ยุคลิด (อังกฤษ: Euclid /ˈjuːklɪd/; กรีกโบราณ: Εὐκλείδης – Eukleídēs; fl. 300 BC) บางครั้งถูกเรียกว่า ยุคลิดแห่งอะเล็กซานเดรีย (อังกฤษ: Euclid of Alexandria, เพื่อแยกเขาออกจากยุคลิดแห่งเมการา) เป็นนักคณิตศาสตร์ชาวกรีกโบราณที่มีชีวิตอยู่ในช่วง 300 ปีก่อนคริสต์ศักราช ผลงานที่มีชื่อเสียงที่สุดของยุคลิดคือหนังสือเอเลเมนส์ (The Elements) ซึ่งเป็นหนังสือรวบรวมทฤษฎีบทในคณิตศาสตร์ (โดยเฉพาะอย่างยิ่งทางเรขาคณิต) และการพิสูจน์โดยวิธีแบบสัจพจน์ ซึ่งได้รับความนิยมอย่างยิ่งจนเป็นตำราเรียนคณิตศาสตร์เล่มสำคัญในอดีตจนถึงศตวรรษที่ 19 ในหนังสือดังกล่าวยุคลิดพิสูจน์ทฤษฎีบทเกี่ยวกับเรขาคณิตที่ในปัจจุบันเรียกว่า เรขาคณิตแบบยุคลิด จากสัจพจน์พื้นฐานเท่านั้น
มีหลักฐานเกี่ยวกับชีวประวัติของยุคลิดน้อยมาก พรอคลัสที่มีชีวิตราว ค.ศ. 450 หรือ 800 ปีหลังยุคลิด เขียนถึงยุคลิดว่าสอนคณิตศาสตร์ที่อะเล็กซานเดรียในรัชสมัยของทอเลมีที่ 1 ซึ่งปกครองอียิปต์โบราณในช่วง 323-285 ปีก่อนคริสต์ศักราช หลักฐานอีกอย่างของพรอคลัสคือเรื่องเล่าว่าพระเจ้าทอเลมีที่ 1 พระองค์มีรับสั่งถามยุคลิดว่า ‘มีทางลัดสำหรับการเรียนวิชาเรขาคณิตไหม?’ ยุคลิดทูลตอบว่า ‘ไม่มีลาดพระบาทสำหรับการเรียนเรขาคณิต’ (There is no royal road to geometry.) อย่างไรเสียเรื่องดังกล่าวคล้ายกับเรื่องเล่าเหตุการณ์ระหว่าง เมไนคมัส และ อเล็กซานเดอร์มหาราช ทำให้หลักฐานอ่อนลง
หากเชื่อตามพรอคลัส ยุคลิดได้รับอิทธิพลทางปรัชญาจากเพลโต และจะต้องมีอายุอ่อนกว่ายูโดซัสและตีอิตีตัสเพราะได้เขียน เอเลเมนส์ ที่รวมทฤษฎีบทของยูโดซัสและตีอิตีตัสจำนวนหนึ่งไว้ด้วย แต่ต้องมาก่อนอาร์คิมิดีสเพราะชื่อของยุคลิดปรากฏในงานของอาร์คิมิดีส ในภายหลังมีผู้เสนอและบางส่วนยอมรับว่าชื่อของยุคลิดถูกเพิ่มมาภายหลังในงานของอาร์คิมิดีส แต่ปัจจุบันยังเชื่อกันว่ายุคลิดมีชีวิตอยู่ก่อนอาร์คิมิดีส
ชื่อของยุคลิดถูกล่าวถึงอีกครั้งโดยปัปปุสแห่งอะเล็กซานเดรีย (ประมาณ ค.ศ. 320) โดยกล่าวถึงผ่าน ๆ ว่า อะพอลโลเนียส "ใช้เวลาสักพักร่วมกับลูกศิษย์ของยุคลิดแห่งอะเล็กซานเดรีย ด้วยเหตุนี้เขาจึงได้นิสัยช่างคิดค้นคว้า"
จากการขาดชีวประวัติที่ชัดเจนของยุคลิดในหลักฐานยุคกรีกนั้นผิดปกติ (นักคณิตศาสตร์คนอื่นทั้งก่อนและหลังยุคลิดมีชีวประวัติที่สมบูรณ์กว่านี้) ทำให้มีนักประวัติศาสตร์สันนิษฐานว่ายูคลิดไม่มีตัวตนจริง แต่เป็นกลุ่มนักคณิตศาสตร์ที่อาศัยอยู่ที่อะเล็กซานเดรีย อย่างไรก็ดียังขาดหลักฐานสนับสนุนแนวคิดดังกล่าวและนักประวัติศาสตร์ส่วนใหญ่เชื่อว่ายูคลิดมีตัวตนจริง
ผลงานที่สำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์และดาราศาสตร์ ผลงานที่ยังคงเหลืออยู่ในปัจจุบัน 5 ชิ้นด้วยกัน คือ
นอกจากนี้ยังมีงานของยุคลิดที่ปัจจุบันสูญหายไปแล้ว เช่น Conics ซึ่งภายหลังอะพอลโลเนียสได้เขียนแต่งเติมจนเป็นตำราที่มีชื่อเสียงที่สุดของเขา
เอเลเมนส์ เป็นผลงานที่มีชื่อเสียงที่สุดของยุคลิด ถึงแม้ว่าหลายทฤษฎีบทใน เอเลเมนส์ จะเป็นที่รู้จักมาก่อนแล้ว แต่ยุคลิดนำเสนอทฤษฎีบทจำนวนมากอย่างรัดกุมและเป็นระบบ ระบบพิสูจน์ทฤษฎีบทใน เอเลเมนส์ ยังเป็นพื้นฐานของคณิตศาสตร์ในปัจจุบัน เอเลเมนส์ มีหลายฉบับ เพราะได้รับการเขียนแต่งเติมโดยนักคณิตศาสตร์หลายท่าน ฉบับที่เป็นที่นิยมที่สุดโดยเธออนแห่งอะเล็กซานเดรีย ถึงแม้พรอคลัสเป็นผู้ระบุว่ายุคลิดเขียน เอเลเมนส์ แต่ไม่มีคำกล่าวถึงยุคลิดในต้นฉบับแรก ๆ ที่ยังหลงเหลืออยู่ของ เอเลเมนส์ เกือบทุกฉบับเขียนว่า "from the edition of Theon" (จากฉบับของเธออน) หรือ "lectures of Theon" (จากคำบรรยายของเธออน) ฉบับของหอสมุดวาติกันเป็นฉบับที่ไม่ได้มาจากฉบับที่แต่งเพิ่มโดยเธออน แต่ก็ไม่มีชื่อผู้แต่งว่าเป็นยุคลิด
หนังสือ เอเลเมนส์ แบ่งออกเป็นหนังสือได้ 13 เล่ม ใน 6 เล่มแรกเป็นผลงานเกี่ยวกับเรขาคณิต เล่ม 7, 8 และ 9 เป็นเรื่องราวเกี่ยวกับทฤษฎีจำนวน เล่ม 10 เป็นเรื่องราวเกี่ยวกับทฤษฎีที่ว่าด้วยจำนวนอตรรกยะ เล่ม 11, 12 และ 13 เกี่ยวข้องกับเรขาคณิตในสามมิติและเรขาคณิตทรงตัน เรขาคณิตในหนังสือ เอเลเมนส์ เป็นเรขาคณิตบนระนาบซึ่งเชื่อกันมานานว่าเป็นเรขาคณิตแบบเดียวที่เป็นไปได้ จนกระทั่งการค้นพบเรขาคณิตนอกแบบยุคลิดในศตวรรษที่ 19
นอกจากเรขาคณิตแล้ว ทฤษฎีจำนวนก็เป็นหัวข้อสำคัญใน เอเลเมนส์ ตัวอย่างทฤษฎีบทที่มี เช่น ทฤษฎีบทที่ว่าจำนวนเฉพาะมีมากมายนับไม่ถ้วน ความสัมพัทธ์ระหว่างจำนวนสมบูรณ์กับจำนวนเฉพาะแมร์แซนน์ บทตั้งของยุคลิดเกี่ยวกับการหาตัวประกอบ และขั้นตอนวิธีแบบยุคลิดที่ใช้หาตัวหารร่วมมากของจำนวนเต็มสองจำนวน
1. หนังสือ Elements ถือว่าเป็นต้นแบบของระบบคณิตศาสตร์ในปัจจุบัน กล่าวคือในหนังสือ Elements ยุคลิดได้กำหนดข้อตกลงขึ้น 10 ประการ ยุคลิดเรียกข้อตกลง 5 ประการแรกว่าสัจพจน์ (Axioms) หรือคอมมอนโนชั่น (Common Notions) ซึ่งหมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องมีการพิสูจน์ในคณิตศาสตร์ทุกแขนง ส่วนข้อตกลง 5 ประการหลังยุคลิดเรียกว่าพอสจูเลต (Postulates) หมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องพิสูจน์ในทางเรขาคณิต ข้อตกลงดังกล่าวมีดังนี้
P5 ถ้าเส้นตรงเส้นหนึ่ง ผ่านเส้นตรง 2 เส้น ทำให้มุมภายในที่อยู่ด้านเดียวกันรวมกันน้อยกว่า 2 มุมฉาก แล้วเส้นตรงสองเส้นจะตัดกันทางด้านที่มีมุมรวมกันน้อยกว่า 2 มุมฉาก ถ้าลากเส้นนั้นต่อไปเรื่อยๆ
จากข้อตกลงทั้ง 10 ประการนี้ ยุคลิดสามารถนำไปสร้างทฤษฎีบทได้ 465 ทฤษฎี โดยใช้วิธีการที่เรียกว่า “การสังเคราะห์” ด้วยการนำบทนิยามหรือทฤษฎีที่รู้แล้ว ประกอบกับการให้เหตุผลเชิงตรรกศาสตร์ ไปสร้างข้อสรุปหรือทฤษฎีบทใหม่ที่มีความซับซ้อนมากขึ้น ต่อจากนั้นจึงได้ใช้วิธีการวิเคราะห์พิสูจน์ข้อสรุปหรือทฤษฎีบทเหล่านั้นว่าเป็นจริง
3. การพิสูจน์ที่ปรากฏในหนังสือ Elements ยุคลิดได้พยายามใช้หลักเกณฑ์อย่างเคร่งครัด นอกจากนี้การพิสูจน์ทฤษฎีบทบางบท เป็นวิธีการให้เหตุผลเชิงคณิตศาสตร์ที่สละสลวยและสวยงาม จนถือเป็นแบบฉบับมาจนทุกวันนี้ เช่น การพิสูจน์ว่า จำนวนเฉพาะมีจำนวนไม่จำกัด เป็นต้น
หนังสือ Elements มีทั้งหมด 13 เล่ม ซึ่งมีเนื้อหาส่วนใหญ่เกี่ยวกับเรขาคณิต แต่ก็มีการกล่าวถึงพีชคณิต เรขาคณิตเชิงพีชคณิตเบื้องตน และทฤษฎีจำนวนเบื้องต้น เนื้อหาส่วนใหญ่เป็นผลงานของคนอื่น แต่ทว่ายุคลิดได้นำผลงานของนักปราชญ์คนอื่น ๆ ในสมัยก่อน ๆ มารวบรวมเข้าด้วยกันอย่างมีระบบ และเป็นลำดับเหตุผลต่อเนื่องกัน ซึ่งเนื้อหาของทั้ง 13 เล่ม มีรายละเอียดโดยสังเขปดังนี้
เล่ม 1 ประกอบไปด้วยบทนิยาม 13 นิยาม สัจพจน์ 10 ข้อ ยุคลิดเรียกสัจพจน์ 5 ข้อแรกว่า Postulates และ 5 ข้อหลังเรียกว่า Common notion และทฤษฎีบทอีก 48 ทฤษฎีบท ซึ่งรวมถึงทฤษฎีปีทาโกรัสและบทกลับเอาไว้ด้วย
เล่ม 4 เป็นการอภิปรายผลงานของโรงเรียนปีทาโกเรียน เรื่อง การสรางรูปหลายเหลี่ยมด้านเท่าโดยใช้วงเวียนและสันตรง
เล่ม 5 ยุคลิดนำแนวคิดของยูโดซุสมาอธิบายเรื่องทฤษฎีสัดส่วนได้อย่างดีเยี่ยม และนำการประยุกต์ในการหาขนาด ซึ่งแก้ปัญหาที่เกิดขึ้นจากการค้นพบจำนวนอตรรกยะ
เล่ม 6 นำทฤษฎีสัดส่วนของยูโดซุสมาใช้กับเรขาคณิตในระนาบเกี่ยวกับทฤษฎีบทของรูปสามเหลี่ยมคล้าย
เล่ม 7 ทฤษฎีจำนวน: การจำแนกจำนวนเป็นจำนวนคู่ จำนวนคี่ จำนวนเฉพาะ และจำนวนนสมบูรณ์ (Perfect Number) ตัวหารร่วมมาและตัวคูณร่วมน้อย
เล่ม 9 เกี่ยวกับทฤษฎีจำนวนต่อจากเล่ม 7 และ 8 ทฤษฎีที่มีชื่อเสียงของเล่มนี้คือ จำนวนเฉพาะมีจำนวนไม่จำกัด
เล่ม 12 เรื่องปริมาตรและทฤษฎีบทของยูโดซุสเกี่ยวกับระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเป็นพื้นฐานนำไปสู่เรื่องลิมิต (Limit)