ค้นหา
  
Search Engine Optimization Services (SEO)

พันธุวิศวกรรม

พันธุวิศวกรรม หรือ วิศวกรรมพันธุศาสตร์ (อังกฤษ: Genetic engineering), หรือที่เรียกว่า "การดัดแปลงพันธุกรรม" (อังกฤษ: genetic modification) คือการยักย้ายถ่ายเทโดยตรงของจีโนมของสิ่งมีชีวิตโดยใช้เทคโนโลยีชีวภาพ. ดีเอ็นเอใหม่อาจถูกแทรกอยู่ในจีโนมของเจ้าภาพโดยตอนแรกต้องแยกและคัดลอกสารพันธุกรรมที่น่าสนใจโดยใช้วิธีการโคลนิงโมเลกุลเพื่อสร้างลำดับดีเอ็นเอขึ้นมาอันหนึ่ง, หรือโดยสังเคราะห์ดีเอ็นเอ, จากนั้นก็แทรกโครงสร้างนี้เข้าไปในสิ่งมีชีวิตของเจ้าภาพ. หลายยีนอาจถูกลบออกหรือ "เคาะออกมา" (อังกฤษ: knockout) โดยใช้ nuclease. การกำหนดเป้าหมายยีน (อังกฤษ: Gene targeting) เป็นเทคนิคที่แตกต่างอันหนึ่งที่ใช้วิธีการรวมตัวแบบคล้ายคลึง (อังกฤษ: homologous recombination) เพื่อเปลี่ยนแปลงยีนภายใน, และสามารถนำมาใช้ในการลบยีน, รื้อถอน exons, เพิ่มยีน, หรือการใส่การกลายพันธุ์แบบจุด (อังกฤษ: point mutation).

สิ่งมีชีวิตที่ถูกสร้างขึ้นผ่านทางพันธุวิศวกรรมจะถือว่าเป็นสิ่งมีชีวิตดัดแปลงพันธุกรรม (จีเอ็มโอ). GMOs แรกเป็นเชื้อแบคทีเรียในปี 1973 และหนูจีเอ็มถูกสร้างขึ้นในปี 1974. แบคทีเรียที่ผลิตโดยอินซูลินอยู่ในการพาณิชย์ในปี 1982 และอาหารดัดแปลงพันธุกรรมได้มีการจำหน่ายตั้งแต่ปี 1994. Glofish, จีเอ็มโอแรกที่ออกแบบมาเป็นสัตว์เลี้ยง, ออกจำหน่ายครั้งแรกในประเทศสหรัฐอเมริกาในเดือนธันวาคมปี 2003.

เทคนิคพันธุวิศวกรรมมีการนำไปใช้ในหลายสาขารวมถึงการวิจัย, การเกษตร, อุตสาหกรรมเทคโนโลยีชีวภาพ, และการแพทย์. เอนไซม์ที่ใช้ในน้ำยาซักผ้าและยารักษาโรคเช่นอินซูลินและฮอร์โมนการเจริญเติบโตของมนุษย์มีการผลิตในขณะนี้ในเซลล์ GM, สายการทดลองเซลล์จีเอ็มและสัตว์จีเอ็มเช่นหนูหรือ zebrafish กำลังถูกใช้เพื่อการวิจัย, และพืชดัดแปลงพันธุกรรมได้อยู่ในการพาณิชย์.

ขั้นตอนการแทรกข้อมูลทางพันธุกรรมใหม่เข้าสู่เซลล์ที่มีอยู่แล้วเพื่อ ปรับเปลี่ยนสิ่งมีชีวิตที่เฉพาะเจาะจงสำหรับวัตถุประสงค์เพื่อเปลี่ยนแปลงลักษณะของมัน. หมายเหตุ: ดัดแปลงมาจาก ref..

พันธุวิศวกรรมทำการเปลี่ยนแปลงส่วนประกอบทางพันธุกรรมของสิ่งมีชีวิตโดยใช้เทคนิคที่ถอดทิ้งวัสดุที่ถ่ายทอดได้หรือที่ใช้ดีเอ็นเอที่เตรียมด้านนอกสิ่งมีชีวิตโดยตรงเข้าสู่เจ้าภาพหรือเข้าสู่เซลล์ที่จากนั้นจะถูกหลอมละลายหรือถูกไฮบริดกับเจ้าภาพ, ซึ่งเกี่ยวข้องกับการใช้เทคนิคกรดนิวคลีอิก recombinant (DNA หรือ RNA) เพื่อสร้างรูปแบบผสมใหม่ของวัสดุพันธุกรรมที่ถ่ายทอดได้ตามมาด้วยการรวมตัวกันของวัสดุนั้นทั้งทางอ้อมผ่านระบบโมเลกุลเวกเตอร์หรือโดยตรงผ่านเทคนิคการฉีดแบบไมโคร (อังกฤษ: micro-injection), การฉีดแบบแมคโครและการห่อหุ้มแบบไมโคร (อังกฤษ: micro-encapsulation).

พันธุวิศวกรรมตามปกติไม่ได้รวมถึงการเพาะพันธ์สัตว์และการเพาะพันธ์พืชแบบดั้งเดิม, การปฏิสนธินอกร่างกาย (อังกฤษ: In vitro fertilisation), การเหนี่ยวนำของเซลล์ที่มีโครโมโซมเหมือนกันมากกว่าสองคู่ (อังกฤษ: polyploidy), การกลายพันธุ์และเทคนิคการละลายของเซลล์ที่ไม่ใช้กรดนิวคลีอิก recombinant หรือสิ่งมีชีวิตดัดแปลงพันธุกรรมในกระบวนการ. อย่างไรก็ตามคณะกรรมาธิการยุโรปยังกำหนดพันธุวิศวกรรมในวงกว้างที่รวมทั้งการคัดเลือกพันธุ์และวิธีการอื่นๆของการเลือกประดิษฐ์. การโคลนิงและการวิจัยเซลล์ต้นกำเนิด, แม้ว่าจะไม่ได้รับการพิจารณาว่าเป็นพันธุวิศวกรรม, ถูกนำไปสัมพันธ์กันอย่างใกล้ชิดและพันธุวิศวกรรมสามารถนำมาใช้ภายในพวกมัน. ชีววิทยาสังเคราะห์ (อังกฤษ: Synthetic biology) เป็นสาขาวินัยที่เกิดขึ้นใหม่ที่ใช้พันธุวิศวกรรมอีกขั้นหนึ่งไกลกว่าเดิมโดยใช้สารพันธุกรรมสังเคราะห์เทียมจากวัตถุดิบให้เป็นสิ่งมีชีวิต.

หากสารพันธุกรรมจากสายพันธุ์อื่นถูกเพิ่มลงในเจัภาพ, มีชีวิตที่เกิดขึ้นจะถูกเรียกว่าพันธุกรรมดัดแปร (อังกฤษ: transgenic). หากสารพันธุกรรมจากสายพันธุ์เดียวกันหรือสายพันธุ์ที่สามารถผสมพันธุ์ตามธรรมชาติกับเจ้าภาพถูกใช้, สิ่งมีชีวิตที่เกิดขึ้นจะถูกเรียกว่า cisgenic. พันธุวิศวกรรมนอกจากนี้ยังสามารถใช้ในการรื้อถอนสารพันธุกรรมจากสิ่งมีชีวิตเป้าหมายอีกด้วย, ในการสร้างสิ่งมีชีวิตที่ยีนถูกน็อคเอาท์. ในยุโรปการดัดแปลงพันธุกรรมเป็นคำพ้องกับพันธุวิศวกรรมในขณะที่ภายในสหรัฐอเมริกา มันยังสามารถหมายถึงวิธีการเพาะพันธุ์ธรรมดา. ระบบการกำกับดูแลของแคนาดาจะขึ้นอยู่กับว่าผลิตภัณฑ์มีคำอธิบายโดยไม่คำนึงถึงวิธีการ ต้นกำเนิดหรือไม่. พูดอีกอย่าง, ผลิตภัณฑ์จะได้รับการกำกับดูแลแบบดัดแปลงพันธุกรรมถ้าจะประกอบด้วยลักษณะบางอย่างที่ไม่พบก่อนหน้านี้ในสายพันธุ์ไม่ว่ามันจะถูกสร้างขึ้นโดยใช้วิธีการปรับปรุงพันธุ์แบบดั้งเดิมหรือไม่ (เช่นการคัดเลือกพันธุ์, การละลายเซลล์, การเพาะพันธุ์แบบกลายพันธุ์) หรือพันธุวิศวกรรม. ในชุมชนวิทยาศาสตร์, คำว่า "พันธุวิศวกรรม" ไม่ได้ถูกใช้กันทั่วไป; คำที่เฉพาะเจาะจงมากกว่าเช่น transgenic จะถูกใช้มากกว่า.

พืช, สัตว์หรือสิ่งมีชีวิตขนาดเล็กที่มีการเปลี่ยนแปลงผ่านทางพันธุวิศวกรรมเรียกว่าสิ่งมีชีวิตดัดแปลงพันธุกรรมหรือจีเอ็มโอ. แบคทีเรียเป็นสิ่งมีชีวิตแรกที่ได้รับการดัดแปลงทางพันธุกรรม. ดีเอ็นเอแบบ Plasmid ที่ประกอบด้วยยีนใหม่ที่สามารถถูกแทรกเข้าไปในเซลล์ของแบคทีเรีย จากนั้นเชื้อแบคทีเรียก็จะแสดงยีนเหล่านั้นออกมา. ยีนเหล่านี้สามารถเป็นรหัสสำหรับยาหรือเอนไซม์ที่ปรุงอาหารและพื้นผิวทางชีวะอื่นๆ. พืชหลายชนิดได้รับการดัดแปลงเพื่อใช้ป้องกันแมลง, ต้านทานสารกำจัดวัชพืช, ต้านทานไวรัส, เพิ่มโภชนาการ, อดทนต่อแรงกดดันด้านสิ่งแวดล้อมและผลิตวัคซีนที่กินได้. จีเอ็มโอในเชิงพาณิชย์ส่วนใหญ่จะต้านแมลงและ/หรืออดทนต่อสารกำจัดวัชพืช. สัตว์ดัดแปลงพันธุกรรมได้ถูกนำมาใช้สำหรับการวิจัย, จำลองแบบสัตว์และการผลิตสินค้าเกษตรหรือยา. พวกมันรวมถึงสัตว์ที่มียีนที่ถูกเคาะออก, ถูกเพิ่มความไวเกิดโรค, มีฮอร์โมนสำหรับการเจริญเติบโตให้เกินและมีความสามารถในการแสดงโปรตีนในนมของพวกมัน.

มนุษย์ได้ทำการเปลี่ยนแปลงจีโนมของสายพันธุ์เป็นเวลาหลายพันปีมาแล้วโดยคัดเลือกเทียม (อังกฤษ: artificial selection) และเมื่อเร็วๆนี้เป็นพันธุกรรมกลายพันธ์ (อังกฤษ: mutagenesis). พันธุวิศวกรรมแบบการยักย้ายถ่ายเทดีเอ็นเอโดยตรงโดยมนุษย์นอกเหนือจากการเพาะพันธุ์และการกลายพันธุ์เพิ่งมีมาตั้งแต่ปี 1970s เท่านั้น. คำว่า "พันธุวิศวกรรม" ถูกตั้งขึ้นเป็นครั้งแรกโดยแจ็ค วิลเลียมสันในนิยายวิทยาศาสตร์เรื่อง "เกาะมังกร" ตีพิมพ์ในปี 1951, หนึ่งปีก่อนที่บทบาทของดีเอ็นเอในการถ่ายทอดทางพันธุกรรมได้รับการยืนยันโดยอัลเฟรด เฮอร์ชีย์และมาร์ธา เชส, และสองปีก่อนที่ เจมส์ วัตสันและฟรานซิส คริกแสดงว่าโมเลกุลของดีเอ็นเอมีโครงสร้างเป็นเกลียวคู่.

ในปี 1972 พอล Berg ได้สร้างโมเลกุลดีเอ็นเอ recombinant ขึ้นครั้งแรกโดยรวมดีเอ็นเอจาก SV40 ไวรัสของลิงกับดีเอ็นเอของไวรัสแลมบ์ดา. ในปี 1973 เฮอร์เบิร์ท บอยเยอร์และสแตนลีย์ โคเฮนที่สร้างสิ่งมีชีวิตดัดแปรพันธุกรรมครั้งแรกโดยแทรกยีนต้านทานยาปฏิชีวนะเข้าไปในพลาสมิดของแบคทีเรีย E. coli. หนึ่งปีต่อมารูดอล์ฟ Jaenisch สร้างหนูดัดแปรพันธุกรรมโดยใส่ดีเอ็นเอต่างถิ่นเขัไปในตัวอ่อนของมัน, ทำให้มันเป็นสัตว์ดัดแปลงพันธุกรรมตัวแรกของโลก. ความสำเร็จเหล่านี้นำไปสู่ความกังวลในชุมชนวิทยาศาสตร์เกี่ยวกับศักยภาพของความเสี่ยงจากพันธุวิศวกรรม, ซึ่งได้รับการกล่าวถึงเป็นครั้งแรกในเชิงลึกที่'การประชุม Asilomar' ในปี 1975. หนึ่งในข้อเสนอแนะหลักจากการประชุมครั้งนี้คือการกำกับดูแลของรัฐบาลของการวิจัยดีเอ็นเอ recombinant ควรได้รับการจัดตั้งขึ้นจนกว่าเทคโนโลยีจะถือว่าปลอดภัย.

ในปี 1976 Genentech, บริษัทพันธุวิศวกรรมแห่งแรก, ก่อตั้งโดยเฮอร์เบิร์ท บอยเยอร์และโรเบิร์ต สเวนสันและหนึ่งปีต่อมาบริษัทนี้ได้ผลิตโปรตีนของมนุษย์ (somatostatin) ใน "E.coli". Genentech ประกาศการผลิตอินซูลินของมนุษย์ดัดแปลงพันธุกรรมในปี 1978. ในปี 1980 ศาลฎีกาสหรัฐในคดีระหว่าง Diamond กับ Chakrabarty ได้ตัดสินว่าชีวิตที่ถูกเปลี่ยนแปลงทางพันธุกรรมสามารถจดสิทธิบัตรได้. อินซูลินที่ผลิตโดยแบคทีเรีย, ตรา humulin, ได้รับการอนุมัติให้เผยแพร่จากคณะกรรมการอาหารและยาในปี 1982.

ในปี 1970s นักศึกษาระดับบัณฑิตศึกษา สตีเว่น Lindow แห่งมหาวิทยาลัยวิสคอนซิน-แมดิสันกับ D.C. Arny และ C Upper พบแบคทีเรียที่เขาระบุว่าเป็น "P. syringae" ที่มีบทบาทในนิวเคลียสน้ำแข็ง และในปี 1977, เขาค้นพบสายพันธุ์น้ำแข็ง-ลบ (อังกฤษ: Ice-minus bacteria) ที่กลายพันธุ์. หลังจากนั้นเขาก็ประสบความสำเร็จในการสร้างสายพันธุ์น้ำแข็ง-ลบ recombinant. ในปี 1983, บริษัทเทคโนโลยีชีวภาพ Advanced Genetic Sciences (AGS) ยื่นขอรับการอนุมัติจากรัฐบาลสหรัฐเพื่อดำเนินการทดสอบภาคสนามกับสายพันธ์น้ำแข็ง-ลบของ "P. syringae" เพื่อปกป้องพืชจากน้ำค้างแข็ง, แต่กลุ่มสิ่งแวดล้อมและผู้ประท้วงถ่วงเวลาการทดสอบภาคสนามออกไปเป็นเวลาสี่ปีกับความท้าทายทางกฎหมาย. ในปี 1987 สายพันธุ์น้ำแข็งลบ-ของ "P. syringae" กลายเป็นสิ่งมีชีวิตดัดแปลงพันธุกรรม (จีเอ็มโอ)อันแรกที่จะถูกปล่อยออกสู่สิ่งแวดล้อม เมื่อไร่สตรอเบอร์รี่และไร่มันฝรั่งในรัฐแคลิฟอร์เนียถูกพ่นด้วยมัน. ทั้งสองสนามทดสอบถูกโจมตีโดยกลุ่มนักกิจกรรมในคืนก่อนการทดสอบจะเกิดขึ้น. "สถานที่ทดสอบแห่งแรกของโลกได้ดึงดูดสนามขยะแห่งแรกของโลก".

การทดลองภาคสนามครั้งแรกของพืชดัดแปลงพันธุกรรมเกิดขึ้นในฝรั่งเศสและสหรัฐอเมริกาในปี 1986, ต้นยาสูบถูกดัดแปลงให้ทนต่อสารเคมีกำจัดวัชพืช. สาธารณรัฐประชาชนจีนเป็นประเทศแรกที่จะทำการตลาดพืชดัดแปรพันธุกรรม, โดยนำเสนอยาสูบทนไวรัสในปี 1992. ในปี 1994 Calgene ได้รับการอนุมัติให้จำหน่ายมะเขือเทศ Flavr Savr ในเชิงพาณิชย์, มะเขือเทศที่ถูกดัดแปลงมาเพื่อมีชีวิตในชั้นเก็บยาวขึ้น. ในปี 1994 สหภาพยุโรปได้อนุมัติยาสูบออกแบบที่ถูกดัดแปลงให้ทนต่อสารกำจัดวัชพืช bromoxynil, ทำให้มันเป็นพืชดัดแปลงพันธุกรรมแรกที่จำหน่ายในเชิงพาณิชย์ในยุโรป. ในปี 1995 Bt Potato ได้รับการอนุมัติความปลอดภัยโดยหน่วยงานคุ้มครองสิ่งแวดล้อม, หลังจากที่ได้รับการรับรองจากองค์การอาหารและยา, ทำให้มันเป็นพืชที่ผลิตยาฆ่าแมลงตัวแรกที่ได้รับการอนุมัติในประเทศสหรัฐอเมริกา. ในปี 2009 พืชดัดแปรพันธุกรรม 11 ตัวได้ปลูกในเชิงพาณิชย์ใน 25 ประเทศ, ที่ใหญ่ที่สุดโดยพื้นที่ที่ปลูกเป็นสหรัฐอเมริกา, บราซิล, อาร์เจนตินา, อินเดีย, แคนาดา, จีน, ปารากวัยและแอฟริกาใต้.

ในช่วงปลายปี 1980s และต้นปี 1990s, คำแนะนำเกี่ยวกับการประเมินความปลอดภัยของพืชดัดแปลงพันธุกรรมและอาหารได้เกิดขึ้นจากองค์กรรวมทั้ง FAO และ WHO.

ในปี 2010 นักวิทยาศาสตร์ที่สถาบัน J. Craig Venter ประกาศว่าพวกเขาได้สร้างจีโนมแบคทีเรียสังเคราะห์ตัวแรก. นักวิจัยได้เพิ่มจีโนมใหม่ให้กับเซลล์แบคทีเรียและเลือกเซลล์ที่มีจีโนมใหม่. เพื่อทำเช่นนี้เซลล์จะผ่านกระบวนการที่เรียกว่า resolution, นั้นคือในระหว่างการแบ่งตัวของเซลล์แบคทีเรีย เซลล์ใหม่หนึ่งตัวจะได้รับจีโนมดีเอ็นเอเดิมของแบคทีเรีย, ในขณะที่ตัวอื่นๆได้รับจีโนมสังเคราะห์ใหม่. เมื่อเซลล์นี้แบ่งตัว มันจะใช้จีโนมสังเคราะห์เป็นแม่แบบของมัน. แบคทีเรียที่ได้จากการพัฒนาของนักวิจัย, ชื่อ Synthia, เป็นรูปแบบชีวิตสังเคราะห์ตัวแรกของโลก.

ขั้นตอนแรกคือการเลือกและแยกยีนที่จะแทรกเข้าไปในสิ่งมีชีวิตดัดแปลงพันธุกรรม. ณ ปี 2012, ในพืชจีเอ็มเชิงพาณิชย์ส่วนใหญ่มียีนที่โอนเข้ามาในตัวมันที่ให้การป้องกันแมลงหรือทนทานต่อสารเคมีกำจัดวัชพืช. ยีนสามารถแยกได้โดยใช้เอนไซม์ข้อจำกัด (อังกฤษ: restriction enzymes) เพื่อตัดดีเอ็นเอให้เป็นเศษๆและใช้วิธี gel electrophoresis เพื่อแยกพวกมันออกตามความยาว. ปฏิกิริยาลูกโซ่โพลิเมอร์ (PCR) ยังสามารถเพื่อขยายขึ้นส่วนของยีน, ซึ่งจากนั้นจะสามารถแยกได้ผ่านวิธีการ gel electrophoresis. ถ้ายีนที่ถูกเลือกหรือจีโนมของสิ่งมีชีวิตผู้บริจาคได้มีการศึกษามาดี, มันก็อาจจะปรากฏในห้องสมุดทางพันธุกรรม. ถ้ารู้ลำดับดีเอ็นเอ, แต่ไม่มีสำเนาของยีน, มันก็สามารถถูกสังเคราะห์แบบเทียมได้.

ยีนที่จะแทรกเข้าไปในสิ่งมีชีวิตดัดแปลงพันธุกรรมจะต้องรวมเข้ากับองค์ประกอบทางพันธุกรรมอื่นๆเพื่อให้มันทำงานอย่างถูกต้อง. ยีนยังสามารถได้รับการดัดแปลงในขั้นตอนนี้เพื่อให้มันการแสดงออกหรือมีประสิทธิภาพที่ดีกว่าอีกด้วย. เช่นเดียวกับยีนที่จะแทรกเข้าไป, โครงสร้างดีเอ็นเอส่วนใหญ่จะประกอบด้วยผู้ก่อการ(ทางชีวภาพ) (อังกฤษ: (biology) promoter) และภูมิภาคที่เป็นตัวปิดท้ายทางพันธุกรรม (อังกฤษ: (genetics) terminator region) เช่นเดียวกับยีนเครื่องหมายที่เลือกได้ (อังกฤษ: selectable marker gene). ภูมิภาคผู้ก่อการจะเริ่มต้นการถอดรหัสของยีนและสามารถนำมาใช้ในการควบคุมสถานที่และระดับของการแสดงออกของยีน, ในขณะที่ภูมิภาคตัวปิดท้ายสิ้นสุดการถอดความ. เครื่องหมายที่เลือกได้, ซึ่งในกรณีส่วนใหญ่ประศาสน์ความต้านทานยาปฏิชีวนะให้กับสิ่งมีชีวิตที่มันแสดงออก, จำเป็นที่จะต้องตรวจสอบว่าเซลล์ตวไหนจะถูกแปลงกับยีนใหม่. โครงสร้างจะถูกทขึ้นำโดยใช้เทคนิคดีเอ็นเอ recombinant, เช่นข้อจำกัดน้ำย่อย (อังกฤษ: restriction digest), การผูก (อังกฤษ: ligations) และการโคลนโมเลกุล. การยักย้ายถ่ายเทของดีเอ็นเอมักเกิดขึ้นภายในพลาสมิด.

รูปแบบที่พบมากที่สุดของพันธุวิศวกรรมเกี่ยวข้องกับการแทรกสารพันธุกรรมใหม่แบบสุ่มภายในจีโนมเจ้าภาพ[ต้องการอ้างอิง]. เทคนิคอื่นๆจะยอมให้สารพันธุกรรมใหม่ที่จะถูกแทรกในสถานที่เฉพาะในจีโนมเจ้าภาพหรือสร้างการกลายพันธุ์ที่ loci จีโนมที่สามารถเคาะยีนที่เกิดขึ้นภายในสิ่งมีชีวิต (อังกฤษ: endogenous genes) ออก. เทคนิคของ gene targeting จะใช้ homologous recombination เพื่อกำหนดเป้าหมายที่ต้องการที่จะเปลี่ยนแปลง endogenous genes ที่เฉพาะเจาะจง. สิ่งนี้มีแนวโน้มที่จะเกิดขึ้นที่ความถี่ที่ค่อนข้างต่ำในพืชและสัตว์และโดยทั่วไปต้องใช้ selectable markers. ความถี่ของ gene targeting สามารถเพิ่มขึ้นอย่างมากด้วยการใช้ nucleases ดัดแปลงเช่น zinc finger nucleases, homing endonucleases ที่ถูกดัดแปลง, หรือ nucleases ที่สร้างจาก TAL effectors. นอกจากการเสริมสร้าง gene targeting, nucleases ที่ถูกดัดแปลงยังสามารถถูกใช้ในการแนะนำการกลายพันธุ์ใน endogenous genes ที่สร้าง gene knockout.

ประมาณ 1% เท่านั้นของแบคทีเรียที่โดยธรรมชาติมีความสามารถดูดกลืนดีเอ็นเอต่างถิ่น. อย่างไรก็ตาม, ความสามารถนี้สามารถถูกเหนี่ยวนำให้เกิดในเชื้อแบคทีเรียอื่นผ่านความเครียด (เช่นช็อกด้วยความร้อนหรือไฟฟ้า), จึงเป็นการเพิ่มความสามารถในการซึมผ่านของเยื่อหุ้มเซลล์ให้กับดีเอ็นเอ, ดีเอ็นเอที่ถูกดูดกลืนสามารถรวมเข้ากับจีโนมหรือมีอยู่เป็นดีเอ็นเอแบบหลายโครโมโซม (อังกฤษ: extrachromosomal DNA). ดีเอ็นเอถูกแทรกโดยทั่วไปเข้าสู่เซลล์สัตว์โดยใช้ microinjection, ที่มันสามารถถูกฉีดผ่านเปลือกนิวเคลียร์ของเซลล์โดยตรงเข้าสู่นิวเคลียสหรือผ่านการใช้ viral vectors. ในพืช, ดีเอ็นเอถูกแทรกโดยทั่วไปโดยใช้การรวมแบบพึ่งพาแบคทีเรียเกษตร (อังกฤษ: Agrobacterium-mediated recombination) หรือ biolistics(การฉีดเซลล์ด้วย gene gun).

ในการรวมแบบพึ่งพาแบคทีเรียเกษตร, โครงสร้างพลาสมิดจะประกอบด้วย Transfer DNA (T-DNA), ดีเอ็นเอซึ่งเป็นผู้รับผิดชอบสำหรับการแทรกของดีเอ็นเอเข้าสู่จีโนมพืชเจ้าภาพ. พลาสมิดนี้จะถูกแปลงให้เป็น "Agrobacterium" ที่ไม่มีพลาสมิดก่อนที่จะติดเชื้อเซลล์พืช. Agrobacterium จากนั้นโดยธรรมชาติจะแทรกสารพันธุกรรมเข้าไปในเซลล์พืช. ในการแปลงแบบ biolistics, อนุภาคของทองหรือทังสเตนจะถูกเคลือบด้วยดีเอ็นเอจากนั้นจะถูกยิงเข้าไปในเซลล์พืชอ่อนหรือตัวอ่อนของพืช. บางสารพันธุกรรมจะเข้าสู่เซลล์และแปลงพวกมัน. วิธีการนี้สามารถนำมาใช้กับพืชที่ไม่ไวติดเชื้อ Agrobacterium และยังช่วยในการแปลงของ plastids พืช. วิธีการอีกวิธีหนึ่งสำหรับเซลล์พืชและสัตว์คือ Electroporation. Electroporation เกี่ยวข้องการช๊อคด้วยไฟฟ้ากับเซลล์พืชหรือสัตว์, ซึ่งสามารถทำให้เยื่อหุ้มเซลล์สามารถดูดซึมเข้าไปในพลาสมิดดีเอ็นเอ. ในบางกรณีเซลล์ที่ถูก electroporated จะรวมดีเอ็นเอเข้าไปในจีโนมของพวกมัน. เนื่องจากความเสียหายที่เกิดจากเซลล์และดีเอ็นเอ, ประสิทธิภาพการแปลงของ biolistics และ electroporation จะต่ำกว่าการแปลงแบบ agrobacterial mediated และ แบบ microinjection.

เนื่องจากบ่อยๆที่เพียงเซลล์เดียวเท่านั้นจะถูกแปลงด้วยสารพันธุกรรม, สิ่งมีชีวิตจะต้องถูกสร้างขึ้นใหม่จากเซลล์เดียวอันนั้น. เมื่อแบคทีเรียประกอบด้วยเซลล์เดียวและถูกผลิตใหม่ (อังกฤษ: reproduce) แบบโคลนิง, การสร้างขึ้นใหม่ (อังกฤษ: regeneration) จึงไม่จำเป็น. ในพืช สิ่งนี้สามารถทำได้โดยใช้การเพาะเลี้ยงเนื้อเยื่อ. พืชแต่ละสปีซีส์จะมีความต้องการที่แตกต่างกันสำหรับการ regeneration ที่ประสบความสำเร็จผ่านการเพาะเลี้ยงเนื้อเยื่อ. หากประสบความสำเร็จ, พืชผู้ใหญ่จะผลิตสิ่งที่ประกอบด้วยสิ่งดัดแปรพันธุกรรมในทุกๆเซลล์. ในสัตว์, มันมีความจำเป็นเพื่อให้แน่ใจว่าดีเอ็นเอที่ถูกแทรกจะปรากฏในเซลล์ต้นกำเนิดตัวอ่อน (อังกฤษ: embryonic stem cells). Selectable markers จะถูกใช้เพื่อง่ายแยกความแตกต่างของเซลล์ที่แปลงกับเซลล์ที่ไม่ถูกแปลง. markers เหล่านี้มักจะปรากฏในสิ่งมีชีวิตดัดแปรพันธุกรรม, แม้ว่าหลายกลยุทธ์ได้รับการพัฒนาที่สามารถลบ selectable marker ออกจากพืชดัดแปรพันธุกรรมผู้ใหญ่. เมื่อลูกหลานถูกผลิต, พวกมันสามารถได้รับการคัดเลือกเพื่อหาการปรากฏตัวของยีน. ลูกหลานทั้งหมดจากรุ่นแรกจะเป็น heterozygous สำหรับยีนที่ถูกแทรกและจะต้องผสมพันธ์กันเพื่อผลิตสัตว์ homozygous.

การทดสอบเพิ่มเติมใช้วิธี polymerase chain reaction (PCR), Southern hybridization, และ DNA sequencing จะถูกดำเนินการเพื่อยืนยันว่าสิ่งมีชีวิตมียีนใหม่. การทดสอบเหล่านี้ยังสามารถยืนยันสถานที่ตั้งของโครโมโซมและคัดลอกหมายเลขของยีนที่ถูกแทรกอีกด้วย. การปรากฏตัวของยีนไม่ได้รับประกันว่ามันจะมีการแสดงออกในระดับที่เหมาะสมหรือไม่ในเนื้อเยื่อเป้าหมายดังนั้นวิธีการที่จะมองหาและวัดผลิตภัณฑ์ยีน (อาร์เอ็นเอและโปรตีน) ยังมีการใช้อีกด้วย. เหล่านี้รวมถึง northern hybridization, quantitative RT-PCR, Western blot, immunofluorescence, ELISA และการวิเคราะห์แบบ phenotype. สำหรับการแปลงที่เสถียร, ยีนควรจะถูกส่งผ่านไปยังลูกหลานในรูปแบบการถ่ายทอดทางพันธุกรรมของเมนเดล (อังกฤษ: Mendelian inheritance) เพื่อที่ว่าลูกหลานของสิ่งมีชีวิตจะได้ถูกศึกษาด้วย.

การแก้ไขจีโนมเป็นชนิดของพันธุวิศวกรรมในการที่ดีเอ็นเอจะถูกแทรก, ถูกแทนที่, หรือถูกเคลื่อนย้ายออกจากจีโนมโดยใช้ nucleases วิศวกรรมเทียม, หรือ "กรรไกรโมเลกุล". nucleases จะสร้างการแบ่งเกลียวคู่ (อังกฤษ: double-stranded break (DSBs)) ที่เฉพาะในสถานที่ที่ต้องการในจีโนม, และใชประโยชน์ของกลไกภายใน (อังกฤษ: endogenous mechanisms) ของเซลล์เพื่อซ่อมแซมการแบ่งที่เกิดจากกระบวนการทางธรรมชาติของการรวมตัวกันอีกแบบคล้ายคลึงกัน (อังกฤษ: homologous recombination (HR)) และการเชื่อมปลายแบบไม่คล้ายคลึงกัน (อังกฤษ: nonhomologous end-joining (NHEJ)). ปัจจุบันมีสี่ครอบครัวของ nucleases วิศวกรรมคือ:. meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs) และ CRISPRs.

พันธุวิศวกรรมมีการประยุกต์ใช้ในงานด้านการแพทย์, การวิจัย, อุตสาหกรรมและการเกษตรและสามารถนำมาใช้ในวงกว้างของพืช, สัตว์และจุลินทรีย์.

ในการแพทย์, พันธุวิศวกรรมได้ถูกนำมาใช้เพื่อผลิตแบบมวลของอินซูลิน, ฮอร์โมนที่สร้างการเจริญเติบโตของมนุษย์, follistim (สำหรับการรักษาภาวะมีบุตรยาก), อัลบูมินมนุษย์ (โปรตีนชนิดหนึ่งพบในไข่ นม เนื้อสัตว์ และเลือด เป็นตัวขนส่งฮอร์โมน, กรดไขมัน, และส่วนผสมอื่นๆ, ผ่อนความเป็นกรดหรือความเป็นด่าง, และรักษาแรงดันของสารละลายที่ไหลผ่านเนื้อเยื่อ, ไปยังส่วนต่างๆของร่างกาย), monoclonal antibodies, antihemophilic factors, วัคซีนและยาอื่นๆอีกมากมาย. ขบวนการของวัคซีนโดยทั่วไปเกี่ยวข้องกับการฉีดรูปแบบของไวรัสหรือสารพิษของพวกมันที่อ่อนแอ, มีชีวิต, ตายแล้วหรือไม่มีกิจกรรมแล้วเข้าสู่บุคคลที่ไม่มีภูมิคุ้มกัน. ไวรัสดัดแปลงพันธุกรรมกำลังมีการพัฒนาที่ยังคงสามารถให้ภูมิคุ้มกัน, แต่ขาดลำดับการติดเชื้อ. หนูไฮบริด, เซลล์หลอมรวมกันเพื่อสร้าง monoclonal antibodies, ถูกทำให้ใช้ได้กับมนุษย์ผ่านทางพันธุวิศวกรรมเพื่อสร้าง monoclonal antibodies ของมนุษย์. พันธุวิศวกรรมได้แสดงให้เห็นสัญญาสำหรับการรักษารูปแบบบางอย่างของโรคมะเร็ง.

พันธุวิศวกรรมถูกนำมาใช้เพื่อสร้างแบบจำลองสัตว์ของโรคของมนุษย์. หนูดัดแปลงพันธุกรรมเป็นแบบจำลองสัตว์ดัดแปลงพันธุกรรมที่พบมากที่สุด. พวกมันได้ถูกนำมาใช้เพื่อการศึกษาและทำแบบจำลองมะเร็ง (หนู oncomouse), โรคอ้วน, โรคหัวใจ, โรคเบาหวาน, โรคไขข้อ, สารเสพติด, ความวิตกกังวล, โรคแก่และโรคพาร์กินสัน. การรักษาที่มีศักยภาพสามารถทดสอบกับแบบจำลองหนูเหล่านี้. นอกจากนี้หมูดัดแปลงพันธุกรรมยังถูกเพาะพันธ์โดยมีวัตถุประสงค์เพื่อเพิ่มความสำเร็จของการปลูกถ่ายอวัยวะสุกรให้กับมนุษย์.

การบำบัดด้วยยีนเป็นพันธุวิศวกรรมที่ทำกับมนุษย์โดยเปลี่ยนยีนบกพร่องของมนุษย์ด้วยสำเนาการทำงานซึ่งอาจเกิดขึ้นในเนื้อเยื่อของร่างกายหรือเนื้อเยื่อ germline. ถ้ายีนถูกแทรกเข้าไปในเนื้อเยื่อ germline มันสามารถส่งผ่านลงไปที่ลูกหลานของบุคคลนั้น. การบำบัดด้วยยีนได้ถูกใช้อย่างประสบความสำเร็จในการรักษาโรคหลาย, รวมถึง X-linked SCID, มะเร็งเม็ดเลือดขาวเรื้อรังแบบ lymphocytic (CLL) และโรคพาร์กินสัน. ในปี 2012, Glybera กลายเป็นการรักษาด้วยยีนบำบัดอันแรกที่ได้รับการอนุมัติสำหรับการใช้งานทางคลินิกทั้งในยุโรปหรือสหรัฐอเมริกาหลังจากการรับรองโดยคณะกรรมาธิการยุโรป. นอกจากนี้ยังมีความกังวลเกี่ยวกับจริยธรรมว่าเทคโนโลยีควรจะถูกใช้ไม่เพียงแต่สำหรับการรักษาเท่านั้น, แต่สำหรับการเพิ่มประสิทธิภาพ, การดัดแปลงหรือการเปลี่ยนแปลงของภาพลักษณ์, การปรับตัว, ความเฉลียวฉลาด, นิสัยหรือพฤติกรรมของมนุษย์ด้วยหรือไม่. ความแตกต่างระหว่างการรักษาและการเพิ่มประสิทธิภาพยังคงเป็นเรื่องยากที่จะจัดทำขึ้น. นักแปลงมนุษย์พิจารณาว่าการเพิ่มประสิทธิภาพของมนุษย์เป็นสิ่งพึงประสงค์.

พันธุวิศวกรรมเป็นเครื่องมือที่สำคัญอันหนึ่งสำหรับนักวิทยาศาสตร์ธรรมชาติ. ยีนและข้อมูลทางพันธุกรรมอื่นๆจากหลากหลายของสิ่งมีชีวิตจะถูกแปลงให้เป็นเชื้อแบคทีเรียสำหรับการจัดเก็บและการดัดแปลง, เป็นการสร้างแบคทีเรียดัดแปลงพันธุกรรมในกระบวนการ. แบคทีเรียมีราคาถูก, ง่ายเติบโต, ทำโคลนิงได้, ทวีคูณอย่างรวดเร็ว, ค่อนข้างง่ายที่จะแปลงและสามารถเก็บไว้ที่ -80 ?C เกือบจะนานไม่สิ้นสุด. เมื่อยีนถูกแยกออก, มันก็สามารถถูกจัดเก็บไว้ภายในแบคทีเรียเป็นให้อุปทานที่ไม่จำกัดสำหรับการวิจัย.

สิ่งมีชีวิตจะได้รับการดัดแปลงพันธุกรรมเพื่อค้นหาการทำงานของยีนบางตัว, ซึ่งอาจเป็นผลกระทบต่อฟีโนไทป์ของสิ่งมีชีวิต, ที่ยีนจะแสดงหรือสิ่งที่ยีนอื่นๆที่มันโต้ตอบด้วย. การทดลองเหล่านี้มักจะเกี่ยวข้องกับการสูญเสียหน้าที่การทำงานบางอย่างไป, การได้รับหน้าที่การทำงานบางอย่างมา, การติดตามและการแสดงออก.

การใช้เทคนิคพันธุวิศวกรรม, เราสามารถแปลงจุลินทรีย์เช่นแบคทีเรียหรือยีสต์, หรือแปลงเซลล์จากสิ่งมีชีวิตหลายเซลล์เช่นแมลงหรือสัตว์เลี้ยงลูกด้วยนม, ที่มียีนรหัสเข้าเป็นโปรตีนที่มีประโยชน์, เช่นเอนไซม์แบบหนึ่ง, เพื่อที่ว่าสิ่งมีชีวิตหลังการแปลงจะแสดงออกอย่างชัดแจ้งว่ามีโปรตีนที่ต้องการ. เราสามารถผลิตปริมาณแบบมวลของโปรตีนโดยปลูกสิ่งมีชีวิตที่ถูกแปลงในอุปกรณ์เครื่องปฏิกรณ์ชีวภาพโดยใช้เทคนิคของการหมักอุตสาหกรรม, จากนั้นก็ทำโปรตีนให้บริสุทธิ์. ยีนบางตัวไม่ทำงานได้ดีในแบคทีเรีย, ดังนั้นยีสต์, เซลล์แมลง, หรือเซลล์สัตวืเลี้ยงลูกด้วยนม, แต่ละ eukaryote, ยังสามารถนำมาใช้ได้. เทคนิคเหล่านี้ถูกนำมาใช้ในการผลิตยารักษาโรคเช่นอินซูลิน, ฮอร์โมนการเจริญเติบโตของมนุษย์, และวัคซีน, อาหารเสริมเช่น tryptophan, ช่วยในการผลิตอาหาร (chymosin ทำชีส) และเชื้อเพลิง. การประยุกต์ใช้งานอื่นๆที่เกี่ยวข้องกับเชื้อแบคทีเรียดัดแปลงพันธุกรรมที่กำลังทำการตรวจสอบอยู่จะเกี่ยวกับการทำให้แบคทีเรียปฏิบัติงานนอกวงจรธรรมชาติของพวกมัน, เช่นการทำเชื้อเพลิงชีวภาพ, การทำความสะอาดน้ำมันรั่วไหล, คาร์บอนและขยะพิษอื่นๆ และการตรวจสอบสารหนูในน้ำดื่ม.

ในวัสดุศาสตร์, ไวรัสดัดแปลงพันธุกรรมได้ถูกนำมาใช้ในห้องปฏิบัติการทางวิชาการโดยเป็นนั่งร้านสำหรับการประกอบแบตเตอรี่ลิเธียมไอออนที่เป็นมิตรกับสิ่งแวดล้อมมากขึ้น.

แบคทีเรียได้รับการดัดแปลงมาเพื่อทำงานเป็นเซ็นเซอร์โดยแสดงโปรตีนเรืองแสงภายใต้สภาพแวดล้อมบางอย่าง.

หนึ่งในการประยุกต์ใช้พันธุวิศวกรรมที่รู้จักกันดีที่สุดและมีการโต้เถียงคือการสร้างและการใช้พืชดัดแปลงพันธุกรรมหรือสิ่งมีชีวิตดัดแปลงพันธุกรรม, เช่นปลาดัดแปลงพันธุกรรม, ซึ่งจะใช้ในการผลิตอาหารและวัสดุดัดแปลงพันธุกรรมที่มีการใช้งานที่หลากหลาย. มีสี่เป้าหมายหลักในการสร้างพืชดัดแปลงพันธุกรรม.

เป้าหมายหนึ่งและเป็นสิ่งแรกที่จะต้องตระหนักในเชิงพาณิชย์คือการให้ความคุ้มครองจากภัยคุกคามสิ่งแวดล้อม, เช่นความเย็น (ในกรณีของแบคทีเรียน้ำแข็ง-ลบ), หรือเชื้อโรค pathogen, เช่นแมลงหรือไวรัส, และ/หรือความต้านทานต่อสารเคมีกำจัดวัชพืช. นอกจากนี้ยังมีพืชทนเชื้อราและเชื้อไวรัสที่พัฒนาแล้วหรือกำลังพัฒนา. พวกมันได้รับการพัฒนาเพื่อให้การจัดการแมลงและวัชพืชของพืชทำได้ง่ายขึ้นและสามารถเพิ่มผลผลิตของพืชได้ทางอ้อม.

อีกเป้าหมายหนึ่งในการสร้าง GMOs ก็คือเพื่อปรับเปลี่ยนคุณภาพของผลผลิตโดย, ตัวอย่างเช่น, การเพิ่มคุณค่าทางโภชนาการหรือเพื่อให้เกิดประโยชน์ต่อวงการอุตสาหกรรมมากขึ้นทั้งปริมาณและคุณภาพ. มันฝรั่ง Amflora, ยกตัวอย่าง, ก่อให้เกิดประโยชน์มากขึ้นในอุตสาหกรรมการบ่มของแป้ง. วัวได้รับการดัดแปลงเพื่อผลิตโปรตีนในนมของพวกมันมากขึ้นเพื่ออำนวยความสะดวกในการผลิตชีส. ถั่วเหลืองและคาโนลาได้รับการดัดแปลงพันธุกรรมในการผลิตน้ำมันเพื่อสุขภาพมากขึ้น.

เป้าหมายอีกประการหนึ่งประกอบด้วยการผลักดันจีเอ็มโอเพื่อผลิตวัสดุที่ปกติมันไม่ได้ทำ. ตัวอย่างหนึ่งคือ "การทำฟาร์ม", ซึ่งใช้พืชเป็นตัวปฏิกรณ์ชีวะ (อังกฤษ: bioreactor) เพื่อผลิตวัคซีน, ตัวกลางยาหรือตัวยาเอง; ผลิตภัณฑ์ที่มีประโยชน์ถูกมำให้บริสุทธิ์จากการเก็บเกี่ยวแล้วนำไปใช้ในกระบวนการผลิตยามาตรฐาน. วัวและแพะที่ได้รับดัดแปลงเพื่อแสดงฤทธ์ของยาและโปรตีนอื่นๆในนมของพวกมัน, และในปี 2009 องค์การอาหารและยาได้อนุมัติยาที่ผลิตในนมแพะ.

เป้าหมายอีกอันในการสร้าง GMOs คือการเพิ่มผลผลิตโดยตรงด้วยการเร่งการเจริญเติบโต, หรือการทำสิ่งมีชีวิตบึกบึนกว่าเดิม (สำหรับพืช, โดยปรับปรุงเกลือ, การอดทนต่อความเย็นหรือภัยแล้ง). บางสัตว์ที่สำคัญทางเกษตรกรรมได้รับการดัดแปลงพันธุกรรมด้วยฮอร์โมนการเจริญเติบโตเพิ่มขนาดของพวกมัน.

วิศวกรรมทางพันธุกรรมของพืชผลทางการเกษตรสามารถเพิ่มอัตราการเจริญเติบโตและความต้านทานต่อโรคที่แตกต่างกันที่เกิดจากเชื้อโรคและปรสิต. นี้จะเป็นประโยชน์อย่างมากในขณะที่มันสามารถเพิ่มการผลิตของแหล่งอาหารด้วยการใช้ทรัพยากรที่น้อยลงกว่าที่จะต้องใช้จริงเพื่อเป็นเจ้าภาพด้านประชากรที่เพิ่มมากขึ้นของโลก. พืชดัดแปลงเหล่านี้ยังจะช่วยลดการใช้สารเคมี, เช่นปุ๋ยและสารกำจัดศัตรูพืช, และดังนั้นจึงลดความรุนแรงและความถี่ของการเกิดความเสียหายที่เกิดจากมลพิษทางเคมีเหล่านี้อีกด้วย.

ความกังวลด้านจริยธรรมและความปลอดภัยได้รับการพูดถึงรอบๆการใช้อาหารดัดแปลงพันธุกรรม. ความกังวลด้านความปลอดภัยที่สำคัญเกี่ยวข้องกับผลกระทบต่อสุขภาพของมนุษย์จากการกินอาหารดัดแปลงพันธุกรรม, โดยเฉพาะเจาะจงว่าจะเป็นปฏิกิริยาที่เป็นพิษหรือการแพ้ที่อาจเกิดขึ้น. การไหลของยีนเข้าสู่พืชดัดแปรพันธุกรรมที่เกี่ยวข้อง, และผลกระทบนอกเป้าหมายในสิ่งมีชีวิตที่เป็นประโยชน์และผลกระทบต่อความหลากหลายทางชีวภาพเป็นปัญหาสิ่งแวดล้อมที่สำคัญ. ความกังวลด้านจริยธรรมเกี่ยวข้องกับประเด็นทางศาสนา, การควบคุมในองค์รวมของอุปทานอาหาร, สิทธิในทรัพย์สินทางปัญญาและระดับของการติดฉลากที่จำเป็นบนผลิตภัณฑ์ดัดแปลงทางพันธุกรรม.

พันธุวิศวกรรมนอกจากนี้ยังถูกใช้ในการสร้าง BioArt. แบคทีเรียบางชนิดที่ได้รับการดัดแปลงพันธุกรรมเพื่อสร้างภาพขาวดำ.

พันธุวิศวกรรมได้ถูกนำมาใช้ในการสร้างรายการแปลกเช่นดอกคาร์เนชั่นสีลาเวนเดอร์ ดอกกุหลาบสีฟ้า และปลาเรืองแสง.

บทความหลัก: การกำกับดูแลของพันธุวิศวกรรมและการกำกับดูแลของการเปิดตัวของสิ่งมีชีวิตดัดแปลงพันธุกรรม

การกำกับดูแลของพันธุวิศวกรรมเกี่ยวข้องกับวิธีการดำเนินการของรัฐบาลในการประเมินและจัดการความเสี่ยงที่เกี่ยวข้องกับการพัฒนาและการเปิดตัวของพืชดัดแปลงพันธุกรรม. มีความแตกต่างในการกำกับดูแลของพืชดัดแปลงพันธุกรรมในแต่ละประเทศ, ที่มีบางประเทศที่แตกต่างกันส่วนใหญ่เกิดขึ้นระหว่างสหรัฐอเมริกาและยุโรป. การกำกับดูแลที่แตกต่างกันในประเทศหนึ่งๆขึ้นอยู่กับวัตถุประสงค์ของการใช้ผลิตภัณฑ์ของทางพันธุวิศวกรรม. ยกตัวอย่างเช่นพืชที่ไม่ได้มีไว้สำหรับใช้เป็นอาหารโดยทั่วไปจะไม่ถูกตรวจสอบโดยหน่วยงานที่รับผิดชอบสำหรับความปลอดภัยของอาหาร.

นักวิจารณ์ได้คัดค้านการใช้พันธุวิศวกรรมด้วยเหตุผลหลายอย่าง, รวมถึงความกังวลด้านจริยธรรม, ความกังวลด้านระบบนิเวศ, และความกังวลทางเศรษฐกิจี่ถูกยกขึ้นมาโดยความเป็นจริงที่ว่าเทคนิคจีเอ็มและสิ่งมีชีวิตจีเอ็มอยู่ภายใต้กฎหมายทรัพย์สินทางปัญญา. GMOs ยังเกี่ยวข้องกับการถกเถียงกันในเรื่องอาหารจีเอ็มด้วยคำถามที่ว่าอาหารที่ผลิตจากพืชจีเอ็มมีความปลอดภัยหรือไม่, ว่ามันควรจะได้รับการติดฉลากหรือไม่, และว่าพืชจีเอ็มมีความจำเป็นเพื่อแก้ปัญหาความต้องการอาหารของโลกหรือไม่. โปรดดูบทความการถกเถียงเรื่องอาหารดัดแปลงพันธุกรรมสำหรับการอภิปรายในประเด็นที่เกี่ยวกับพืชจีเอ็มและอาหารจีเอ็ม. การถกเถียงเหล่านี้ได้นำไปสู่การฟ้องร้อง, ข้อพิพาทการค้าระหว่างประเทศ, และการประท้วง, และการกำกับดูแลที่เข้มงวดของผลิตภัณฑ์ในเชิงพาณิชย์ในบางประเทศ.


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301