ฟิสิกส์นิวเคลียร์ (อังกฤษ: Nuclear physics) หรือฟิสิกส์ของนิวเคลียส เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่ศึกษาองค์ประกอบต่าง ๆ และปฏิสัมพันธ์ระหว่างกันของนิวเคลียสทั้งหลายของอะตอม การประยุกต์ใช้ฟิสิกส์นิวเคลียร์ที่ทราบกันดีที่สุดคือ การผลิตไฟฟ้าจากพลังงานนิวเคลียร์และเทคโนโลยีอาวุธนิวเคลียร์ แต่การวิจัยได้ประยุกต์ในหลายสาขา เช่น เวชศาสตร์นิวเคลียร์และการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก การปลูกฝังไอออนในวิศวกรรมศาสตร์วัสดุ และการหาอายุจากคาร์บอนกัมมันตรังสีในวิชาภูมิศาสตร์และโบราณคดี
นิวเคลียสเป็นสิ่งที่ยังไม่เป็นที่เข้าใจทางทฤษฏี เพราะมันประกอบไปด้วยอนุภาคจำนวนมาก (เช่น โปรตอน และนิวตรอน) แต่ไม่มีขนาดใหญ่พอที่จะอธิบายลักษณะได้ถูกต้องเหมือนอย่างผลึก จึงมีการใช้แบบจำลองของนิวเคลียสซึ่งใช้ศึกษาพฤติกรรมทางนิวเคลียร์ส่วนใหญ่ได้ โดยอาจใช้เป็นวิธีการเดียวหรือร่วมกับวิธีการอื่น ๆ
ประวัติที่มาของฟิสิกส์นิวเคลียร์แตกต่างจากฟิสิกส์ของอะตอมเริ่มต้นด้วยการค้นพบของกัมมันตภาพรังสีโดย อองรี Becquerel ในปี 1896 ขณะที่กำลังสืบสวนการเรืองแสงของฟอสฟอรัส (อังกฤษ: phosphorescence) ในเกลือยูเรเนียม การค้นพบอิเล็กตรอนโดยนายเจ เจ ทอมสัน ในหนึ่งปีต่อมาก็บ่งชี้ว่าอะตอมมีโครงสร้างภายใน ในตอนต้นของศตวรรษที่ 20 รูปแบบที่ได้รับการยอมรับของอะตอมเป็นรูปแบบพลัมพุดดิ้งของเจเจทอมสันในที่ซึ่งอะตอมเป็นลูกกลมขนาดใหญ่ที่มีประจุบวกและมีอิเล็กตรอนประจุลบขนาดเล็กที่ฝังอยู่ภายในของมัน
หลายปีต่อมา ปรากฏการณ์ของกัมมันตภาพรังสีได้ถูกตรวจสอบอย่างกว้างขวาง ที่สะดุดตาก็เป็นของทีมงานสามีภรรยาปิแอร์ กูรีและมารี กูรี และของเออร์เนส รัทเธอร์ฟอร์ดและเพื่อนร่วมงานของเขา ในช่วงเปลี่ยนของศตวรรษ นักฟิสิกส์ยังได้ค้นพบสามชนิดของการแผ่รังสีที่เล็ดลอดออกมาจากอะตอม พวกมันมีชื่อว่าอนุภาคแอลฟา อนุภาคบีตา และรังสีแกมมา การทดลองในปี 1911 โดยอ็อตโต ฮาห์นและเจมส์ แชดวิค ได้ค้นพบในปี 1914 ว่าสเปคตรัมการสลายให้อนุภาคบีตาเป็นอย่างต่อเนื่องมากกว่าที่จะไม่ต่อเนื่อง นั่นคืออิเล็กตรอนจะถูกปลดปล่อยออกมาจากอะตอมที่มีช่วงหนึ่งของพลังงานมากกว่าจะเป็นปริมาณที่ไม่ต่อเนื่องของพลังงานที่ถูกสังเกตในการสลายได้รังสีแกมมาและการสลายให้อนุภาคแอลฟา นี่เป็นปัญหาหนึ่งสำหรับฟิสิกส์นิวเคลียร์ในช่วงเวลานั้น เพราะมันดูเหมือนจะบ่งบอกถึงพลังงานที่ไม่มีการอนุรักษ์(พลังงานออกไม่เท่ากับพลังงานเข้า)ในการสูญสลายเหล่านี้
รางวัลโนเบลปี 1903 ในสาขาฟิสิกส์ได้มอบให้กับนาย Becquerel สำหรับการค้นพบของเขา ร่วมกับนายปิแอร์ กูรีและนางมารี กูรีสำหรับการวิจัยที่ตามมาของพวกเขาเกี่ยวกับกัมมันตภาพรังสี นายรัทเธอร์ฟอร์ดก็ได้รับรางวัลโนเบลในสาขาเคมีในปี 1908 สำหรับ'การสอบสวนเกี่ยวกับการสลายตัวขององค์ประกอบและคุณสมบัติทางเคมีของสารกัมมันตรังสี'ของเขา
ในปี 1905, Albert Einstein จัดรูปแบบความคิดของการสมดุลมวล-พลังงาน ในขณะที่งานด้านกัมมันตภาพรังสีของ Becquerel และมารี กูรี ได้ถือกำเนิดมาก่อน คำอธิบายของแหล่งที่มาของการใช้พลังงานของกัมมันตภาพรังสีจะต้องรอการค้นพบที่ว่าตัวนิวเคลียสเองก็ประกอบด้วยองค์ประกอบขนาดเล็กกว่า ที่เรียกว่า นิวคลีออน
ในปี 1907 นายเออร์เนส รัทเธอร์ฟอร์ด ได้ตีพิมพ์ "การแผ่รังสีของอนุภาค ? จากเรเดียมผ่านทะลุสสาร" นายฮันส์ ไกเกอร์ ได้ขยายการทำงานนี้เข้าไปในการสื่อสารให้กับราชสโมสร ที่มีการทดลองที่เขาและรัทเธอร์ฟอร์ดได้ทำมา โดยผ่านอนุภาค ? ผ่านอากาศ อะลูมิเนียมและแผ่นทอง การทำงานมากขึ้นถูกตีพิมพ์ในปี 1909 โดยนายไกเกอร์และนาย Marsden และการทำงานที่ขยายตัวออกไปอย่างมากถูกตีพิมพ์ในปี 1910 โดยนายไกเกอร์ ในปี 1911-1912 นายรัทเธอร์ฟอร์ดได้อธิบายต่อหน้าราชสโมสรเรื่องการทดลองและนำเสนอทฤษฎีใหม่ของอะตอมของนิวเคลียสอย่างที่เราเข้าใจมันในตอนนี้
การทดลองที่สำคัญที่อยู่เบื้องหลังการประกาศครั้งนี้เกิดขึ้นในปี 1910 ที่มหาวิทยาลัยแมนเชสเตอร์ อย่างที่ทีมของเออร์เนส รัทเธอร์ฟอร์ดได้ดำเนินการทดลองที่น่าทึ่ง โดยที่นายฮันส์ ไกเกอร์และนายเออร์เนส Marsden ภายใต้การดูแลของเขาได้ยิงอนุภาคแอลฟา (นิวเคลียสของฮีเลียม) ไปที่ฟิล์มบางของฟอยล์ทองคำ 'รูปแบบของพลัมพุดดิ้ง'คาดการณ์ว่าอนุภาคแอลฟาน่าจะออกมาจากฟอยล์ที่มีวิถีโค้งของพวกมันงอเล็กน้อยเป็นส่วนใหญ่ รัทเธอร์ฟอร์ดมีความคิดที่จะสั่งให้ทีมงานของเขาที่จะมองหาบางสิ่งที่ตกใจเขาจะสังเกตเห็นจริง: อนุภาคไม่กี่ตัวกระจัดกระจายทะลุมุมขนาดใหญ่ แม้แต่วิ่งกลับหลังอย่างสมบูรณ์ในบางกรณี เขาเปรียบมันกับการยิงกระสุนไปที่กระดาษทิชชูและเห็นมันสะท้อนกลับ การค้นพบที่เริ่มต้นด้วยการวิเคราะห์ข้อมูลของ Rutherford ในปี 1911 ในที่สุดนำไปสู่ Rutherford model ของอะตอมที่อะตอมมีขนาดที่เล็กมาก นิวเคลียสที่หนาแน่นมากประกอบด้วยมวลของมันเป็นส่วนใหญ่ และที่ประกอบด้วยอนุภาคหนักที่มีประจุบวกกับอิเล็กตรอนที่ฝังตัวเพื่อสร้างความสมดุลของประจุรวม (เนื่องจากตอนนั้นนิวตรอนยังไม่เป็นที่รู้จัก) ตัวอย่างเช่นในรูปแบบนี้ (ซึ่งไม่ได้เป็นแบบที่ทันสมัย) ไนโตรเจน-14 ประกอบด้วยหนึ่งนิวเคลียสที่มี 14 โปรตอนและ 7 อิเล็กตรอน(อนุภาครวมเป็น 21) และนิวเคลียสถูกล้อมรอบด้วยอีก 7 อิเล็กตรอนที่โคจรล้อมรอบ
Rutherford model ทำงานได้ค่อนข้างดีจนกระทั่งการศึกษาของสปินนิวเคลียร์ (อังกฤษ: nuclear spin) ได้มีการดำเนินการโดยนายฝรังโก Rasetti ที่สถาบันเทคโนโลยีแคลิฟอร์เนียในปี 1929 โดยในปี 1925 เป็นที่รู้จักกันว่าโปรตอนและอิเล็กตรอนมีสปินเท่ากับ 1/2 และใน Rutherford model ของไนโตรเจน-14, 20 จากทั้งหมด 21 อนุภาคนิวเคลียร์ควรจะมีการจับคู่กันเพื่อหักล้างการสปินของกันและกัน และอนุภาคแปลกสุดท้ายควรจะเหลือนิวเคลียสที่มีสปินสุทธิเท่ากับ 1/2 อย่างไรก็ตาม Rasetti ค้นพบว่าไนโตรเจน-14 มีสปินเท่ากับ 1
ในปี 1932 Chadwick ตระหนักว่าการแผ่รังสีที่ได้รับการตรวจสอบโดยนายวอลเธอร์ Bothe นายเฮอร์เบิร์ท เบกเกอร์ นางไอรีนและนาย Fr?d?ric Joliot-Curie เป็นจริงเนื่องจากอนุภาคที่เป็นกลางที่มีมวลเหมือนกับโปรตอน ที่เขาเรียกว่านิวตรอน (ตามข้อเสนอแนะเกี่ยวกับความจำเป็นสำหรับอนุภาคดังกล่าวโดย Rutherford) ในปีเดียวกันนาย Dmitri Ivanenko แนะนำว่านิวตรอนที่จริงเป็นอนุภาคที่มีสปินเท่ากับ 1/2 และแนะนำอีกว่านิวเคลียสที่มีนิวตรอนเพื่ออธิบายว่ามวลไม่ได้มีแต่โปรตอนเท่านั้น และว่าไม่มีอิเล็กตรอนในนิวเคลียส - มีแต่โปรตอนและนิวตรอนเท่านั้น สปินของนิวตรอนแก้ปัญหาได้ทันทีในปัญหาของสปินของไนโตรเจน-14 โดยเป็นโปรตอนไม่จับคู่หนึ่งตัวกับนิวตรอนไม่จับคู่อีกหนึ่งตัว แต่ละตัวมีสปินที่ 1/2 ในทิศทางเดียวกัน ทำให้สปินรวมสุดท้ายเท่ากับ 1
กับการค้นพบนิวตรอน นักวิทยาศาสตร์ในที่สุดก็สามารถคำนวณสิ่งที่เป็นส่วนย่อยของพลังงานยึดเหนี่ยวที่แต่ละนิวเคลียสมีอยู่ จากการเปรียบเทียบมวลของนิวเคลียสกับมวลของโปรตอนและนิวตรอนที่ประกอบเป็นนิวเคลียสขึ้นมา ความแตกต่างระหว่างมวลของนิวเคลียสจะถูกคำนวณในลักษณะนี้และ เมื่อปฏิกิริยานิวเคลียร์ถูกวัด ถูกพบว่าเป็นไปตามการคำนวณของ Einstein ของความเท่าเทียมกันของมวลและพลังงานภายใน 1% ณ ปี 1934
อเล็กซานเดอร์ Proca เป็นคนแรกที่พัฒนาและรายงานสมการสนาม boson เวกเตอร์ ขนาดใหญ่ (อังกฤษ: equations of the massive vector boson field) และทฤษฎีของสนาม mesonic ของแรงนิวเคลียร์ สมการของ Proca ของเป็นที่รู้จักโดย Wolfgang Pauli เขากล่าวถึงสมการที่พูดถึงในรางวัลโนเบลของเขา และสมการเหล่านี้ก็ยังเป็นที่รู้จักโดย Yukawa, Wentzel, Taketani, Sakata, Kemmer, Heitler และ Fr?hlich ผู้ที่ชื่นชมเนื้อหาของสมการของ Proca สำหรับการพัฒนาทฤษฎีของนิวเคลียสของอะตอมในฟิสิกส์นิวเคลียร์
ในปี 1935 นายฮิเดกิ Yukawa ได้นำเสนอทฤษฎีสำคัญของแรงที่แข็งแกร่งเป็นครั้งแรกที่จะอธิบายว่านิวเคลียสยึดเหนี่ยวอยู่ด้วยกันได้อย่างไร ในการปฏิสัมพันธ์แบบ Yukawa อนุภาคเสมือนตัวหนึ่ง ที่ต่อมาถูกเรียกว่า meson ได้ใกล่เกลี่ยแรงระหว่างนิวคลีออนทั้งหมด รวมทั้งโปรตอนและนิวตรอน แรงนี้อธิบายว่าทำไมนิวเคลียสทั้งหลายจะไม่สลายตัวแยกออกจากกันภายใต้อิทธิพลของแรงขับโปรตอน และมันยังให้คำอธิบายว่าทำไมแรงดูดที่แข็งแกร่งถึงมีขอบเขตที่จำกัดมากกว่าแรงผลักแม่เหล็กไฟฟ้าระหว่างโปรตอนด้วยกัน ต่อมา การค้นพบ pi meson แสดงให้เห็นว่ามันจะมีคุณสมบัติของอนุภาคของ Yukawa
ด้วยเอกสารของ Yukawa รูปแบบที่ทันสมัย??ของอะตอมได้เสร็จสมบูรณ์แล้ว ศูนย์กลางของอะตอมจะมีลูกกลมแน่นของนิวตรอนและโปรตอน ซึ่งถูกยึดเข้าด้วยกันโดยแรงนิวเคลียสที่แข็งแกร่ง นอกเสียจากว่ามันจะมีขนาดใหญ่เกินไป นิวเคลียสที่ไม่เสถียรอาจสลายตัวไห้แอลฟา ที่พวกนิวเคลียสปล่อยนิวเคลียสของฮีเลียมที่มีพลังออกมา หรือการสลายที่ให้บีตาพวกนิวเคลียสปลดปล่อยอิเล็กตรอน (หรือโพซิตรอน) ออกมา หลังจากหนึ่งในการสูญสลายเหล่านี้ นิวเคลียสที่เป็นผลลัพธ์อาจจะถูกปล่อยให้อยู่ในสภาพที่ถูกกระตุ้น และในกรณีนี้มันจะสูญสลายไปสู่สภาพพื้นดินโดยปลดปล่อยโฟตอนพลังงานสูง (การสลายให้แกมมา)
การศึกษาของแรงนิวเคลียสที่แข็งแกร่งและอ่อนแอ (ตัวหลังถูกอธิบายโดย Enrico Fermi ผ่านการปฏิสัมพันธ์ของ Fermi ในปี 1934) ได้นำนักฟิสิกส์ไปสู่การชนของนิวเคลียสและอิเล็กตรอนที่พลังงานที่สูงขึ้นกว่าที่เคย การวิจัยครั้งนี้กลายเป็นวิทยาศาสตร์ของฟิสิกส์ของอนุภาค ซึ่งเป็นเพชรในมงกุฎที่เป็นรุ่นมาตรฐานของฟิสิกส์ของอนุภาคซึ่งอธิบายแรงที่แข็งแกร่ง, ที่อ่อนแอและแรงแม่เหล็กไฟฟ้า
สำหรับกัมมันตภาพรังสีในตัวของมันกันครับ โดย เรนเก็น นั้นได้ค้นพบรังสีในตัวมันนั้นเอง และ เบคเคอเรล นักฟิสิกส์ชาวฝรั่งเศสได้ค้นพบ สารกัมมันตภาพรังสี ยูเรนิก ในขณะที่กำลังค้นคว้าเรื่องรังสีเอ็กซ์
ธาตุกัมตภาพรังสีก็คือ สารธรรมชาติซึ่งมีอยู่ในตัวของมันเองและแพร่ออกมาได้เอง กัมมันตภาพรังสี เป็นปรากฏการ์ณของสารที่แผ่ออกมา โดยมี3ชนิดได้แก่ รังสีแอลฟา รังสีเบตา และรังสีแกมมา โดยเมื่อนำสารกัมมันตรังสีใส่ลงในตะกั่วที่เจาะรูเอาไว้ให้รังสีออกทางช่องทางเดียวไป ผ่านสนามไฟฟ้า พบว่ารังสีหนึ่งจะเบนเข้าหาขั้วบวกคือรังสีเบตา อีกรังสีหนึ่งเบนเข้าหาขั้วลบคือรังสีแอลฟาหรืออนุภาคแอลฟา ส่วนอีกรังสีหนึ่งเป็นกลางทางไฟฟ้าจึงไม่ถูกดูดหรือผลักด้วยอำนาจแม่เหล็กหรืออำนาจนำไฟฟ้า ให้ชื่อรังสีนี้ว่า รังสีแกมมา ดังรูป
นักวิทยศาสตร์ศึกษาค้นคว้าเกี่ยวกับ กับรังสีของนิวเคลียร์เพื่อทดสอบกับการเปลี่ยนแปลงของสภาพแวดล้อมแต่ละที่
1.1การปรับเปลี่ยนพันธุกรรม การใช้รังสีช่วยในการเพิ่มแร่ธาตุในดิน เช่นฟอสฟอรัส -32 ที่ปะปนอยู่ดินบริเวณต้นไม้นั้น รากของต้นไม้จะดูดซึม กัมมันตภาพรังสี เพื่อส่งต่อไปยังลำต้นของและส่วนอื่น ๆ ของต้นไม้ เพื่อรอปรุงอาหาร
1.3ใช้ในการคัดเลือกโคนมโดยใช้ ตรวจการทำงานของต่อมไทรอยด์ซึ่งมีผลต่อปริมาณน้ำนมของโคนมอีกด้วย
1.4กำจัดแมลงโดยอาบรังสีทำให้แมลงตายโดนใช้การแตกตัวของอะตอม ในเซลล์หรือหยุดการแพร่พันธุ์ของแมลง
ปัจจุบันมีการใช้รังสีในด้านต่าง ๆ ในการแพทย์เช่นทำคีโม่ หรือ ล่าสุดมีการฉายรังสีเพื่อตรวจสอบการไหลเวียนของโลหิตเพื่อให้ การรักษาเส้นเลือดอุดตันมีประสิทธิภาพขึ้นอีกด้วย
ปัจจัยหลักที่จะทำให้อุตสาหกรรมก้าวหน้าไปได้ในสภาวะเศรษฐกิจของโลก ในขณะนี้ คือ การเพิ่มผลผลิต การควบคุมคุณภาพ และการลดต้นทุนการผลิต เพื่อให้บรรลุวัตถุประสงค์ดังกล่าวในปัจจุบันไทยได้นำเทคโนโลยีนิวเคลียร์มาใช้ในการประกอบอุตสาหกรรมต่าง ๆ
3.1มีการใช้ รังสีในการตรวจสอบ สินค้าอุตสาหกรรมพวกแผ่นเหล็ก ว่าได้มาตรฐาน ตรงตามที่โรงงานกำหนดหรือไม่อีกด้วย
3.2การเชื่อมโลหะ โดยหารอยรั่วของท่อลำเลียงน้ำมันด้วยรังสีแกมมา ทำให้ช่วยประหยัด ทั้งเวลา และแรงงาน
3.3สามารถวบคุมความหนาของแผ่นโลหะได้อย่างที่เรากำหนดให้สม่ำเสมออย่างต่อเนื่องด้วยกระบวนการผลิตด้วยรังสี
ในสมัยสงครามโลกครั้งที่ 2 นั้นได้มีการใช้ระเบิดปรมาณมากที่ญี่ปุ่น พลังงานอันมหาศาลของปฏิกิริยานิวเคลียร์ฟิวชันได้ทำลายสิ่งก่อสร้างและชีวิตมนุษย์เป็นจำนวนมาก แต่เดิมนั้นคิดว่ามนุษย์ตายเพราะแรงระเบิดเท่านั้น เพราะยังไม่เคยมีการศึกษาหรือทดลองผลกระทบของกัมมันตภาพรังสีต่อสิ่งมีชีวิตในสมัยนั้น รวมทั้งไม่มีเครื่องมือตรวจสอบสารกัมมันตภาพรังสีที่อยู่บริเวณที่ถูกระเบิดและในร่างกายผู้เคราะห์ร้ายจากเหตุการ์ณนั้น แต่หลังจากการระเบิดของระเบิดปรมาณูประมาณ 1 ปี ก็พบว่ามีคนจำนวนมากเสียชีวิตด้วยโรคมะเร็งเพราะได้รับกัมมันตภาพรังสี ด้วยเหตุนี้โลกจึงเริ่มตื่นตัวศึกษาเกี่ยวกับผลกระทบของกัมมันตภาพรังสีที่มีต่อชีวิตมนุษย์ เมื่อกัมมันตภาพรังสีจากธาตุกัมมันตภาพรังสีผ่านเข้าไปในเนื้อเยื่อของสิ่งมีชีวิตจะทำให้เนื้อเยื่อเปลี่ยนแปลงคือ อาจทำให้เนื้อเยื่อตายทันทีหรือเปลี่ยนแปลงไป ซึ่งอาจนำไปสู่สาเหตุของการเป็นโรคมะเร็งได้
ความรุนแรงของอันตรายที่เกิดต่อร่างกายซึ่งได้รับกัมมันตภาพรังสี ขึ้นกับปริมาณของกัมมันตภาพรังสีในช่วงเวลาที่ร่างกายได้รับ และส่วนของร่างกายที่รับกัมมันตภาพรังสีนั้น ตามปกติมนุษย์ได้รับกัมมันตภาพรังสีจากสภาพแวดล้อมในธรรมชาติอยู่ตลอดเวลาแล้วแต่ในปริมาณที่น้อยจึงไม่เป็นอันตรายใด ๆ ต่อร่างกายของเราเลย การบำบัดช่วยให้เรามีภูมิคุ้มกันโรคด้วยสารกัมมันตภาพรังสีหรือการตั้งถิ่นฐานอยู่ใกล้โรงไฟฟ้านิวเคลียร์ จะทำให้ร่างกายได้รับกัมมันตภาพรังสีในปริมาณสูง แต่ก็ยังไม่เป็นอันตรายต่อร่างกายเฉียบพลันเหมือนกับอยู่ในเหตุการณ์การระเบิดของปรมาณูหรือการระเบิดในโรงไฟฟ้านิวเคลียร์ อาการที่ปรากฏหลังจากที่ร่างกายได้รับกัมมันตภาพรังสี จะมีอาการคลื่นไส้ เบื่ออาหาร ปวดศีรษะ ถ้าอาการหนักผมอาจร่วง แต่ส่วนใหญ่แล้วอาการเหล่านี้จะไม่ปรากฏในทันที ดังนั้นประชาชนและผู้เกี่ยวข้องกับกัมมันตภาพรังสีจึงไม่ใส่ใจป้องกันอันตราย เมื่อเนื้อเยื่อของร่างกายได้รับสารกัมมันตภาพรังสีจะทำให้อิเล็กตรอนหลุดจากอะตอม หรือพันธะเคมีเสียหายทำให้มีการเปลี่ยนแปลงทางกายภาพของเซลล์เกิดขึ้น ความเสียหายมีตั้งแต่เล็กน้อยที่ร่างกายสามารถรักษาตัวเองได้ จนถึงเสียหายมากก็ขึ้นอยู่กับปริมาณของกัมมันตภาพรังสีที่ได้รับและระยะเวลา โดยเฉพาะเนื้อเยื่อสมองและเนื้อเยื่อบริเวณอวัยวะสืบพันธุ์เป็นตำแหน่งของร่างกายที่ไวรับกัมมันตภาพรังสีมากที่สุด สำหรับเนื้อเยื่อบริเวณอวัยวะสืบพันธุ์ที