ค้นหา
  
Search Engine Optimization Services (SEO)

พันธุศาสตร์

พันธุศาสตร์ (อังกฤษ: genetics) เป็นสาขาหนึ่งของชีววิทยา ศึกษาเกี่ยวกับยีน การถ่ายทอดลักษณะทางพันธุกรรม และความหลากหลายทางพันธุกรรมของสิ่งมีชีวิต

พันธุศาสตร์ว่าด้วยโครงสร้างเชิงโมเลกุลและหน้าที่ของยีน พฤติกรรมของยีนในบริบทของเซลล์สิ่งมีชีวิต (เช่น ความเด่นและอีพิเจเนติกส์) แบบแผนของการถ่ายทอดลักษณะจากรุ่นสู่รุ่น การกระจายของยีน ความแตกต่างทางพันธุกรรมและการเปลี่ยนแปลงของพันธุกรรมในประชากรของสิ่งมีชีวิต (เช่นการศึกษาหาความสัมพันธ์ของยีนตลอดทั่วทั้งจีโนม) เมื่อถือว่ายีนเป็นพื้นฐานของสิ่งมีชีวิตทั้งหมด พันธุศาสตร์จึงเป็นวิชาที่นำไปใช้ได้กับสิ่งมีชีวิตทุกชนิด ทั้งไวรัส แบคทีเรีย พืช สัตว์ และมนุษย์ (เวชพันธุศาสตร์)

มีการสังเกตมาแต่โบราณแล้วว่าสิ่งมีชีวิตมีการถ่ายทอดลักษณะจากรุ่นสู่รุ่น ซึ่งเป็นความรู้ที่มนุษย์ใช้ในการปรับปรุงพันธุ์พืชและสัตว์ด้วยวิธีการคัดเลือกพันธุ์ อย่างไรก็ดี ความรู้พันธุศาสตร์สมัยใหม่ที่ว่าด้วยการพยายามทำความเข้าใจกระบวนการการถ่ายทอดลักษณะเช่นนี้เพิ่งเริ่มต้นในคริสต์ศตวรรษที่ 19 โดยเกรเกอร์ เมนเดล แม้เขาไม่สามารถศึกษาเจาะลึกไปถึงกระบวนการทางกายภาพของการถ่ายทอดลักษณะทางพันธุกรรม แต่ก็ค้นพบว่าลักษณะที่ถ่ายทอดนั้นมีแบบแผนจำเพาะ กำหนดได้ด้วยหน่วยพันธุกรรม ซึ่งต่อมาถูกเรียกว่า ยีน

ยีนคือส่วนหนึ่งของสายดีเอ็นเอซึ่งเป็นโมเลกุลที่ประกอบด้วยนิวคลีโอไทด์สี่ชนิดเชื่อมต่อกันเป็นสายยาว ลำดับนิวคลีโอไทด์สี่ชนิดนี้คือข้อมูลทางพันธุกรรมที่ถูกเก็บและมีการถ่ายทอดในสิ่งมีชีวิต ดีเอ็นเอตามธรรมชาติอยู่ในรูปเกลียวคู่ โดยนิวคลีโอไทด์บนแต่ละสายจะเป็นคู่สมซึ่งกันและกันกับนิวคลีโอไทด์บนสายดีเอ็นเออีกสายหนึ่ง แต่ละสายทำหน้าที่เป็นแม่แบบในการสร้างสายคู่ขึ้นมาได้ใหม่ นี่คือกระบวนการทางกายภาพที่ทำให้ยีนสามารถจำลองตัวเอง และถ่ายทอดไปยังรุ่นลูกได้

ลำดับของนิวคลีโอไทด์ในยีนจะถูกแปลออกมาเป็นสายของกรดอะมิโน ประกอบกันเป็นโปรตีน ซึ่งลำดับของกรดอะมิโนที่มาประกอบกันเป็นโปรตีนนั้นถ่ายทอดออกมาจากลำดับของนิวคลีโอไทด์บนดีเอ็นเอ ความสัมพันธ์ระหว่างลำดับของนิวคลีโอไทด์และลำดับของกรดอะมิโนนี้เรียกว่ารหัสพันธุกรรม กรดอะมิโนแต่ละชนิดที่ประกอบขึ้นมาเป็นโปรตีนช่วยกำหนดว่าสายโซ่ของกรดอะมิโนนั้นจะพับม้วนเกิดเป็นโครงสร้างสามมิติอย่างไร โครงสร้างสามมิตินี้กำหนดหน้าที่ของโปรตีนนั้น ๆ ซึ่งโปรตีนมีหน้าที่ในกระบวนการเกือบทั้งหมดของเซลล์สิ่งมีชีวิต การเปลี่ยนแปลงที่เกิดกับดีเอ็นเอในยีนยีนหนึ่ง อาจทำให้เกิดการเปลี่ยนแปลงลำดับกรดอะมิโนในโปรตีน เปลี่ยนโครงสร้างโปรตีน เปลี่ยนการทำหน้าที่ของโปรตีน ซึ่งอาจส่งผลต่อเซลล์และสิ่งมีชีวิตนั้น ๆ ได้อย่างมาก

แม้พันธุกรรมของสิ่งมีชีวิตจะมีบทบาทมากในการกำหนดลักษณะและพฤติกรรมของสิ่งมีชีวิต แต่ผลสุดท้ายแล้วตัวตนของสิ่งมีชีวิตหนึ่ง ๆ เป็นผลที่ได้จากการผสมผสานกันระหว่างพันธุกรรมและสิ่งแวดล้อมที่สิ่งมีชีวิตนั้น ๆ ประสบ ตัวอย่างเช่น ขนาดของสิ่งมีชีวิตไม่ได้ถูกกำหนดโดยยีนเพียงอย่างเดียว แต่ได้รับผลจากอาหารและสุขภาพของสิ่งมีชีวิตนั้น ๆ ด้วย เป็นต้น

ในปัจจุบัน นิยามของยีนหรือหน่วยพันธุกรรม คือส่วนหนึ่ง (หรือ ลำดับ) ของ DNA ที่สามารถถูกถอดรหัสออกมาเป็นชุดของกระบวนการหรือคำสั่งการทำงานของเซลล์ได้ (เช่น กระบวนการเพื่อ "สร้างโมเลกุลเมลานิน" เป็นต้น) อาจสามารถเปรียบ "ยีน" หนึ่งๆ ได้กับ "คำ" หนึ่งๆ ในภาษา โดยนิวคลีโอไทด์แต่ละตัวที่ประกอบขึ้นมาเป็นยีน เปรียบได้กับ "ตัวอักษร" ที่ประกอบขึ้นมาเป็นคำ

แม้ความรู้ทางพันธุศาสตร์จะมีที่มาจากการประยุกต์ทฤษฎีของเกรเกอร์ เมนเดลในช่วงกลางคริสต์ศตวรรษที่ 19 แต่ทฤษฎีว่าด้วยการถ่ายทอดลักษณะของสิ่งมีชีวิตนั้นมีมาก่อนยุคของเมนเดล ทฤษฎีที่เป็นที่นิยมก่อนยุคของเมนเดลคือแนวคิดการถ่ายทอดลักษณะแบบผสม ที่เชื่อว่าลักษณะของสิ่งมีชีวิตหนึ่ง ๆ เป็นการผสมกันระหว่างลักษณะของพ่อและแม่ แต่งานของเมนเดลพิสูจน์ว่าทฤษฎีนี้ไม่เป็นจริง โดยแสดงให้เห็นว่าการถ่ายทอดลักษณะของสิ่งมีชีวิตนั้นเกิดจากการประกอบกันของยีนที่แยกกันมากกว่าจะเป็นการหลอมรวมกัน อีกทฤษฎีหนึ่งที่มีผู้สนับสนุนพอสมควรคือทฤษฎีการถ่ายทอดลักษณะที่เกิดขึ้นภายหลัง ซึ่งเชื่อว่าสิ่งมีชีวิตจะได้รับการถ่ายทอดลักษณะที่ผ่านการฝึกฝนขึ้นในรุ่นพ่อแม่ ปัจจุบันเป็นที่ทราบกันแล้วว่าทฤษฎีนี้ (ซึ่งมักมีผู้นำไปใช้ร่วมกับทฤษฎีวิวัฒนาการของลามาร์ค) ผิด ประสบการณ์หรือสิ่งที่ได้จากการฝึกฝนของสิ่งมีชีวิตรุ่นหนึ่งไม่ส่งผลต่อยีนและไม่มีการถ่ายทอดไปยังอีกรุ่นหนึ่ง อีกทฤษฎีหนึ่งคือทฤษฎีตัวกำเนิดมีทั่วทุกส่วนของชาร์ลส์ ดาร์วิน (ซึ่งเป็นการผสมแนวคิดการถ่ายทอดลักษณะจากรุ่นสู่รุ่นและการได้รับลักษณะขึ้นมาใหม่) และทฤษฎีฉบับปรับปรุงของฟรานซิส กาลตันทั้งในแง่ของอนุภาคเจมมูล (gemmule) และการถ่ายทอดลักษณะของสิ่งมีชีวิต

พันธุศาสตร์ยุคใหม่มีที่มาจากงานของเกรเกอร์ โยฮัน เมนเดล บาทหลวงออกัสตินและนักวิทยาศาสตร์ชาวเยอร์มัน-เช็ค บทความงานวิจัยของเขา "Versuche ?ber Pflanzenhybriden" ("การทดลองในพืชพันธุ์ผสม") ซึ่งนำเสนอต่อ Naturforschender Verein (สมาคมงานวิจัยธรรมชาติ) ที่เบอร์โนใน ค.ศ. 1865 ได้ติดตามการถ่ายทอดลักษณะบางอย่างในต้นถั่วและอธิบายการถ่ายทอดนี้ในเชิงคณิตศาสตร์ แม้งานของเมนเดลจะพบแบบแผนการถ่ายทอดในลักษณะเพียงอย่างของต้นถั่วเท่านั้นก็ตาม แต่ก็บ่งชี้ว่าลักษณะต่าง ๆ นั้นมีการส่งต่อจริงและไม่ได้เกิดขึ้นมาใหม่ และแบบแผนของการถ่ายทอดของลักษณะหลาย ๆ อย่างก็สามารถอธิบายได้ด้วยกฎและสัดส่วนง่าย ๆ

งานของเมนเดลไม่ได้รับความสนใจมากนักกระทั่งคริสต์ทศวรรษ 1890 หลังเมนเดลเสียชีวิตไปแล้ว นักวิทยาศาสตร์ท่านอื่นได้ศึกษาเรื่องเดียวกันและได้ค้นพบสิ่งที่เมนเดลเคยค้นพบมาก่อนแล้ว วิลเลียม เบทสันเป็นผู้เสนองานของเมนเดลและได้เสนอคำว่า genetics ขึ้นใน ค.ศ. 1905 (ส่วนคำคุณศัพท์ genetic ซึ่งมาจากคำกรีกว่า genesis—???????, หมายถึง "จุดกำเนิด" นั้นมีใช้ก่อน genetics ซึ่งเป็นคำนาม และมีการนำมาใช้ในแวดวงชีววิทยาตั้งแต่ ค.ศ. 1860) และได้นำคำนี้ไปใช้ในความหมายว่าเป็นการศึกษาเกี่ยวกับการถ่ายทอดลักษณะของสิ่งมีชีวิตในบทเสนอต่อที่ประชุม Third International Conference on Plant Hybridization (การประชุมนานาชาติว่าด้วยการผสมพันธุ์พืชครั้งที่ 3) ในกรุงลอนดอน ประเทศอังกฤษ เมื่อ ค.ศ. 1906

หลังจากการค้นพบซ้ำงานของเมนเดล นักวิทยาศาสตร์หลายคนได้พยายามค้นหาว่าโมเลกุลใดในเซลล์ที่ทำให้เกิดการถ่ายทอดลักษณะเช่นนี้ ใน ค.ศ. 1910 โธมัส ฮันท์ มอร์แกนเสนอว่ายีนนั้นอยู่บนโครโมโซม ซึ่งเป็นข้อสรุปที่ได้จากการศึกษาการกลายพันธุ์ของลักษณะตาสีขาวซึ่งมีการถ่ายทอดแบบสัมพันธ์กับเพศในแมลงวันผลไม้ ต่อมา ค.ศ. 1913 อัลเฟรด สตูร์เทแวนท์ซึ่งเป็นนักเรียนของมอร์แกนได้อาศัยปรากฏการณ์ความเชื่อมโยงของพันธุกรรมแสดงให้เห็นว่ายีนเรียงตัวกันเป็นเส้นบนโครโมโซม

แม้จะทราบแล้วว่ายีนอยู่บนโครโมโซม แต่โครโมโซมก็ประกอบจากโปรตีนและดีเอ็นเอ นักวิทยาศาสตร์จึงยังไม่ทราบว่าส่วนประกอบใดกันแน่บนโครโมโซมที่ทำให้เกิดการถ่ายทอดลักษณะ จน ค.ศ. 1928 เฟรเดอริค กริฟฟิธจึงพบปรากฏการณ์การแปลงพันธุ์ซึ่งแบคทีเรียที่ตายแล้วสามารถส่งสารพันธุกรรมเพื่อแปลงพันธุ์แบคทีเรียที่ยังมีชีวิตอยู่ได้ จากนั้น ค.ศ. 1944 ออสวอลด์ ธีโอดอร์ เอเวอรี, โคลิน แมคลีออด และแมคลิน แมคคาร์ที พบว่าโมเลกุลที่ทำให้เกิดการแปลงพันธุ์คือดีเอ็นเอการทดลองเฮอร์ชีย์-เชสใน ค.ศ. 1952 ก็แสดงให้เห็นว่าดีเอ็นเอเป็นสารพันธุกรรมของไวรัสที่ทำให้เกิดการติดเชื้อในแบคทีเรีย เป็นหลักฐานอีกอย่างที่สนับสนุนว่าดีเอ็นเอเป็นโมเลกุลที่ทำให้เกิดการถ่ายทอดลักษณะ

เจมส์ ดี. วัตสัน และฟรานซิส คริก ค้นพบโครงสร้างของดีเอ็นเอใน ค.ศ. 1953 โดยใช้งานเอกซเรย์ผลิกศาสตร์ของโรซาลินด์ แฟรงคลินและมอริซ วิลคินส์ซึ่งบ่งชี้ว่าดีเอ็นเอมีโครงสร้างเป็นเกลียว ทั้งสองเสนอว่าดีเอ็นเอมีโครงสร้างเป็นเกลียวคู่ มีสายดีเอ็นเอสองสาย นิวคลีโอไทด์บนแต่ละสายชี้เข้าหากัน และตรงกันกับนิวคลีโอไทด์ที่เป็นคู่กันบนอีกสายหนึ่ง ทำให้มีลักษณะคล้ายบันไดที่บิดเป็นเกลียว โครงสร้างนี้แสดงให้เห็นว่ามีข้อมูลพันธุกรรมอยู่ในรูปของลำดับนิวคลีโอไทด์บนสายดีเอ็นเอแต่ละสาย และยังบ่งชี้ว่าดีเอ็นเอน่าจะมีวิธีจำลองตัวเองที่เรียบง่าย คือหากแต่ละสายแยกออกจากกัน ก็สามารถสร้างสายคู่กันได้ใหม่จากลำดับนิวคลีโอไทด์บนสายนั้น ๆ เอง

แม้โครงสร้างของดีเอ็นเอจะทำให้รู้ถึงกลไกการถ่ายทอดลักษณะ แต่วิธีที่ดีเอ็นเอส่งผลทำงานของเซลล์นั้นก็ยังไม่เป็นที่ทราบ หลังจากนั้นนักวิทยาศาสตร์พยายามทำความเข้าใจว่าดีเอ็นเอควบคุมการผลิตโปรตีนได้อย่างไร ต่อมาจึงค้นพบว่าเซลล์ใช้ดีเอ็นเอเป็นแบบพิมพ์สำหรับสร้างเมสเซนเจอร์อาร์เอ็นเอ (โมเลกุลที่ประกอบจากนิวคลีโอไทด์ คล้ายดีเอ็นเอ) ที่ตรงกัน จากนั้นลำดับนิวคลีโอไทด์บนอาร์เอ็นเอจะถูกใช้สร้างลำดับกรดอะมิโน ซึ่งจะประกอบเป็นโปรตีน ลักษณะการแปลรหัสระหว่างนิวคลีโอไทด์ไปเป็นกรดอะมิโนนี้เรียกว่ารหัสพันธุกรรม

การมีความเข้าใจเกี่ยวกับหลักการทางโมเลกุลของการถ่ายทอดลักษณะทางพันธุกรรมทำให้มีการศึกษาวิจัยต่อยอดได้อีกเป็นจำนวนมาก การค้นพบที่สำคัญครั้งหนึ่งคือการพบวิธีการหาลำดับดีเอ็นเอด้วยการใช้ลำดับหยุดของสายดีเอ็นเอโดยเฟรเดอริก แซงเกอร์เมื่อ ค.ศ. 1977 ซึ่งทำให้นักวิทยาศาสตร์สามารถอ่านลำดับนิวคลีโอไทด์บนโมเลกุลดีเอ็นเอได้ จากนั้น ค.ศ. 1983 แครี แบงคส์ มุลลิส ได้พัฒนาปฏิกิริยาลูกโซ่พอลิเมอเรสทำให้สามารถแยกและเพิ่มจำนวนบริเวณหนึ่ง ๆ ของดีเอ็นเอจากสารผสมได้ เทคนิคเหล่านี้รวมถึงเทคนิคอื่น ๆ ถูกพัฒนาต่อยอดจนเกิดเป็นโครงการจีโนมมนุษย์และโครงการเอกชนของเซเลราจีโนมิกส์ทำให้สามารถหาลำดับจีโนมมนุษย์ทั้งหมดได้สำเร็จใน ค.ศ. 2003

ในระดับพื้นฐานนั้นการถ่ายทอดลักษณะของสิ่งมีชีวิตเกิดจากลักษณะซึ่งมีการแยกเป็นส่วนชัดเจน เรียกว่ายีนเกรเกอร์ เมนเดลที่ศึกษาการแบ่งแยกลักษณะต่าง ๆ ของต้นถั่ว เป็นผู้คนพบลักษณะซึ่งมีการถ่ายทอดนี้เป็นคนแรก เช่นในการศึกษาลักษณะการถ่ายทอดสีของดอกถั่ว เมนเดลสังเกตว่าดอกของถั่วแต่ละต้นมีสีขาวหรือม่วง แต่ไม่มีดอกที่มีสีที่อยู่ตรงกลางระหว่างสองสีนี้ ลักษณะที่แตกต่างกันชัดเจนของยีนเดียวกันนี้เรียกว่าอัลลีล

ในกรณีต้นถั่วซึ่งเป็นสิ่งมีชีวิตที่มีโครโมโซมสองชุด แต่ละยีนของต้นถั่วจะมีสองอัลลีล ที่ได้รับการถ่ายทอดมาจากต้นถั่วพ่อแม่ สิ่งมีชีวิตหลายชนิดรวมทั้งมนุษย์ก็มีแบบแผนการถ่ายทอดลักษณะในรูปแบบนี้เช่นกัน สิ่งมีชีวิตที่มีโครโมโซมสองชุด ซึ่งทั้งสองอัลลีลในยีนเดียวกันนั้นเหมือนกันเรียกว่าเป็นฮอโมไซกัสหรือเป็นพันธุ์แท้ที่โลคัสของยีนนั้น ในขณะที่สิ่งมีชีวิตที่ในยีนเดียวกันมีอัลลีลสองแบบไม่เหมือนกัน เรียกว่าเป็นเฮเทอโรไซกัสหรือเป็นพันธุ์ทาง

อัลลีลที่สิ่งมีชีวิตได้รับมานั้นเรียกว่าจีโนไทป์หรือรูปแบบพันธุกรรม ส่วนลักษณะที่สังเกตได้นั้นเรียกว่าฟีโนไทป์หรือรูปแบบปรากฏ เมื่อสิ่งมีชีวิตหนึ่ง ๆ มีความเป็นเฮเทอโรไซกัสในยีนหนึ่ง ส่วนใหญ่แล้วอัลลีลอันหนึ่งในนั้นจะเป็นลักษณะเด่นซึ่งจะแสดงออกมาเป็นฟีโนไทป์ของสิ่งมีชีวิตนั้น ๆ ในขณะที่อีกอัลลีลหนึ่งจะเป็นลักษณะด้อยซึ่งถูกบดบังไว้ไม่แสดงออก บางอัลลีลมีลักษณะเด่นแบบไม่สมบูรณ์ โดยจะแสดงออกเป็นฟีโนไทป์ที่มีลักษณะผสมกัน หรือมีความเป็นลักษณะเด่นร่วมกันโดยทั้งสองอัลลีลสามารถแสดงออกพร้อมกันได้

เมื่อสิ่งมีชีวิตมีการสืบพันธุ์แบบอาศัยเพศ ลูกจะได้รับอัลลีลจากพ่อและแม่ต้น/ตัวละหนึ่งอัลลีลแบบสุ่ม ลักษณะการถ่ายทอดและการแยกเป็นส่วนชัดของอัลลีลเช่นนี้รวมเรียกว่ากฎข้อแรกของเมนเดลหรือกฎการแยกเป็นส่วนชัด

นักพันธุศาสตร์ใช้สัญลักษณ์และแผนผังต่าง ๆ ในการบันทึกข้อมูลเกี่ยวกับการถ่ายทอดลักษณะ ยีนต่าง ๆ มักถูกแทนที่ด้วยตัวอักษรไม่กี่ตัว และมักใช้เครื่องหมาย "+" ในการแสดงว่ายีนนั้น ๆ เป็นยีนปกติตามธรรมชาติซึ่งไม่มีการกลายพันธุ์ เรียกว่าเป็นพันธุ์ป่า

ในการศึกษาวิจัยที่เกี่ยวข้องกับการผสมพันธุ์และการสืบทอดเผ่าพันธุ์ (โดยเฉพาะเมื่อเกี่ยวข้องกับกฎของเมนเดล) มักเรียกรุ่นพ่อแม่ว่าเป็นรุ่น "P" (parent) และรุ่นลูกเรียกว่ารุ่น "F1" (first filial) เมื่อรุ่น F1 มีลูกอีกก็จะเรียกว่ารุ่น "F2" (second filial) แผนผังทำนายผลที่เกิดจากการผสมพันธุ์ที่ใช้บ่อยชนิดหนึ่งคือตารางพันเน็ต

นอกจากนี้ในการศึกษาวิจัยที่เกี่ยวข้องกับโรคทางพันธุกรรมในมนุษย์ นักพันธุศาสตร์มักใช้แผนภาพเพ็ดดีกรีในการอธิบายการถ่ายทอดลักษณะที่เป็นโรคนั้น ๆ โดยแสดงให้เห็นการถ่ายทอดลักษณะของความเป็นโรคในครอบครัว

สิ่งมีชีวิตหนึ่ง ๆ มียีนหลายพันยีน และสำหรับสิ่งมีชีวิตที่มีการสืบพันธุ์แบบอาศัยเพศนั้น ยีนเหล่านี้สามารถมีการจัดเรียงโดยไม่ขึ้นต่อกันได้ หมายความว่าการถ่ายทอดอัลลีลลักษณะสีเขียวหรือสีเหลืองของเมล็ดถั่วจะไม่สัมพันธ์กันกับการถ่ายทอดลักษณะสีม่วงหรือสีขาวของดอกถั่ว ปรากฏการณ์นี้เรียกว่ากฎข้อที่สองของเมนเดลหรือกฎการจัดเรียงอย่างอิสระ นั่นคือแต่ละอัลลีลของแต่ละยีนสามารถเกิดมีการสับเปลี่ยนระหว่างพ่อแม่ได้เพื่อให้มีทายาทที่มีส่วนผสมของลักษณะหลาย ๆ แบบ (แต่บางยีนก็ไม่ได้มีการจัดเรียงอย่างอิสระ เนื่องจากมีการเชื่อมโยงทางพันธุกรรม ซึ่งจะกล่าวต่อไป)

บางครั้งลักษณะหนึ่ง ๆ อาจมียีนที่ทำหน้าที่กำหนดลักษณะนั้น ๆ หลายตัว เช่นที่พบในดอกบลูอายแมรี่ (Omphalodes verna) ซึ่งมียีนที่มีอัลลีลซึ่งกำหนดสีของดอกเป็นสีฟ้าหรือสีม่วง กับอีกยีนหนึ่งซึ่งมีหน้าที่กำหนดว่าดอกจะมีสีหรือเป็นสีขาว หากพืชต้นหนึ่งมีอัลลีลซึ่งกำหนดให้มีสีขาวอยู่สองอัลลีล ดอกไม้ก็จะมีสีขาว ไม่ว่าจะมีการถ่ายทอดการกำหนดสีมาเป็นสีม่วงหรือสีฟ้าก็ตาม ปฏิกิริยาระหว่างยีนเช่นนี้เรียกว่าการข่มข้ามคู่ ซึ่งยีนที่สองนั้นมีการข่มยีนแรกแบบข้ามคู่

ลักษณะถ่ายทอดหลายอย่างไม่ได้มีลักษณะแยกกันชัดเจนเหมือนการมีดอกสีขาวหรือม่วง แต่มีความผสมกลมกลืนต่อเนื่องกันไปเช่นความสูงหรือสีผิวของมนุษย์ ลักษณะถ่ายทอดเช่นนี้เรียกว่าลักษณะถ่ายทอดเชิงปริมาณ เป็นผลที่เกิดจากการควบคุมของยีนหลายตัว ผลของยีนเหล่านี้ปรับเปลี่ยนไปมากหรือน้อยด้วยปัจจัยจากสิ่งแวดล้อม ระดับที่ผลของยีนมีเกิดเป็นลักษณะนั้นเรียกว่าอัตราพันธุกรรม ซึ่งเป็นค่าสัมพัทธ์ โดยในสภาพที่สิ่งแวดล้อมมีความหลากหลายมาก ยีนก็จะมีความสามารถในการถ่ายทอดลักษณะน้อยลงไป ตัวอย่างเช่นความสูงของมนุษย์มีความสามารถในการถ่ายทอดลักษณะอยู่ที่ 89% สำหรับในสหรัฐอเมริกา แต่ในไนจีเรียซึ่งประชากรมีการเข้าถึงอาหารและบริการสาธารณสุขแตกต่างกันมากนั้น ความสามารถในการถ่ายทอดลักษณะความสูงของยีนอยู่ที่เพียง 62% เท่านั้น

โมเลกุลที่เป็นพื้นฐานของยีนคือกรดดีออกซีไรโบนิวคลีอิก หรือดีเอ็นเอ ประกอบขึ้นจากสายโซ่ของนิวคลีโอไทด์สี่ชนิด ได้แก่อะดีนีน (A), ไซโตซีน (C), กวานีน (G) และไทมีน (T) ข้อมูลทางพันธุกรรมอยู่ในลำดับของนิวคลีโอไทด์เหล่านี้ ส่วนยีนนั้นก็ประกอบจากลำดับนิวคลีโอไทด์และเรียงต่อกันไปในสายดีเอ็นเอ ยกเว้นเฉพาะไวรัสซึ่งบางชนิดใช้อาร์เอ็นเอที่คล้ายดีเอ็นเอมากเป็นสารพันธุกรรมแทนดีเอ็นเอ

โดยปกติดีเอ็นเอมีลักษณะเป็นเกลียวคู่ นิวคลีโอไทด์แต่ละตัวในสายดีเอ็นเอมีคู่จับเฉพาะตัวในสายดีเอ็นเออีกสาย โดย A จับคู่กับ T และ C จับคู่กับ G ดังนั้นในดีเอ็นเอสายหนึ่ง ๆ จะมีข้อมูลครบถ้วน ซ้ำซ้อนกับสายที่คู่กัน โครงสร้างเช่นนี้เป็นพื้นฐานทางกายภาพของการถ่ายทอดลักษณะทางพันธุกรรม โดยถ่ายแบบดีเอ็นเอจะเป็นการทำซ้ำข้อมูลทางพันธุกรรมโดยแบ่งสายดีเอ็นเอทั้งสองสายออกจากกัน ซึ่งแต่ละสายจะเป็นแม่พิมพ์สำหรับสร้างสายคู่ขึ้นใหม่

ยีนจัดเรียงตัวเป็นเส้นตรงตามสายลำดับคู่เบสดีเอ็นเอ โดยในแบคทีเรียดีเอ็นเอเหล่านี้จะเรียงตัวเป็นวงกลมเรียกว่าจีโนฟอร์ ขณะที่ดีเอ็นเอของสิ่งมีชีวิตยูคารีโอต (รวมถึงพืชและสัตว์) จะเรียงตัวเป็นเส้นตรงหลายอันเรียกว่าโครโมโซม สายดีเอ็นเอเหล่านี้ส่วนใหญ่จะยาวมาก ตัวอย่างเช่นโครโมโซมที่ยาวที่สุดของมนุษย์มีความยาวประมาณ 247 ล้านคู่เบส ดีเอ็นเอในโครโมโซมจะจับกับโปรตีนโครงร่างซึ่งจัดระเบียบและควบคุมการแสดงออกของดีเอ็นเอให้เกิดเป็นรูปร่างที่เรียกว่าโครมาติน ในเซลล์ยูคารีโอตนั้นโครมาตินมักประกอบด้วยนิวคลีโอโซม โดยส่วนของดีเอ็นเอจะพันล้อมโปรตีนฮิสโตน สารพันธุกรรมที่มีการถ่ายทอดทั้งหมดของสิ่งมีชีวิต (โดยทั่วไปคือลำดับดีเอ็นเอทั้งหมดในทุกโครโมโซม) เรียกรวมว่าจีโนม

ขณะที่สิ่งมีชีวิตบางชนิดมีโครโมโซมชุดเดียว สัตว์และพืชส่วนใหญ่มีโครโมโซมสองชุด ทุกโครโมโซมจะมีคู่ และยีนทุกยีนมีสองชุด อัลลีลทั้งสองของยีนหนึ่ง ๆ จะอยู่บนโลคัสเดียวกันของฮอมอโลกัสโครโมโซม แต่ละอัลลีลได้รับการถ่ายทอดมาจากพ่อหรือแม่

สิ่งมีชีวิตหลายชนิดมีโครโมโซมเพศ ทำหน้าที่พิเศษในการกำหนดเพศของสิ่งมีชีวิตนั้น ๆ ในมนุษย์และสัตว์เลี้ยงลูกด้วยนมหลายชนิดมีโครโมโซมวายซึ่งมียีนที่กระตุ้นการเจริญของลักษณะเพศชาย การวิวัฒนาการทำให้โครโมโซมนี้สูญเสียโครงสร้างและยีนไปมาก ในขณะที่โครโมโซมเอกซ์มีขนาดคล้ายคลึงกับโครโมโซมอื่น ๆ และมียีนอยู่มากไม่ต่างกัน โครโมโซมเอกซ์และวายซึ่งต่างกันมากนี้จะจับคู่กันก่อนที่เซลล์จะมีการแบ่งตัว

เมื่อเซลล์มีการแบ่งตัว จีโนมทั้งหมดจะถูกคัดลอกและแบ่งให้เซลล์ลูกทั้งสองเซลล์ละหนึ่งจีโนม กระบวนการนี้เรียกว่าไมโทซิส ซึ่งเป็นการสืบพันธุ์แบบง่ายที่สุดและเป็นพื้นฐานของการสืบพันธุ์แบบไม่อาศัยเพศ ซึ่งพบได้ทั้งในสิ่งมีชีวิตเซลล์เดียวและหลายเซลล์ ทำให้ได้ทายาทซึ่งได้รับจีโนมมาจากรุ่นก่อนเพียงตัวเดียว ทายาทของการสืบพันธุ์แบบไม่อาศัยเพศจะมีพันธุกรรมเหมือนรุ่นก่อนทุกประการ และอาจเรียกว่าโคลน

สิ่งมีชีวิตยูคาริโอตมักอาศัยการสืบพันธุ์แบบอาศัยเพศเพื่อให้ได้ทายาทที่มีพันธุกรรมผสมกันจากพ่อแม่ กระบวนการนี้ในสิ่งมีชีวิตที่มีโครโมโซมหนึ่งชุดและที่มีโครโมโซมสองชุดมีความแตกต่างกัน โดยเซลล์ซึ่งมีโครโมโซมชุดเดียวจะรวมกันและนำสารพันธุกรรมมารวมกันได้เป็นเซลล์ซึ่งมีโครโมโซมสองชุด ส่วนสิ่งมีชีวิตที่มีโครโมโซมสองชุดจะสร้างเซลล์ซึ่งมีโครโมโซมชุดเดียวโดยแบ่งตัวเป็นสองเซลล์โดยไม่มีการทำซ้ำชุดดีเอ็นเอ เพื่อสร้างเซลล์ลูกที่ได้รับโครโมโซมจากพ่อแม่ต้น/ตัวละหนึ่งโครโมโซมแบบสุ่ม ส่วนใหญ่ของวงจรชีวิตสัตว์และพืชส่วนมากมีเซลล์ที่มีโครโมโซมสองชุด โดยมีช่วงชีวิตที่เป็นเซลล์ที่มีโครโมโซมชุดเดียวเฉพาะเซลล์สืบพันธุ์อย่างสเปิร์มและไข่เท่านั้น

แบคทีเรียบางชนิดมีวิธีทำให้ได้รูปแบบพันธุกรรมใหม่โดยไม่ใช้การสืบพันธุ์แบบอาศัยเพศอย่างเซลล์ที่มีโครโมโซมชุดเดียวหรือสองชุดที่กล่าวมาข้างต้น แต่ใช้วิธีการจับคู่เพื่อส่งชิ้นส่วนวงกลมดีเอ็นเอขนาดเล็กไปให้แบคทีเรียอีกตัวหนึ่ง นอกจากนี้ยังสามารถรับเอาชิ้นส่วนดีเอ็นเอที่ลอยอยู่ในสิ่งแวดล้อมเข้ามาในจีโนมของตัวเองได้ กระบวนการนี้เรียกว่าการแปลงพันธุ์ กระบวนการเช่นนี้ทำให้เกิดการถ่ายทอดยีนในแนวราบ ซึ่งเป็นการส่งชิ้นส่วนของข้อมูลพันธุกรรมระหว่างสิ่งมีชีวิตที่ไม่ได้มีปฏิสัมพันธุ์หรือมีความเกี่ยวข้องกัน

การที่สิ่งมีชีวิตมีโครโมโซมสองชุดทำให้มีโอกาสเกิดการแยกคู่ยีนอย่างอิสระระหว่างการสืบพันธุ์แบบอาศัยเพศ ทำให้มีการรวมยีนขึ้นเป็นรูปแบบใหม่ ตามทฤษฎีแล้วยีนของโครโมโซมเดียวกันนั้นไม่อาจมารวมใหม่กันได้หากไม่มีกระบวนการการไขว้เปลี่ยนระหว่างโครโมโซม ซึ่งระหว่างการไขว้เปลี่ยนนี้โครโมโซมจะมีการแลกเปลี่ยนชิ้นส่วนของดีเอ็นเอซึ่งกันและกัน ทำให้มีการสับเปลี่ยนอัลลีลระหว่างโครโมโซม โดยไขว้เปลี่ยนของโครโมโซมนี้ส่วนใหญ่เกิดระหว่างการแบ่งเซลล์แบบไมโอซิสเพื่อให้ได้เซลล์ลูกซึ่งมีโครโมโซมหนึ่งชุด

ความน่าจะเป็นที่จะเกิดมีการไขว้เปลี่ยนของโครโมโซมระหว่างจุดสองจุดบนโครโมโซมสัมพันธ์กับระยะทางระหว่างสองจุดนั้น กล่าวคือเมื่อยีนบนจุดสองจุดอยู่ห่างกันระดับหนึ่ง โอกาสของการไขว้เปลี่ยนจะมากจนถือได้ว่าการถ่ายทอดยีนนั้นไม่มีความสัมพันธ์กันหรือมีโอกาสถูกถ่ายทอดไปด้วยกันน้อยมาก ส่วนยีนที่อยู่ใกล้กันนั้นมีโอกาสเกิดการไขว้เปลี่ยนต่ำ ลักษณะเช่นนี้เรียกว่าความเชื่อมโยงของพันธุกรรม อัลลีลของยีนทั้งสองมีโอกาสสูงที่จะถูกถ่ายทอดไปด้วยกัน ปริมาณของความเชื่อมโยงกันระหว่างยีนชุดหนึ่งสามารถนำมาสร้างเป็นแผนที่เชิงเส้นของความเชื่อมโยงซึ่งอธิบายการจัดเรียงตัวของยีนคร่าว ๆ บนโครโมโซมได้

ยีนส่วนใหญ่ทำงานโดยแสดงออกผ่านการผลิตโปรตีนซึ่งเป็นโมเลกุลที่ซับซ้อนและทำหน้าที่ส่วนใหญ่ในเซลล์ โปรตีนประกอบด้วยกรดอะมิโนที่ต่อกันเป็นสายโซ่ ซึ่งลำดับกรดอะมิโนนี้ถูกกำหนดโดยลำดับดีเอ็นเอบนยีนที่สร้างโปรตีนนั้น ๆ ออกมาผ่านตัวกลางอาร์เอ็นเอ กระบวนการเริ่มจากการสร้างโมเลกุลอาร์เอ็นเอที่มีลำดับเบสตรงกันกับลำดับดีเอ็นเอในยีน กระบวนนี้เรียกว่าการถอดรหัส

โมเลกุลอาร์เอ็นเอนำรหัส (เอ็มอาร์เอ็นเอ) นี้จะถูกใช้สร้างลำดับกรดอะมิโอที่ตรงกันผ่านกระบวนการที่เรียกว่าการแปลรหัส ซึ่งนิวคลีโอไทด์ชุดละ 3 ตัวเรียกว่าโคดอนจะตรงกันกับกรดอะมิโนชนิดใดชนิดหนึ่งในยี่สิบชนิดและคำสั่งปิดท้ายลำดับกรดอะมิโน ความตรงกันนี้เรียกว่ารหัสพันธุกรรม ข้อมูลจะถูกส่งต่อในทิศทางเดียว จากลำดับนิวคลีโอไทด์ไปเป็นลำดับกรดอะมิโนของโปรีน แต่ไม่มีการส่งข้อมูลจากโปรตีนกลับมาเป็นลำดับดีเอ็นเอ กระบวนการนี้ฟรานซิส คริกเรียกว่า ความเชื่อหลักของอณูชีววิทยา

ลำดับกรดอะมิโนที่ได้จะถูกสร้างเป็นโครงสร้างสามมิติของโปรตีน ซึ่งโครงสร้างที่เป็นสามมิตินี้จะมีความสัมพันธ์กับหน้าที่ของโปรตีนนั้น ๆ โปรตีนบางชนิดเป็นโมเลกุลที่มีโครงสร้างเรียบง่าย เช่น เส้นใยที่สร้างจากโปรตีนคอลลาเจน โปรตีนสามารถจับกับโปรตีนอื่นและโมเลกุลอย่างง่ายอื่น ๆ ได้ บางชนิดทำหน้าที่เป็นเอนไซม์ซึ่งมีส่วนในปฏิกิริยาเคมีในโมเลกุลที่ไปจับโดยไม่มีการเปลี่ยนแปลงโครงสร้างของโปรตีนเอง โครงสร้างของโปรตีนนั้นมีการเปลี่ยนแปลงได้ เช่นโปรตีนฮีโมโกลบินในรูปแบบต่าง ๆ กันจะมีรูปร่างที่เปลี่ยนไปเล็กน้อย เพื่อช่วยในการจับยึด ขนส่ง และปล่อยโมเลกุลออกซิเจนในเลือดของสัตว์เลี้ยงลูกด้วยนม

การเปลี่ยนไปของนิวคลีโอไทด์เพียงตัวเดียวในดีเอ็นเอสามารถทำให้เกิดการเปลี่ยนแปลงของลำดับกรดอะมิโนในโปรตีนได้ จากการที่โครงสร้างโปรตีนนั้นเกิดจากลำดับกรดอะมิโน ดังนั้นการเปลี่ยนแปลงของลำดับกรดอะมิโนบางแบบอาจเปลี่ยนคุณสมบัติของโปรตีนนั้น ๆ ได้ อาจโดยทำให้โครงสร้างสูญเสียความเสถียรไปไม่สามารถคงรูปอยู่ได้ หรือเปลี่ยนพื้นผิวของโปรตีนทำให้มีปฏิกิริยากับโปรตีนหรือโมเลกุลอื่นเปลี่ยนแปลงไป เช่น โรคเลือดจางแบบมีเม็ดเลือดแดงรูปเคียวเป็นโรคพันธุกรรมชนิดหนึ่งในมนุษย์ซึ่งเกิดจากการเปลี่ยนแปลงของเบสคู่เดียวในบริเวณที่มีการถอดรหัสออกมาเป็นเบตาโกลบินซึ่งเป็นส่วนประกอบของฮีโมโกลบิน ทำให้มีการเปลี่ยนแปลงของกรดอะมิโนตัวหนึ่งจนสมบัติทางกายภาพของฮีโมโกลบินเปลี่ยนแปลงไป ฮีโมโกลบินในผู้ป่วยโรคนี้จะจับกันเอง ก่อตัวเป็นเส้นใย ทำให้เม็ดเลือดแดงที่มีโปรตีนที่ผิดปกตินี้มีรูปร่างเปลี่ยนแปลงไปมีรูปร่างคล้ายเคียว เม็ดเลือดแดงที่มีรูปร่างเปลี่ยนไปนี้ไหลผ่านหลอดเลือดได้ไม่ดีเท่าเม็ดเลือดแดงปกติ ทำให้มีโอกาสเกิดการอุดตันหรือแตกสลาย เกิดเป็นอาการที่สัมพันธ์กับโรคดังกล่าว

ยีนบางตัวถอดรหัสออกมาเป็นอาร์เอ็นเอแต่ไม่มีการแปลรหัสออกมาเป็นโปรตีน อาร์เอ็นเอเหล่านี้เรียกว่าน็อน-โคดดิ้ง อาร์เอ็นเอ หรืออาร์เอ็นเอที่ไม่มีการอ่านรหัส อาร์เอ็นเอเหล่านี้บางครั้งจะจัดรูปร่างตัวเองเป็นโครงสร้างที่ทำหน้าที่สำคัญในเซลล์ เช่น อาร์เอ็นเอไรโบโซม และอาร์เอ็นเอถ่ายโอน นอกจากนี้อาร์เอ็นเอยังอาจมีหน้าที่ในการควบคุมการแสดงออกทางพันธุกรรมโดยปฏิกิริยาจับตัวผสมกับอาร์เอ็นเออื่น ๆ เช่น ไมโครอาร์เอ็นเอ

แม้ข้อมูลการทำหน้าที่ของส่วนประกอบต่าง ๆ ของสิ่งมีชีวิตจะถูกบรรจุอยู่ในยีน สิ่งแวดล้อมก็ยังมีบทบาทสำคัญทำให้เกิดลักษณะที่แสดงออกเป็นผลสุดท้าย ปรากฏการณ์เช่นนี้มักถูกเรียกชื่อว่าปฏิสัมพันธ์ระหว่างธรรมชาติและการเลี้ยงดู (อังกฤษ: nature versus nurture) ลักษณะปรากฏของสิ่งมีชีวิตขึ้นกับปฏิสัมพันธ์ระหว่างพันธุกรรมและสิ่งแวดล้อม ตัวอย่างเช่นการกลายพันธุ์ที่ขึ้นกับอุณหภูมิ บ่อยครั้งที่การมีกรดอะมิโนเปลี่ยนไปหนึ่งตำแหน่งไม่ได้เปลี่ยนหน้าที่ของโปรตีน แต่ทำให้โปรตีนนั้นขาดความเสถียร ในภาวะที่มีอุณหภูมิสูง โมเลกุลมีพลังงานมาก ทำให้เคลื่อนที่เร็ว ชนกันบ่อยครั้งมากขึ้น ทำให้โปรตีนสูญเสียโครงสร้างและไม่สามารถทำหน้าที่ตามปกติได้ โดยในภาวะที่มีอุณหภูมิต่ำกว่าโครงสร้างของโปรตีนจะเสถียรและสามารถทำหน้าที่ได้ตามปกติ การกลายพันธุ์เช่นนี้พบได้ในการเกิดสีของแมวไทย ซึ่งมีการกลายพันธุ์เกิดขึ้นในเอนไซม์ที่ทำหน้าที่สร้างเม็ดสี โดยจะทำให้โปรตีนนี้ไม่เสถียรและทำหน้าที่ไม่ได้ในภาวะที่มีอุณหภูมิสูง ในขณะที่โปรตีนนี้ยังทำหน้าที่ได้ปกติในบริเวณร่างกายของแมวส่วนที่มีอุณหภูมิต่ำกว่า เช่น ขา หู หาง และใบหน้า ทำให้แมวไทยมีร่างกายบางส่วนเป็นสีดำและบางส่วนเป็นสีขาวดังที่เห็น

สิ่งแวดล้อมยังมีบทบาทมากในการเกิดผลของโรคทางพันธุกรรมในมนุษย์อย่างฟีนิลคีโตนูเรีย ซึ่งการกลายพันธุ์ที่เกิดในผู้ป่วยจะทำให้ไม่สามารถย่อยสลายกรดอะมิโนฟีนิลอะลานีนได้ ทำให้เกิดการสะสมของสารตัวกลางซึ่งเป็นพิษ เกิดเป็นอาการต่าง ๆ ที่พบในผู้ป่วย เช่นสติปัญญาพัฒนาช้า หรือชักได้ หากผู้ป่วยโรคนี้ไม่กินอาหารที่มีกรดอะมิโนนี้ ก็จะไม่มีอาการใด ๆ

วิธีการหนึ่งที่เป็นที่นิยมในการศึกษาว่าธรรมชาติและการเลี้ยงดูมีผลมากน้อยเพียงใดคือการศึกษาในแฝดเหมือนและแฝดต่าง ทั้งนี้แฝดเหมือนนั้นเกิดมาจากเซลล์ตัวอ่อนแรกเริ่มอันเดียวกัน จึงมีลักษณะทางพันธุกรรมเหมือนกันทุกประการ ในขณะที่แฝดต่างนั้นมีพันธุกรรมแตกต่างกัน เหมือนกับพี่น้องธรรมดาทั่วไป การเปรียบเทียบว่าแฝดแต่ละคู่มีการเกิดโรคหนึ่ง ๆ หรือไม่อย่างไร จะทำให้นักวิทยาศาสตร์สามารถสรุปได้ว่าธรรมชาติหรือการเลี้ยงดูมีผลมากน้อยกว่ากันอย่างไร ตัวอย่างหนึ่งที่ใช้วิธีการศึกษาในลักษณะนี้ซึ่งมีชื่อเสียงมากคือการศึกษาในแฝดสี่จีเนน ซึ่งเป็นแฝดเหมือนสี่คน ได้รับการวินิจฉัยเป็นโรคจิตเภททั้งหมด

สิ่งมีชีวิตหนึ่ง ๆ อาจมียีนหลายพันยีน แต่ไม่ได้แสดงออกทั้งหมดพร้อม ๆ กัน ยีนแต่ละยีนจะแสดงออกก็ต่อเมื่อกำลังมีการถอดรหัสเป็นเอ็มอาร์เอ็นเอเท่านั้น โดยมีกระบวนการในเซลล์ที่ควบคุมการแสดงออกของยีนอยู่หลายวิธีเพื่อให้มีการผลิตโปรตีนเมื่อเซลล์ต้องการใช้โปรตีนนั้น ๆ เท่านั้น ปัจจัยการถอดรหัสหรือทรานสคริปชันแฟคเตอร์เป็นโปรตีนควบคุมซึ่งจับกับตำแหน่งเริ่มต้นของยีน ทำหน้าที่กระตุ้นหรือยับยั้งการถอดรหัสยีนนั้น ๆ ตัวอย่างเช่น ในจีโนมของ Escherichia coli มียีนจำนวนหนึ่งซึ่งจำเป็นในการสังเคราะห์กรดอะมิโนทริปโตเฟน แต่ในสภาพแวดล้อมที่มีทริปโตเฟนเพียงพออยู่แล้ว ยีนซึ่งช่วยในการสังเคราะห์ทริปโตเฟนนี้ก็ไม่มีความจำเป็น การมีทริปโตเฟนจะส่งผลทำหน้าที่ของยีนโดยตรงโดยโมเลกุลของทริปโตเฟนจะจับกับทริปโตเฟนรีเพรสเซอร์ซึ่งเป็นปัจจัยการถอดรหัสตัวหนึ่ง ทำให้โครงสร้างของรีเพรสเซอร์แปลี่ยนแปลงไปจนไปจับกับยีน ยับยั้งการถอดรหัสและการแสดงออกของยีนนั้น ๆ ถือเป็นการควบคุมโดยป้อนกลับทางลบของกระบวนการสังเคราะห์กรดอะมิโนทริปโตเฟน

ความแตกต่างในการแสดงออกของยีนนั้นเห็นได้ชัดเจนในสิ่งมีชีวิตหลายเซลล์ ซึ่งทุกเซลล์ของสิ่งมีชีวิตนั้น ๆ มีจีโนมที่เหมือนกันแต่ตัวเซลล์กลับมีโครงสร้างและหน้าที่ที่แตกต่างกันเนื่องจากมีการแสดงออกของยีนคนละชุดกัน เซลล์ทุกเซลล์ของสิ่งมีชีวิตหลายเซลล์มาจากเซลล์ตั้งต้นเพียงเซลล์เดียวซึ่งเจริญเป็นเซลล์ชนิดต่าง ๆ หลากหลายตามการตอบสนองต่อสัญญาณภายในเซลล์และค่อย ๆ สร้างรูปแบบการควบคุมการแสดงออกของยีนที่แตกต่างกันเพื่อให้มีหน้าที่ของเซลล์ต่าง ๆ กัน ทั้งนี้ไม่มียีนเดี่ยว ๆ ยีนใดยีนหนึ่งที่รับผิดชอบการเจริญเป็นโครงสร้างของเซลล์ของสิ่งมีชีวิตหลายเซลล์ แต่เป็นรูปแบบที่เกิดจากปฏิกิริยาอันซับซ้อนของเซลล์และยีนจำนวนมาก

ในเซลล์ยูคาริโอตจะมีความพิเศษของโครงสร้างโครมาตินซึ่งมีส่วนในการควบคุมการถอดรหัสยีน ซึ่งส่วนใหญ่อาศัยการเปลี่ยนแปลงของดีเอ็นเอและโครมาตินที่อยู่ในภาวะเสถียรและสามารถถ่ายทอดไปยังเซลล์ลูกได้ ลักษณะเช่นนี้เรียกว่าการควบคุมแบบอีพิเจเนติกส์ (เหนือพันธุกรรม) เพราะเป็นการควบคุมที่อยู่นอกเหนือลำดับดีเอ็นเอและสามารถถ่ายทอดจากเซลล์รุ่นหนึ่งไปสู่อีกรุ่นหนึ่ง จากลักษณะเหนือพันธุกรรมเช่นนี้เองทำให้เซลล์ต่างชนิดกันที่เพาะเลี้ยงในอาหารเพาะเลี้ยงสามารถคงคุณสมบัติที่แตกต่างกันเอาไว้ได้ แม้ลักษณะเหนือพันธุกรรมเช่นนี้มักมีการเปลี่ยนแปลงไปในแต่ละช่วงของการเจริญ แต่ลักษณะบางอย่างเช่นปรากฏการณ์การกลายพันธุ์ข้างเคียงก็มีการถ่ายทอดข้ามรุ่นได้และถือเป็นข้อยกเว้นของกฎทั่วไปที่มีอยู่ไม่มากนักในการถ่ายทอดลักษณะทางพันธุกรรมของดีเอ็นเอ

ระหว่างการถ่ายแบบดีเอ็นเอนั้นอาจเกิดความผิดพลาดระหว่างการต่อสายดีเอ็นเอสายที่สอง ความผิดพลาดนี้เรียกว่าการกลายพันธุ์ โดยปกติแล้วอัตราการเกิดความผิดพลาดนั้นมีต่ำมากที่ประมาณ 1 ครั้งในทุก ๆ 10-100 ล้านเบส เนื่องจากในเอนไซม์ดีเอ็นเอโพลีเมอเรสที่ทำหน้าที่ในกระบวนการถ่ายแบบดีเอ็นเอนั้นมีกระบวนการตรวจทานอยู่ หากไม่มีกระบวนการตรวจทานนี้อัตราการเกิดความผิดพลาดอาจเพิ่มขึ้นเป็นพันเท่า (ดังนั้นไวรัสซึ่งใช้เอนไซม์ดีเอ็นเอหรืออาร์เอ็นเอโพลีเมอเรสที่ไม่มีการตรวจทานจึงเกิดการกลายพันธุ์ได้มาก) สิ่งใดที่เพิ่มอัตราการเกิดความผิดพลาดในการถ่ายแบบดีเอ็นเอเรียกว่าสารก่อกลายพันธุ์ ซึ่งสารเคมีที่เป็นสารก่อกลายพันธุ์จะทำให้การถ่ายแบบดีเอ็นเอมีความผิดพลาดมากขึ้น ส่วนใหญ่เกิดจากการรบกวนโครงสร้างของการจับคู่เบส ในขณะที่รังสีอัลตราไวโอเลตนั้นก่อการกลายพันธุ์โดยทำลายโครงสร้างดีเอ็นเอโดยตรง ในธรรมชาติก็มีสารเคมีทำลายโครงสร้างดีเอ็นเออยู่เนือง ๆ แต่เซลล์มีกลไกซ่อมแซมดีเอ็นเออยู่ซึ่งซ่อมแซมดีเอ็นเอที่จับคู่ผิดและสายแตกได้ อย่างไรก็ดีกระบวนการซ่อมแซมเหล่านี้บางครั้งก็ยังไม่สามารถคืนลำดับดีเอ็นเอให้เหมือนเดิมได้

ในสิ่งมีชีวิตที่อาศัยการไขว้เปลี่ยนของโครโมโซมเพื่อให้มีการแลกเปลี่ยนดีเอ็นเอและยีนใหม่นั้น ความผิดพลาดในกระบวนการนี้ระหว่างการแบ่งเซลล์แบบไมโอซิสก็สามารถทำให้เกิดการกลายพันธุ์ได้ ความผิดพลาดในการซ้อนทับกันของโครโมโซมนั้นมักเกิดในตำแหน่งที่มีลำดับสารพันธุกรรมคล้ายคลึงกัน ทำให้โครโมโซมที่ซ้อนทับกันนั้นมีการจัดเรียงที่ผิดไป ดังนั้นบางบริเวณของจีโนมจึงมีโอกาสเกิดการกลายพันธุ์มากกว่าบริเวณอื่น ความผิดพลาดเหล่านี้มักทำให้เกิดการเปลี่ยนแปลงโครงสร้างลำดับดีเอ็นเอที่มีขนาดใหญ่ เช่น การทำซ้ำ การพลิกกลับ หรือการหลุดหาย ของบริเวณใดบริเวณหนึ่งทั้งบริเวณ หรือเกิดการแลกเปลี่ยนชิ้นส่วนทั้งชิ้นของโครโมโซมคนละตัว (เรียกว่า การสับเปลี่ยน)

การกลายพันธุ์ทำให้สิ่งมีชีวิตมีจีโนไทป์เปลี่ยนแปลงไป ซึ่งการเปลี่ยนแปลงนี้บางครั้งทำให้ฟีโนไทป์เปลี่ยนแปลงไปด้วย การกลายพันธุ์ส่วนใหญ่มีผลเพียงเล็กน้อยต่อฟีโนไทป์ สุขภาพ และความสามารถในการสืบทอดเผ่าพันธุ์ของสิ่งมีชีวิต การกลายพันธุ์ที่ทำให้เกิดการเปลี่ยนแปลงนั้นส่วนใหญ่ทำให้มีผลเสียต่อสิ่งมีชีวิต แต่บางครั้งก็อาจทำให้เกิดผลดี การศึกษาวิจัยครั้งหนึ่งทำกับแมลงวัน Drosophila melanogaster เสนอว่าหากการกลายพันธุ์นั้นทำให้เกิดการเปลี่ยนแปลงของโปรตีนที่สร้างจากยีนนั้น ๆ การกลายพันธุ์เช่นนี้ 70% จะเป็นผลเสีย ส่วนที่เหลืออาจมีผลดีเล็กน้อยหรือไม่มีผลใด ๆ

วิชาพันธุศาสตร์ประชากรนั้นศึกษาเกี่ยวกับความหลากหลายของความแตกต่างทางพันธุกรรมในประชากรและการเปลี่ยนแปลงของความหลากหลายนี้เมื่อเวลาผ่านไป ส่วนใหญ่แล้วการที่ความถี่ของอัลลีลในประชากรเปลี่ยนไปนั้นเกิดจากการคัดเลือกโดยธรรมชาติ ซึ่งสิ่งมีชีวิตที่มีอัลลีลหนึ่งมีโอกาสรอดชีวิตและสืบทอดเผ่าพันธุ์มากกว่าสิ่งมีชีวิตที่มีอัลลีลอื่น นอกจากนี้ ยังมีปัจจัยที่ส่งผลเปลี่ยนแปลงของความถี่ของอัลลีลอื่นอีก เช่น ความไม่แน่นอนทางพันธุกรรม การคัดเลือกโดยไม่เป็นไปตามธรรมชาติ และการย้ายถิ่น

จีโนมของสิ่งมีชีวิตหนึ่ง ๆ อาจเปลี่ยนไปได้มากเมื่อผ่านไปหลายรุ่น ทำให้เกิดสิ่งที่เรียกว่าวิวัฒนาการ การคัดเลือกการกลายพันธุ์ที่เป็นประโยชน์สามารถทำให้สิ่งมีชีวิตสปีชีส์หนึ่ง ๆ วิวัฒนาการไปจนมีความสามารถในการอยู่รอดในสิ่งแวดล้อมดีขึ้น เรียกว่าการปรับตัว สปีชีส์ใหม่เกิดจากกระบวนการการเกิดสายพันธุ์ใหม่ ส่วนใหญ่มักเป็นผลจากการแบ่งแยกจากภูมิศาสตร์ที่ทำให้ประชากรของสิ่งมีชีวิตเดียวกันไม่มีโอกาสแลกเปลี่ยนยีนซึ่งกันและกัน โดยวิชาที่นำเอาหลักการทางพันธุศาสตร์มาใช้ในการศึกษาชีววิทยาประชากรและวิวัฒนาการเรียกว่าการสังเคราะห์วิวัฒนาการสมัยใหม่

การเปรียบเทียบยีนที่เหมือนกันในจีโนมของสิ่งมีชีวิตต่างชนิดกันอาจช่วยให้ผู้วิจัยสามารถคำนวณระยะห่างของการวิวัฒนาการของสิ่งมีชีวิตได้ และอาจคำนวณได้ว่าสิ่งมีชีวิตนั้น ๆ เริ่มมีสายวิวัฒนาการแยกออกจากกันเมื่อไร (เรียกว่านาฬิกาโมเลกุล) โดยทั่วไปมักถือว่าการเปรียบเทียบลักษณะทางพันธุกรรมของสิ่งมีชีวิตนั้นสามารถยืนยันการมีความสัมพันธ์ใกล้ชิดได้น่าเชื่อถือกว่าการเปรียบเทียบลักษณะปรากฏของสิ่งมีชีวิต ระยะห่างของการวิวัฒนาการของสิ่งมีชีวิตแต่ละชนิดจะสามารถนำมาสร้างเป็นแผนภูมิต้นไม้วิวัฒนาการซึ่งแสดงให้เห็นถึงบรรพบุรุษร่วมของสิ่งมีชีวิตแต่ละชนิดและการแตกออกเป็นสปีชีส์ต่าง ๆ อย่างไรก็ดีการเปรียบเทียบนี้จะไม่แสดงให้เห็นถึงการถ่ายสารพันธุกรรมระหว่างสิ่งมีชีวิตคนละชนิดกันได้ (เรียกว่าการถ่ายทอดยีนในแนวราบ พบบ่อยในแบคทีเรีย)

แม้ในช่วงแรกเริ่มนั้นนักพันธุศาสตร์จะทำการศึกษาวิจัยในสิ่งมีชีวิตหลายชนิด แต่ต่อมาความรู้ความเข้าใจในพันธุกรรมของสิ่งมีชีวิตบางชนิดก็มีการต่อยอดมากขึ้น ทำให้มีการศึกษาวิจัยในสิ่งมีชีวิตนั้น ๆ เป็นจำนวนมาก เมื่อมีจำนวนผลการศึกษาวิจัยในสิ่งมีชีวิตชนิดหนึ่งเป็นจำนวนมาก นักวิจัยรุ่นใหม่จึงนิยมทำการศึกษาวิจัยต่อยอดในสิ่งมีชีวิตนั้น จนมีสิ่งมีชีวิตต้นแบบเพียงไม่กี่ชนิดที่เป็นพื้นฐานของการศึกษาวิจัยทางพันธุศาสตร์ในที่สุด หัวข้อที่เป็นที่นิยมทำการศึกษาวิจัยกับสิ่งมีชีวิตต้นแบบ ได้แก่ การศึกษาเกี่ยวกับการควบคุมการแสดงออกของยีนและบทบาทของยีนในการเกิดรูปร่างและการเกิดมะเร็ง เป็นต้น

สาเหตุที่ทำให้สิ่งมีชีวิตบางชนิดเป็นที่นิยมศึกษาวิจัยมากกว่าสิ่งมีชีวิตอื่นสาเหตุหนึ่งคือความสะดวก การที่สิ่งมีชีวิตหนึ่ง ๆ มีระยะเวลาในการสืบทอดเผ่าพันธุ์จากรุ่นสู่รุ่นสั้น และสามารถมีกระบวนการแทรกแซงทางพันธุกรรมได้ง่าย ทำให้สิ่งมีชีวิตนั้นเป็นที่นิยมใช้เป็นเครื่องมือศึกษาวิจัยทางพันธุศาสตร์ สิ่งมีชีวิตต้นแบบที่เป็นที่นิยมใช้แพร่หลายเช่น แบคทีเรีย Escherichia coli, พืช Arabidopsis thaliana, ยีสต์ขนมปัง Saccharomyces cerevisiae, หนอน Caenorhabditis elegans, แมลงวันผลไม้ Drosophila melanogaster, และหนู Mus musculus เป็นต้น

เวชพันธุศาสตร์เป็นการศึกษาความสัมพันธ์ระหว่างความแตกต่างทางพันธุกรรมกับสุขภาพและโรคของมนุษย์ ในการหายีนที่อาจทำให้เกิดโรค ผู้วิจัยจะใช้หลักของการเชื่อมโยงทางพันธุกรรมและแผนภาพพงศาวลีในการหาตำแหน่งบนจีโนมที่สัมพันธ์กับโรค ซึ่งอาจเป็นสาเหตุของโรค ในการศึกษาวิจัยระดับประชากร ผู้วิจัยสามารถใช้หลักการสุ่มแบบเมนเดลในการหาตำแหน่งบนจีโนมที่สัมพันธ์กับโรคได้ ซึ่งจะเห็นประโยชน์ชัดเจนในโรคที่มียีนที่เกี่ยวข้องจำนวนมาก ซึ่งไม่สามารถระบุยีนเดี่ยว ๆ ที่ก่อโรคได้ เมื่อพบยีนที่อาจเป็นยีนก่อโรคแล้ว จะมีการศึกษาวิจัยต่อกับยีนที่คล้ายกันในสิ่งมีชีวิตต้นแบบ นอกจากการศึกษาเกี่ยวกับโรคพันธุกรรมแล้ว ยังมีการศึกษาเกี่ยวกับเภสัชพันธุศาสตร์ซึ่งศึกษาว่าลักษณะทางพันธุกรรมส่งผลตอบสนองต่อยาอย่างไร ทั้งนี้เป็นผลจากการที่เทคโนโลยีในการศึกษารูปแบบพันธุกรรมนั้นเข้าถึงได้ง่ายขึ้น

พัฒนาความเข้าใจเกี่ยวกับความสัมพันธ์ระหว่างพันธุกรรมกับมะเร็งมากขึ้น ปัจจุบันเป็นที่ทราบกันว่าแต่ละคนได้รับถ่ายทอดโอกาสที่จะเกิดมะเร็งมาไม่เท่ากัน และมะเร็งเองก็เป็นโรคที่พันธุกรรมเข้ามามีส่วนเกี่ยวข้องมากโรคหนึ่ง การจะเกิดมีมะเร็งขึ้นในร่างกายได้นั้นต้องมีเหตุการณ์หลาย ๆ อย่างเกิดขึ้นสอดคล้องกัน โดยเมื่อเซลล์มีการแบ่งตัว ก็มีโอกาสที่จะเกิดการกลายพันธุ์ขึ้น แม้การกลายพันธุ์เหล่านี้จะไม่ได้รับการถ่ายทอดไปยังรุ่นถัดไปแต่ก็อาจทำให้เซลล์ที่กลายพันธุ์มีการทำหน้าที่เปลี่ยนแปลงไปได้ บางครั้งอาจทำให้เซลล์ที่กลายพันธุ์มีการแบ่งตัวมากเกินปกติ ซึ่งในร่างกายจะมีกลไกที่คอยหยุดกระบวนการเช่นนี้อยู่โดยส่งสัญญาณไปยังเซลล์ที่แบ่งตัวมากเกินปกติให้กระตุ้นกระบวนการทำลายตัวเอง แต่บางครั้งก็มีการกลายพันธุ์เกิดขึ้นที่ตำแหน่งอื่นที่ทำให้เซลล์นั้น ๆ ไม่ตอบสนองต่อสัญญาณนี้ กระบวนการคัดเลือกตามธรรมชาติจะดำเนินไปตลอดเวลาทำให้การกลายพันธุ์สะสมในเซลล์บางเซลล์ ตามด้วยการแบ่งตัวมากผิดปกติอย่างควบคุมไม่ได้ และกลายเป็นเซลล์มะเร็ง ซึ่งจะแบ่งตัวเพิ่มกลายเป็นเนื้องอกมะเร็งและแพร่กระจายไปยังส่วนอื่น ๆ ของร่างกายในที่สุด

นักวิจัยสามารถดัดแปลงดีเอ็นเอได้ในห้องปฏิบัติการ โดยอาจใช้เอนไซม์ตัดจำเพาะในการตัดชิ้นส่วนดีเอ็นเอในตำแหน่งลำดับซึ่งมีความจำเพาะ ทำให้สามารถสร้างชิ้นส่วนของดีเอ็นเอซึ่งสามารถคาดเดาได้ว่าจะมีลำดับเป็นอย่างไร ชิ้นส่วนของดีเอ็นเอนี้สามารถทำให้มองเห็นได้ด้วยตาผ่านกระบวนการแยกทางไฟฟ้าโดยใช้เจล ซึ่งจะแยกชิ้นส่วนดีเอ็นเอต่าง ๆ ออกจากกันตามความยาวของชิ้นส่วนแต่ละชิ้น

ชิ้นส่วนดีเอ็นเอสามารถนำมาต่อกันได้ด้วยเอนไซม์ต่อเชื่อม และจากการที่นักวิจัยสามารถนำชิ้นส่วนดีเอ็นเอจากหลาย ๆ แหล่งที่นำมาต่อเข้าด้วยกันนั้น ทำให้สามารถสร้างดีเอ็นเอลูกผสมขึ้นมาได้ ซึ่งมีความสำคัญกับการตัดต่อพันธุกรรม นอกจากจะใช้ในการสร้างสิ่งมีชีวิตดัดแปลงพันธุกรรมแล้ว ยังเป็นขั้นตอนสำคัญในการสร้างพลาสมิด (ดีเอ็นเอรูปวงกลมขนาดเล็ก ๆ ที่มียีนจำนวนไม่มาก) นักวิจัยสามารถใส่พลาสมิดที่สร้างขึ้นเข้าไปในแบคทีเรีย และเพาะพันธุ์เพิ่มจำนวนโคลนของแบคทีเรียที่มีพลาสมิดนี้อยู่ ทำให้สามารถเพิ่มจำนวนชิ้นส่วนดีเอ็นเอที่ใส่ไว้นี้ได้ด้วยกระบวนการนี้ซึ่งเรียกว่าการโคลนเชิงโมเลกุล

นอกจากนี้ยังสามารถเพิ่มจำนวนดีเอ็นเอผ่านกระบวนการปฏิกิริยาลูกโซ่พอลิเมอเรส (PCR) ได้ด้วย โดยสามารถเพิ่มจำนวนเฉพาะบริเวณหนึ่ง ๆ ของดีเอ็นเอได้ในอัตราก้าวหน้าแบบเอกซ์โพเนนเชียล ซึ่งจากที่ PCR สามารถเพิ่มจำนวนดีเอ็นเอจากตัวอย่างที่อาจมีปริมาณน้อยมาก ๆ ได้นี้เอง ทำให้มักถูกใช้ในการตรวจหาว่าตัวอย่างที่สนใจนั้นมีลำดับดีเอ็นเอหนึ่ง ๆ ที่ต้องการหรือไม่

การหาลำดับดีเอ็นเอเป็นเทคโนโลยีซึ่งเป็นหนึ่งในรากฐานสำคัญที่สุดในการศึกษาพันธุศาสตร์ เปิดโอกาสให้ผู้วิจัยสามารถหาลำดับของนิวคลีโอไทด์ในสายดีเอ็นเอได้ เทคนิคนี้พัฒนาขึ้นใน ค.ศ. 1977 โดยเฟรเดอริก เซงเกอร์และคณะ ปัจจุบันเทคนิคการหาลำดับดีเอ็นเอโดยใช้การหยุดการต่อโซ่ได้กลายเป็นเทคนิคที่ใช้กันทั่วไปในการหาลำดับดีเอ็นเอ ด้วยเทคโนโลยีนี้ทำให้นักวิจัยสามารถค้นพบพันธุกรรมที่สัมพันธ์กับโรคในมนุษย์มาแล้วมากมาย

เมื่อเทคนิคในการหาลำดับดีเอ็นเอมีค่าใช้จ่ายลดลงเรื่อย ๆ จึงมีการหาลำดับดีเอ็นเอทั้งจีโนมของสิ่งมีชีวิตหลาย ๆ ชนิด โดยใช้คอมพิวเตอร์รวบรวมลำดับดีเอ็นเอจากสายสั้น ๆ หลาย ๆ สาย ซึ่งเป็นกระบวนการที่เรียกว่าการประกอบจีโนม ต่อมาจึงมีการนำเทคโนโลยีเหล่านี้มาใช้ในการหาจีโนมมนุษย์ จนโครงการจีโนมมนุษย์สำเร็จใน ค.ศ. 2003 เทคโนโลยีใหม่ ๆ อย่างการหาลำดับดีเอ็นเอปริมาณมากทำให้ค่าใช้จ่ายในการหาลำดับดีเอ็นเอลดลงไปอีก โดยมีผู้วิจัยพยายามพัฒนาให้การหาจีโนมมนุษย์มีค่าใช้จ่ายลดลงในระดับหลักพันดอลลาร์สหรัฐ

จากการที่มีข้อมูลลำดับพันธุกรรมปริมาณมากจึงเริ่มมีการพัฒนาศาสตร์ใหม่อย่างจีโนมิกส์ซึ่งใช้คอมพิวเตอร์ในการค้นหาและวิเคราะห์รูปแบบที่มีอยู่ในจีโนมของสิ่งมีชีวิต โดยเป็นแขนงวิชาย่อยของชีวสารสนเทศ ซึ่งใช้คอมพิวเตอร์และคณิตศาสตร์ในการวิเคราะห์ข้อมูลทางชีววิทยาปริมาณมหาศาลได้


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301