyle n^{2}+n}
และ
n
+
4
{\displaystyle n+4}
เป็นสมาชิกของเซตของฟังก์ชัน
O
(
n
2
)
{\displaystyle O(n^{2})}
ในขณะที่สัญกรณ์เชิงเส้นกำกับอื่น พิจารณาขอบเขตอื่น ๆ เช่นสัญกรณ์โอเมกาใหญ่พิจารณาขอบเขตล่างของอัตราการเติบโตของฟังก์ชันแทน
แนวคิดของสัญกรณ์โอใหญ่ถูกคิดโดยนักทฤษฎีจำนวนที่ชื่อเพาล์ บาคมันน์ (Paul Bachmann) จากงานตีพิมพ์ของเขาที่ชื่อว่า Analytische Zahlentheorie (ทฤษฎีจำนวนวิเคราะห์) ในปี 1894 โดยครั้งนั้นยังไม่ได้ใช้ตัวสัญกรณ์โอใหญ่ สำหรับตัวสัญกรณ์โอใหญ่เองได้รับการใช้อย่างแพร่หลายโดยนักทฤษฎีจำนวนชาวเยอรมัน ที่มีชื่อว่า เอ็ดมุนด์ ลานเดา (Edmund Landau) ชื่อของเขาบางครั้งได้รับการยกย่องให้เป็นชื่อของสัญกรณ์โอใหญ่ว่าเป็น สัญกรณ์ของลานเดา (Landau notation) หรือ สัญกรณ์แบชมาน-ลานเดา (Bachmann-Landau notation) สำหรับตัวสัญกรณ์ที่เขียนเป็นรูปโอใหญ่นั้นได้แนวคิดมาจากคำว่า "order of" ซึ่งเดิมทีนั้นเขียนโดยใช้เป็นโอไมครอนใหญ่
อัตราการเติบโตของฟังก์ชันใด ๆ มีค่าเป็นสัญกรณ์โอใหญ่ของอีกฟังก์ชันหนึ่งแล้ว แสดงว่าอัตราการเติบโตของฟังก์ชันใด ๆ นั้นจะ โตน้อยกว่าหรือเท่ากับ อัตราการเติบโตของฟังก์ชันดังกล่าว ดังนั้นจึงอาจนิยามได้ว่า
อย่างไรก็ตาม นิยามนี้จำกัดเฉพาะกรณี
n
→
∞
{\displaystyle n\to \infty }
เท่านั้น ซึ่งไม่เพียงพออธิบายในกรณีที่
n
→
a
{\displaystyle n\to a}
ดังนั้นจึงอาจใช้นิยามในอีกรูปแบบ ในการขยายไปถึงสัญกรณ์โอใหญ่กณิกนันต์ ซึ่งเป็นพิจารณาอัตราการเติบโตของฟังกชันรอบ ๆ จุด a ใด ๆ
หรือในอีกนิยามที่พิจารณาอัตราการเติบโตของฟังก์ชันรอบ ๆ พิกัด
(
k
0
,
k
1
,
…
,
k
n
)
{\displaystyle (k_{0},k_{1},\ldots ,k_{n})}
ใด ๆ ว่า
สัญกรณ์โอใหญ่มีการใช้ในสองกรณีด้วยกัน ได้แก่ กรณีเส้นกำกับอนันต์ และ กรณีเส้นกำกับกณิกนันต์ ความแตกต่างระหว่างสองกรณีนี้เป็นความแตกต่างในขั้นการประยุกต์ใช้ มิใช่ในขั้นหลักการ อย่างไรก็ตาม นิยามเชิงรูปนัยของ "โอใหญ่" นั้นเหมือนกันในทั้งสองกรณี มีเพียงลิมิตสำหรับอาร์กิวเมนต์ของฟังก์ชันเท่านั้นที่แตกต่างกัน
สัญกรณ์โอใหญ่มีประโยชน์ในการใช้วิเคราะห์ขั้นตอนวิธี เพื่อหาประสิทธิภาพของขั้นตอนวิธี ตัวอย่างเช่น สมมติให้เวลา (หรือจำนวนขั้นตอน) ที่ใช้ในการแก้ปัญหาขนาด n มีฟังก์ชันเป็น
T
(
n
)
=
4
n
2
−
2
n
+
2
{\displaystyle T(n)=4n^{2}-2n+2}
เมื่อ n มีค่ามากขึ้น พจน์ n2 จะใหญ่ขึ้นครอบงำพจน์อื่น ๆ จนกระทั่งเราสามารถละเลยพจน์อื่น ๆ ได้ ยิ่งไปกว่านั้น สัมประสิทธิ์ของแต่ละพจน์จะขึ้นกับรายละเอียดปลีกย่อยของการนำขั้นตอนวิธีไปปฏิบัติ ตลอดจนฮาร์ดแวร์ที่ใช้ในการดำเนินการ ฉะนั้นจึงสามารถละเลยได้เช่นกัน สัญกรณ์โอใหญ่จะเก็บเฉพาะส่วนที่เหลือจากที่ละเลยได้ข้างต้น จึงเขียนได้ว่า
สัญกรณ์โอใหญ่ยังใช้เพื่อแสดงพจน์ของค่าคลาดเคลื่อนโดยประมาณในฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น
หมายความว่า เมื่อ x มีค่าเข้าใกล้ศูนย์ ผลต่างของฟังก์ชัน
e
x
{\displaystyle e^{x}}
กับ
1
+
x
+
x
2
/
2
{\displaystyle 1+x+x^{2}/2}
(หรืออาจกล่าวอีกนัยหนึ่งว่าเป็นความคลาดเคลื่อนของสองฟังก์ชันนี้) จะมีอยู่ในสับเซตของ
O
(
x
3
)
{\displaystyle O(x^{3})}
นั่นเอง หรือเขียนเป็นสัญลักษณ์ว่า
ในบางครั้งสัญกรณ์โอใหญ่อาจมีการครอบคลุมมากเกินไป เช่น
O
(
n
2
)
⊂
O
(
n
3
)
{\displaystyle O(n^{2})\subset O(n^{3})}
เป็นต้น จึงทำให้สำหรับฟังก์ชันใด ๆ อาจอยู่ในเซตของสัญกรณ์โอใหญ่หลายค่า จึงมีการกำหนดรูปแบบฟังก์ชันอย่างง่าย ให้ตอบในรูปสัญกรณ์โอใหญ่มาตรฐานน้อยสุด กล่าวคือตอบในรูปแบบมาตรฐานที่เล็กที่สุด เรามักจะอนุโลมให้ใช้จากสัญลักษณ์เท่ากับ (
=
{\displaystyle =}
) แทนสัญลักษณ์สมาชิก (
∈
{\displaystyle \in }
) เมื่อใช้กับรูปสัญกรณ์โอใหญ่มาตรฐานน้อยสุดนี้ เช่น
n
2
+
4
=
O
(
n
2
)
{\displaystyle n^{2}+4=O(n^{2})}
ในทางวิทยาการคอมพิวเตอร์ การทำงานที่มีสัญกรณ์โอใหญ่มาตรฐานน้อยสุดมีขนาดยิ่งเล็กเท่าใด แสดงว่าทำงานได้ยิ่งเร็วเท่านั้น
สัญกรณ์โอใหญ่มาตรฐานเรียงจากขนาดเล็กไปใหญ่ (ขนาดเล็กหมายถึงจะเป็นซับเซตของขนาดที่ใหญ่กว่า)
ให้ m เป็นค่าคงที่ใด ๆ ที่มากกว่าศูนย์ และ n เป็นโดเมนของฟังก์ชัน
บางครั้งเราจำเป็นต้องใช้การผสมโดยคูณเช่น
O
(
n
l
o
g
n
)
{\displaystyle O(nlogn)}
เกิดจากการคูณระหว่างเชิงเส้นและลอการิทึมย่อมทำได้