ยูเนียน (อังกฤษ: union) หรือ ส่วนรวม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการรวมสมาชิกทั้งหมดของเซตต้นแบบเข้าด้วยกัน เขียนแทนด้วยสัญลักษณ์ ? (คล้ายอักษรตัวใหญ่ U)
สมมติว่าเอกภพสัมพัทธ์ U ได้นิยามแล้ว กำหนดให้เซตสองเซต A และ B เป็นเซตย่อยของ U การยูเนียนจะให้ผลเป็นเซตใหม่ที่มีสมาชิกทั้งหมดที่ปรากฏอยู่ใน A หรือ B โดยไม่มีสมาชิกอื่นนอกเหนือจากนี้ นั่นคือ
หากทั้งสองเซตมีสมาชิกที่แตกต่างกัน นั่นคือสมาชิกของเซต A จะไม่ปรากฏในเซต B และในทางกลับกันด้วย ผลที่ได้จากการยูเนียนจะเป็นการนำสมาชิกทั้งหมดจากทั้งสองเซตมาใส่รวมกันทันที ตัวอย่างเช่น
ในกรณีที่ทั้งสองเซตมีสมาชิกบางส่วนซ้ำกัน การรวมสมาชิกจะไม่ส่งผลต่อภาวะเชิงการนับ (cardinality) ของเซต เนื่องจากสมาชิกตัวที่ซ้ำกันก็เสมือนมีอยู่เพียงตัวเดียวในเซต เช่นตัวอย่างนี้
โดยทั่วไปแล้ว เราสามารถดำเนินการยูเนียนบนเซตหลายเซตได้พร้อมกัน เช่นการยูเนียนของเซต A, B, และ C จะประกอบด้วยสมาชิกทั้งหมดของ A, สมาชิกทั้งหมดของ B, และสมาชิกทั้งหมดของ C โดยไม่มีสมาชิกอื่นที่นอกเหนือจากนี้ นั่นหมายความว่า x จะเป็นสมาชิกของเซต A ? B ? C ก็ต่อเมื่อ x เป็นสมาชิกของ A หรือ x เป็นสมาชิกของ B หรือ x เป็นสมาชิกของ C
เนื่องด้วยยูเนียนมีสมบัติการเปลี่ยนหมู่ ซึ่งไม่สำคัญว่าจะดำเนินการยูเนียนในลำดับใดก่อน ยูเนียนจำกัด จึงหมายถึงการดำเนินการยูเนียนเป็นจำนวนจำกัดของเซตกลุ่มหนึ่ง มิได้หมายความว่าเป็นการยูเนียนของเซตจำกัด
อีกแนวคิดหนึ่งคือการยูเนียนเกี่ยวข้องกับกลุ่มของเซต ถ้าให้ M คือเซตที่มีสมาชิกเป็นกลุ่มของเซตเหล่านั้น (เซตของเซต) x จะเป็นสมาชิกของการยูเนียนของ M ก็ต่อเมื่อ มีเซต A ซึ่งเป็นสมาชิกของ M อย่างน้อยหนึ่งตัว และ x ก็เป็นสมาชิกของ A เขียนแทนด้วย หรือ ดังนี้
สัญกรณ์ หมายถึงการยูเนียนของกลุ่มเซต Ai ทั้งหมด โดยที่ i เป็นสมาชิกของเซตดัชนี I ซึ่งเป็นสัญกรณ์แบบเดียวกับการเขียนอนุกรม สำหรับ ยูเนียนไม่จำกัด (หรือยูเนียนอนันต์) เซตดัชนี I จะเป็นเซตไม่จำกัด เช่นจำนวนธรรมชาติ สามารถเขียนได้ดังนี้