สัจพจน์ของความน่าจะเป็น (อังกฤษ: the axioms of probability) ถูกเสนอเป็นครั้งแรกในปี ค.ศ. 1936 โดยคอลโมโกรอฟ นักคณิตศาสตร์ชาวรัสเซีย1 ในทฤษฎีความน่าจะเป็นทางคณิตศาสตร์ ความน่าจะเป็นถูกนิยามด้วยฟังก์ชัน แต่ไม่ได้หมายความว่าทุกๆ ฟังก์ชันจะสามารถแปลความหมายเป็นฟังก์ชันของความน่าจะเป็นได้ทั้งหมด สัจพจน์ของความน่าจะเป็นจึงถูกนิยามมาเพื่อกำหนดว่าฟังก์ชันใดสามารถที่จะแปลความหมายในเชิงความน่าจะเป็นได้ กล่าวโดยสรุป ฟังก์ชันความน่าจะเป็น ก็คือ ฟังก์ชันทางคณิตศาสตร์ที่มีคุณสมบัติตรงกับที่สัจพจน์คอลโมโกรอฟกำหนดไว้ทุกข้อ ในทฤษฎีความน่าจะเป็นแบบเบย์ สัจพจน์ของความน่าจะเป็นถูกเสนอ โดยบรูโน เด ฟิเนตติ นักคณิตศาสตร์ชาวอิตาเลียนและริชาร์ด คอกซ์ นักฟิสิกส์ชาวอเมริกัน เด ฟิเนตติเสนอสัจพจน์โดยมีแนวคิดมาจากเกมส์การพนัน ส่วนคอกซ์เสนอสัจพจน์ของเขาโดยมีแนวคิดมาจากการขยายความสามารถของตรรกศาสตร์แบบอริสโตเติล สิ่งที่น่าทึ่งก็คือ ในทางปฏิบัติโดยทั่วไปแล้ว2 สัจพจน์ของคอลโมโกรอฟ, เด ฟิเนตติ และคอกซ์ จะให้ผลลัพธ์ที่เหมือนกัน (ทั้งๆ ที่ทั้งสามท่านมีแนวคิดเริ่มต้นต่างกันโดยสิ้นเชิง)
กำหนดให้ P(x){\displaystyle P(x)} เป็นฟังก์ชันใดๆ ทางคณิตศาสตร์ โดยมีโดเมนคือ ?{\displaystyle \Omega } เราจะกล่าวว่า P(x){\displaystyle P(x)} เป็นฟังก์ชันของความน่าจะเป็นก็ต่อเมื่อ P(x){\displaystyle P(x)} มีคุณสมบัติต่อไปนี้
อนึ่ง เราจะเรียกแต่ละสมาชิกใน ?{\displaystyle \Omega } ว่า เหตุการณ์พื้นฐาน และ สับเซตเช่น A,B{\displaystyle A,B} ของ ?{\displaystyle \Omega } ว่า เหตุการณ์ (ถึงแม้ว่า ไม่ใช่ว่าทุกสับเซตใด ๆ ของ ?{\displaystyle \Omega } จะมีคุณสมบัติดังสัจพจน์ข้อที่ 3 แต่ในทางปฏิบัติสับเซตที่เรารู้จักต่างก็มีคุณสมบัติดังนั้นจริง ดูคำอธิบายที่สมบูรณ์ได้ในหัวข้อถัดไป)
นักคณิตศาสตร์หลายท่านมอง ทฤษฎีความน่าจะเป็น เป็นสาขาย่อยของทฤษฎีการวัด (measure theory). นั่นคือ มอง ความน่าจะเป็น เป็นปริมาณ (แบบนามธรรม) ชนิดหนึ่งที่สามารถวัดได้ในบริบทของทฤษฎีการวัด. ข้อดีของการใช้ทฤษฎีการวัดในการอธิบายทฤษฎีความน่าจะเป็น คือ เรามีทฤษฎีการวัดทั้งในเซตจำกัดและเซตอนันต์. ดังนั้นนักคณิตศาสตร์จึงสามารถขยายทฤษฎีความน่าจะเป็นให้กว้างขึ้น ครอบคลุมไปถึงกรณีที่โดเมนของฟังก์ชันความน่าจะเป็นเป็นเซตอนันต์ได้ทันที โดยอ้างอิงจากทฤษฎีบทที่มีอยู่แล้วในทฤษฎีการวัด.
ค่าความน่าจะเป็น P{\displaystyle \mathbb {P} } ของเหตุการณ์(event) E{\displaystyle \mathbf {E} }, P(E){\displaystyle \mathbb {P} (\mathbf {E} )} ขึ้นกับ "เอกภพสัมพัทธ์"(universe) หรือ "ปริภูมิของการสุ่ม"(sample space) ?{\displaystyle {\boldsymbol {\Omega }}} ของเหตุการณ์พื้นฐาน ทั้งหมดที่เกิดขึ้นได้ และ P{\displaystyle \mathbb {P} } นั้นจะต้องมีคุณสมบัติตามสัจพจน์ของความน่าจะเป็น
ภายใต้บริบทของทฤษฎีการวัด ปริภูมิความน่าจะเป็น (?,F,P){\displaystyle ({\boldsymbol {\Omega }},{\mathfrak {F}},\mathbb {P} )} นิยามโดยมีฟังก์ชันการวัด P{\displaystyle \mathbb {P} } เป็นฟังก์ชันการวัดที่ไม่เป็นลบบน ซิกม่าแอลจีบรา (?-algebra) หรือ ซิกม่าฟิลด์ (?-field) F{\displaystyle {\mathfrak {F}}} ของทุกสับเซต ของ ?{\displaystyle {\boldsymbol {\Omega }}} โดยที่ P(?)=1{\displaystyle \mathbb {P} ({\boldsymbol {\Omega }})=1}
หมายเหตุ: พยายามรักษารูปแบบการนำเสนอเดิมของ คอลโมโกรอฟ แต่มีการเปลี่ยนตัวแปรและเครื่องหมายที่ใช้
ในส่วนที่เราทุกคนรู้กันเป็นอย่างดีเกี่ยวกับความน่าจะเป็นก็คือ หากเรามีเหตุการณ์ A{\displaystyle \mathbf {A} } ใดๆ ค่าความน่าจะเป็นของเหตุการณ์นั้นจะมีค่า 0?P(A)?1{\displaystyle 0\leq \mathbb {P} (\mathbf {A} )\leq 1} และ ค่าความน่าจะเป็นของเหตุการณ์ที่เป็นไปได้ทั้งหมด P(?)=1{\displaystyle \mathbb {P} ({\boldsymbol {\Omega }})=1}
สัจพจน์ของคอลโมโกรอฟข้างต้น นอกเหนือจากจะกล่าวถึง คุณสมบัติของฟังก์ชันการกำหนดค่าความน่าจะเป็นแล้ว ยังได้ระบุถึงโครงสร้างของสิ่งที่ค่าความน่าจะเป็นจะถูกระบุลงไปอีกด้วย คือ ปริภูมิของเหตุการณ์ (event space) ในแบบจำลองทางคณิตศาสตร์ของความน่าจะเป็น ปริภูมิของเหตุการณ์ ประกอบด้วย สับเซต ทั้งหมดของ ปริภูมิของการสุ่ม ?{\displaystyle {\boldsymbol {\Omega }}} ที่เราสามารถระบุค่าความน่าจะเป็นได้ โดยปกติแล้วเราอาจไม่สามารถระบุค่าความน่าจะเป็นของทุกสับเซตของ ?{\displaystyle {\boldsymbol {\Omega }}} ได้ สับเซตที่ระบุค่าความน่าจะเป็นได้นี้อธิบายในสัจพจน์ข้างต้นด้วย ฟิลด์ และ ซิกม่าฟิลด์
ปกติเราสามารถสร้างเหตุการณ์ที่ซับซ้อนขึ้นจากเหตุการณ์อื่นๆ ด้วยการใช้ตัวดำเนินการทางเซต เช่น หากเราพิจารณาแบบจำลองของการโยนลูกเต๋า 1 ลูก โดยมีปริภูมิของการสุ่ม ?={1,2,3,4,5,6}{\displaystyle {\boldsymbol {\Omega }}=\{1,2,3,4,5,6\}}
เพราะฉะนั้น ผลลัพธ์จากการดำเนินการทางเซต จะได้ผลลัพธ์เป็นเหตุการณ์ คือ เป็นสับเซตที่สามารถระบุความน่าจะเป็นได้ มีคุณสมบัติปิดภายใต้การดำเนินการทางเซต
ตัวอย่าง พิจารณา ?={1,2,3,4}{\displaystyle {\boldsymbol {\Omega }}=\{1,2,3,4\}} หากเราสามารถระบุค่าความน่าจะเป็นของเหตุการณ์ A={1,2,3}{\displaystyle \mathbf {A} =\{1,2,3\}} และ B={3,4}{\displaystyle \mathbf {B} =\{3,4\}} ได้ สับเซตทั้งหมดที่สามารถหาค่าความน่าจะเป็นได้ คือ ฟิลด์ ที่กำเนิดจากเหตุการณ์ทั้งสองข้างต้นคือ
สังเกตว่า เหตุการณ์ {1}{\displaystyle \{1\}} และ {2}{\displaystyle \{2\}} นั้นไม่ได้อยู่ในปริภูมิของเหตุการณ์ และ ไม่สามารถระบุค่าความน่าจะเป็นได้
ในกรณีของเหตุการณ์ นับได้จำนวนไม่จำกัด เช่น การโยนเหรียญจำนวนอินฟินิตีครั้ง ปริภูมิของเหตุการณ์จะอธิบายด้วย ซิกมาฟิลด์ ซึ่งเป็นกลุ่มของสับเซตของปริภูมิของการสุ่ม ที่มีคุณสมบัติปิดภายใต้ การดำเนินการทางเซต นับได้ จำนวนไม่จำกัด
1 แม้ว่าคณิตศาสตร์ของความน่าจะเป็นจะถูกพัฒนาขึ้นตั้งแต่มานานตั้งแต่ ปิแยร์ แฟร์มาต์ แบลส์ ปาลกาล จนถึง ปิแยร์ ซิมง ลาปลัสก็ตาม นักคณิตศาสตร์เหล่านี้ไม่ได้กำหนดโครงสร้างทางคณิตศาสตร์ของความน่าจะเป็นอย่างเคร่งครัด คล้ายกับกรณีออกัสติน หลุยส์ โคชี่ได้นิยามแคลคูลัสของไอแซก นิวตัน กับ กอทท์ฟรีด ไลบ์นิซอย่างเคร่งครัดในคริสต์ศตวรรษที่ 19 นั่นเอง
2 อนึ่ง ในบทความนี้ได้กล่าวว่า ในทางปฏิบัติโดยทั่วไป สัจพจน์ของทั้งสามท่านได้ให้ผลลัพธ์เช่นเดียวกัน ในทางปฏิบัติ ในที่นี้หมายถึงกรณีที่โดเมนของฟังก์ชันความน่าจะเป็น เป็นเซตจำกัด ทำให้ประเด็นเรื่อง การบวกได้เชิงเซตจำกัด (finite additivity) และ การบวกได้เชิงเซตอนันต์นับได้ (countably additivity) ของทฤษฎีการวัดไม่ส่งผลใช้งานสัจพจน์. ในหนังสือของเอดวิน ทอมป์สัน เจนส์ (Jaynes, 2003) ได้วิเคราะห์ความเหมือน ความแตกต่าง แนวคิด และปรัชญา ของคอลโมโกรอฟ, เด ฟิเนตติ และคอกซ์ ไว้อย่างละเอียดในภาคผนวก รวมทั้งยังนำเสนอวิธีการสังเคราะห์สัจพจน์ของคอกซ์อย่างละเอียดจาก ความต้องการพื้นฐานที่สมเหตุสมผล ของทฤษฏีความน่าจะเป็นแบบเบย์อีกด้วย