ค้นหา
  
Search Engine Optimization Services (SEO)

พลังงานนิวเคลียร์

พลังงานนิวเคลียร์ (อังกฤษ: Nuclear Power or Nuclear Energy) เป็นพลังงานรูปแบบหนึ่งที่ได้จากการคายความร้อนในปฏิกิริยานิวเคลียร์ เพื่อประโยขน์ในการสร้างความร้อนและผลิตไฟฟ้า. นิวเคลียร์ เป็นคำคุณศัพท์ของคำว่า นิวเคลียส ซึ่งเป็นแก่นกลางของอะตอมธาตุ ซึ่งประกอบด้วยอนุภาคโปรตอน และนิวตรอน ซึ่งยึดกันได้ด้วยแรงของอนุภาคไพออน

พลังงานนิวเคลียร์ บางครั้งใช้แทนกันกับคำว่า พลังงานปรมาณู นอกจากนี้พลังงานนิวเคลียร์ยังครอบคลุมไปถึงพลังงานรังสีเอกซ์ด้วย (พ.ร.บ. พลังงานเพื่อสันติ ฉบับที่ 2 พ.ศ. 2508) พลังงานนิวเคลียร์ สามารถปลดปล่อยออกมาเป็นพลังงานหลายรูปแบบ เช่น พลังงานความร้อน รังสีแกมมา อนุภาคเบต้า อนุภาคอัลฟา อนุภาคนิวตรอน เป็นต้น

ปัจจุบัน ปฏิกิริยานิวเคลียร์ฟิชชัน ขององค์ประกอบใน actinide series ของตารางธาตุได้ผลิตพลังงานนิวเคลียร์ส่วนใหญ่ในการให้บริการโดยตรงแก่มนุษย์, กับกระบวนการสลายตัวของ นิวเคลียร์ส่วนใหญ่ในรูปแบบของพลังงานความร้อนใต้พิภพและเครื่องกำเนิดไฟฟ้าเทอร์โม ไอโซโทป, สำหรับการนำไปใช้เฉพาะอย่างจะใช้ประโยชน์จากปฏิกิริยาที่เหลือ. โรงไฟฟ้านิวเคลียร์ (ฟิชชัน), ไม่รวมการใช้งานในกองทัพเรือ, ให้พลังงานประมาณ 5.7% ของพลังงาน ของโลกและ 13% ของกระแสไฟฟ้าของโลกในปี 2012. ในปี 2013, หน่วยงานพลังงานปรมาณูนานาชาติ (อังกฤษ: International Atomic Energy Agency (IAEA)) รายงานว่ามี 437 เครื่องปฏิกรณ์พลังงานนิวเคลียร์กำลังใช้งานอยู่ ใน 31 ประเทศ แม้ว่าจะมีบางเครื่องปฏิกรณ์ที่ไม่ได้ทำการผลิตไฟฟ้าอีกแล้ว. นอกจากนี้ยังมีเรือประมาณ 140 ลำที่ใช้พลังงานนิวเคลียร์ในการขับเคลื่อนโดยเครื่องปฏิกรณ์ราว 180 เครื่อง.. ขณะที่ในปี 2013, การได้รับพลังงานสุทธิจากเครื่องปฏิกรณ์ฟิวชั่นที่ยั่งยืน, ไม่รวมแหล่งพลังงานฟิวชั่นตามธรรมชาติเช่นจากดวงอาทิตย์, ยังคงเป็นพื้นที่ต่อเนื่องของการวิจัยด้านฟิสิกส์และวิศวกรรมระหว่างประเทศ. กว่า 60 ปีหลังจากความพยายามครั้งแรก, การผลิตพลังงานฟิวชั่นในเชิงพาณิชย์ยังคงไม่น่าจะเกิดขึ้นก่อนปี 2050.

มีการอภิปรายอย่างต่อเนื่องเกี่ยวกับพลังงานนิวเคลียร์. ฝ่ายเสนอ เช่น สมาคมนิวเคลียร์โลก (อังกฤษ: World Nuclear Association), IAEA และ นักสิ่งแวดล้อมพลังงานนิวเคลียร์ ยืนยันว่า พลังงานนิวเคลียร์มีความปลอดภัย, เป็นแหล่งพลังงานยั่งยืนที่ช่วยลดการปล่อยก๊าซคาร์บอน. ฝ่ายค้าน เช่น กลุ่มกรีนพีซสากล และ หน่วยบริการข้อมูลทรัพยากรและนิวเคลียร์ (อังกฤษ: Nuclear Information and Resource Service (NIRS)), ยืนยันว่า พลังงานนิวเคลียร์สร้างภัยคุกคามจำนวนมากต่อมนุษย์และสิ่งแวดล้อม.

นับถึงปี 2012, ตามข้อมูลของ IAEA, ทั่วโลกมี 68 เครื่องปฏิกรณ์พลังงานนิวเคลียร์ในงานของพลเรือนอยู่ระหว่างการก่อสร้างใน 15 ประเทศ. ประมาณ 28 แห่งในจำนวนนั้นอยู่ในสาธารณรัฐประชาชนจีน (PRC), ซึ่งเป็นเครื่องปฏิกรณ์ของโรงไฟฟ้านิวเคลียร์ล่าสุด, ซึ่งจะเชื่อมต่อเข้ากับกริด (ไฟฟ้า)ในเดือนพฤษภาคม 2013, ในวันที่ 17 กุมภาพันธ์ ปี 2013 ได้เดนเครื่องในโรงไฟฟ้านิวเคลียร์ Hongyanhe ในประเทศสาธารณรัฐประชาชนจีน. ในสหรัฐอเมริกาเครื่องปฏิกรณ์ Generation III ตัวใหม่สองเครื่องอยู่ระหว่างการก่อสร้างใน Vogtle. เจ้าหน้าที่อุตสาหกรรมนิวเคลียร์สหรัฐอเมริกาคาดหวังว่า เครื่องปฏิกรณ์ใหม่ 5 เครื่องจะนำมาให้บริการในปี 2020, ทุกเครื่องในโรงไฟฟ้าที่มีอยู่เดิม. ในปี 2013, เครื่องปฏิกรณ์เก่าและไม่มีประสิทธิภาพในการแข่งขันสี่เครื่องจะถูกปิดอย่างถาวร .

ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิ ที่ญี่ปุ่นในปี 2011, ที่เกิดขึ้นในเครื่องปฏิกรณ์ที่ออกแบบมาจาก Generation II ปี 1960 ตัวหนึ่ง, ย้ำเตือนให้ทำการตรวจสอบใหม่ในความปลอดภัยของนิวเคลียร์และนโยบายพลังงานนิวเคลียร์ในหลายประเทศ. เยอรมนีตัดสินใจที่จะปิดเครื่องปฏิกรณ์นิวเคลียร์ทั้งหมดของประเทศภายในปี 2022 และอิตาลีได้สั่งห้ามสร้างโรงไฟฟ้าพลังงานนิวเคลียร์. หลัง Fukushima, ในปี 2011 สำนักงานพลังงานระหว่างประเทศได้ลดการประมาณการเพิ่มกำลังการผลิตไฟฟ้านิวเคลียร์ที่จะสร้างขึ้นจนถึงปี 2035 ลงครึ่งหนึ่ง.

การแสวงหาพลังงานนิวเคลียร์ในการผลิตไฟฟ้าได้เริ่มทันทีหลังจากการค้นพบในต้นศตวรรษที่ 20 ที่ธาตุกัมมันตรังสี, เช่นเรเดียม, ปล่อยพลังงานออกมาจำนวนมหาศาลตามหลักการของความเท่าเทียมกันของมวลกับพลังงาน(อังกฤษ: mass–energy equivalence). อย่างไรก็ตาม วิธีการใช้ประโยชน์จากพลังงานดังกล่าวก็ยังทำไม่ได้ในทางปฏิบัติ, เพราะธาตุที่มีกัมมันตรังสีอย่างเข้มข้น, โดยธรรมชาติของพวกมัน, มีอายุสั้น (การปลดปล่อยพลังงานสูงมีความสัมพันธ์กับครึ่งชีวิตสั้น). อย่างไรก็ตาม ความฝันของการใช้ประโยชน์ "พลังงานปรมาณู" ค่อนข้างเข้มแข็ง, แม้ว่าจะถูกเมินเฉยจากบิดาของฟิสิกส์นิวเคลียร์เช่น Ernest Rutherford ว่าเป็นแค่ "แสงจันทร์" . อย่างไรก็ตาม สถานการณ์นี้เปลี่ยนแปลงไปในปลายปี 1930s เมื่อมีการค้นพบนิวเคลียร์ฟิชชัน.

ในปี 1932 เจมส์ แชดวิกค้นพบนิวตรอน ซึ่งได้รับการยอมรับในทันทีว่าเป็นเครื่องมือที่มีศักยภาพสำหรับการทดลองนิวเคลียร์เพราะมันไม่มีประจุไฟฟ้า. การทดลองด้วยการระดมยิงวัสดุด้วยนิวตรอนทำให้ Fr?d?ric และ Ir?ne Joliot-Curie ได้ค้นพบกัมมันตภาพรังสีที่ถูกสร้างขึ้นในปี 1934, ซึ่งยอมให้ทำการสร้างองค์ประกอบที่เหมือนเรเดียมด้วยราคาน้อยกว่าเรเดียมธรรมชาติ. งานต่อไปโดย Enrico Fermi ในปี 1930s เน้นการใช้นิวตรอนช้าในการเพิ่มประสิทธิภาพของกัมมันตภาพรังสีที่เกิด. การทดลองที่ระดมยิงยูเรเนียมด้วยนิวตรอนทำให้ Fermi เชื่อว่าเขาได้สร้างองค์ประกอบ transuranic ขึ้นใหม่ซึ่งได้รับการขนานนามว่า hesperium. .

แต่ในปี 1938 นักเคมีเยอรมันอ็อตโต ฮาห์น และฟริตซ์ Strassmann พร้อมกับนักฟิสิกส์ชาวออสเตรีย ลีซ ไมต์เนอ และหลานชายของไมต์เนอร์, อ็อตโต โรเบิร์ต Frisch ดำเนินการทดลองกับผลิตภัณฑ์ของยูเรเนียมที่ถูกรุมยิงด้วยนิวตรอน, เพื่อเป็นวิธีการตรวจสอบไกลออกไปของสิ่งที่ Fermi อ้างถึง. พวกเขาเชื่อว่านิวตรอนค่อนข้างเล็กได้แยกนิวเคลียสของอะตอมยูเรเนียมขนาดใหญ่ออกเป็นสองชิ้นที่เท่ากันอย่างหยาบๆ, ที่ขัดแย้งกับ Fermi. สิ่งนี่เป็นผลที่น่าแปลกใจอย่างยิ่ง: รูปแบบอื่นๆทั้งหมดของการสลายตัวของนิวเคลียร์ที่เกี่ยวข้องกับการเปลี่ยนแปลงเล็กๆเท่านั้นกับมวลของนิวเคลียส, ในขณะที่กระบวนนี้ - ถูกขนานนามว่า "ฟิชชัน" เมื่ออ้างอิงถึงทางชีววิทยา - เกี่ยวข้องกับการแตกออกที่สมบูรณ์ของนิวเคลียส. นักวิทยาศาสตร์จำนวนมาก, รวมถึง Le? Szil?rd, ที่เป็นหนึ่งในคนแรก, ที่ยอมรับว่าถ้าปฏิกิริยาฟิชชันปล่อยนิวตรอนเพิ่มเติม, ปฏิกิริยานิวเคลียร์ลูกโซ่อย่างยั่งยืนด้วยตนเองได้เกิดขึ้น. ทันทีที่การทดลองได้รับการยืนยันและประกาศออกไปโดย Fr?d?ric Joliot-Curie ในปี 1939, นักวิทยาศาสตร์ในหลายประเทศ (รวมทั้งสหรัฐอเมริกา, สหราชอาณาจักร, ฝรั่งเศส, เยอรมนี, และสหภาพโซเวียต) เรียกร้องรัฐบาลของพวกเขาเพื่อให้การสนับสนุนการวิจัยนิวเคลียร์ฟิชชัน, แค่บนยอดของสงครามโลกครั้งที่สอง, เพื่อการพัฒนาอาวุธนิวเคลียร์.

ในประเทศสหรัฐอเมริกา, ที่ทั้ง Fermi และ Szil?rd ได้อพยพเข้าไป, นี้นำไปสู่??การสร้างเครื่องปฏิกรณ์ด่วยมือมนุษย์เป็นครั้งแรก, ที่รู้จักกันในชื่อ Chicago Pile-1, ซึ่งประสบความสำเร็จเกี่ยวกับสารวิกฤตในเดือน 2 ธันวาคม 1942. งานชิ้นนี้กลายเป็นส่วนหนึ่งของโครงการแมนฮัตตัน, ซึ่งทำให้ได้ยูเรเนียมสมรรถนะสูงและได้สร้างเครื่องปฏิกรณ์ขนาดใหญ่จะก่อให้เกิดพลูโตเนียมสำหรับใช้ในอาวุธนิวเคลียร์ครั้งแรก, ซึ่งต่อมาถูกนำมาใช้ทำลายเมืองฮิโรชิมาและนางาซากิ.

ค่าใช้จ่ายที่สูงอย่างไม่คาดคิดในโครงการอาวุธนิวเคลียร์สหรัฐอเมริกา, อีกทั้งการแข่งขันกับสหภาพโซเวียตและความปรารถนาที่จะกระจายการปกครองระบอบประชาธิปไตยทั่วโลก, ได้สร้าง "... ความกดดันให้กับเจ้าหน้าที่ของรัฐบาลกลางในการพัฒนาอุตสาหกรรมพลังงานนิวเคลียร์พลเรือนที่จะช่วยแสดงให้เห็นความจำเป็นที่ต้องใช้ค่าใช้จ่ายที่สูงมากของรัฐบาล". ในปี 1945, หนังสือพ็อกเก็ตบุ๊กชื่อ ยุคปรมาณู (อังกฤษ: The Atomic Age) ประกาศอำนาจของอะตอมที่ไม่ได้เปิดออกให้ใช้ในชีวิตประจำวันและวาดภาพอนาคตที่เชื้อเพลิงฟอสซิลจะไม่ได้ถูกนำมาใช้. นักเขียนวิทยาศาสตร์ท่านหนึ่ง, เดวิด Dietz, เขียนว่าแทนที่จะเติมถังน้ำมันรถยนต์ของคุณสองหรือสามครั้งต่อสัปดาห์, คุณจะเดินทางทั้งปีด้วยเม็ดของพลังงานปรมาณูขนาดเท่ายาเม็ดวิตามิน. เกลน Seaborg, ประธานคณะกรรมาธิการพลังงานปรมาณูเขียนว่า "จะมีกระสวยระหว่างโลกกับดวงจันทร์ขับเคลื่อนด้วยนิวเคลียร์, หัวใจเทียมขับเคลื่อนด้วยนิวเคลียร์, สระว่ายน้ำให้ความร้อนด้วยพลูโตเนียมสำหรับนักดำน้ำสกูบา, และอื่นๆอีกมากมาย" การคาดการณ์ที่ดีเกินไปเหล่านี้ยังไม่ได้รับการเติมเต็ม.

สหราชอาณาจักร, แคนาดา, และรัสเซียดำเนินการในช่วงปลายปี 1940s และต้นปี 1950s. ไฟฟ้าถูกผลิตขึ้นเป็นครั้งแรกโดยเครื่องปฏิกรณ์นิวเคลียร์เมื่อวันที่ 20 ธันวาคม 1951 ที่สถานีทดลอง EBR-I ใกล้ Arco, รัฐไอดาโฮ, ซึ่งเริ่มผลิตประมาณ 100 กิโลวัตต์. งานวิจัยยังได้ทำกันอย่างเข้มข้นอย่างมากในสหรัฐอเมริกาในการขับเคลื่อนทางทะเลด้วยนิวเคลียร์, ที่มีเครื่องปฏิกรณ์เพื่อการทดสอบที่ได้รับการพัฒนาในปี 1953 (ในที่สุด USS Nautilus, เรือดำน้ำพลังงานนิวเคลียร์ลำแรกที่จะเปิดตัวในปี 1955). ในปี 1953 ประธานาธิบดีสหรัฐอเมริกา, ไอเซนฮาว, กล่าวในสุนทรพจน์เรื่อง "ปรมาณูเพื่อสันติ" ของเขาที่องค์การสหประชาชาติ, ได้เน้นความจำเป็นในการพัฒนาการใช้ประโยชน์ "เพื่อสันติ" จากพลังงานนิวเคลียร์อย่างรวดเร็ว. ตามด้วยการแก้ไขพระราชบัญญัติพลังงานปรมาณูปี 1954 ซึ่งอนุญาตให้เปิดเผยอย่างรวดเร็วของเทคโนโลยีเครื่องปฏิกรณ์ของสหรัฐและการสนับสนุนการพัฒนาโดยภาคเอกชน. เรื่องนี้เกี่ยวข้องกับขั้นตอนการเรียนรู้อย่างมีนัยสำคัญ, ที่มีหลายๆการหลอมละลายของแกนกลางขั้นต้นบางส่วนและอุบัติเหตุที่เครื่องปฏิกรณ์ตัวทดลองและสิ่งอำนวยความสะดวกการวิจัย.

เมื่อวันที่ 27 มิถุนายน 1954 โรงไฟฟ้??านิวเคลียร์ Obninsk ของสหภาพโซเวียตเป็นโรงไฟฟ้??านิวเคลียร์เพื่อผลิตกระแสไฟฟ้าแห่งแรกของโลกสำหรับกริด (ไฟฟ้า), และผลิตพลังงานไฟฟ้าประมาณ 5 เมกะวัตต์.

ต่อมาในปี 1954 ลูอิส สเตราส์ ประธานของคณะกรรมาธิการพลังงานปรมาณูสหรัฐอเมริกาในขณะนั้น (AEC สหรัฐอเมริกา, บรรพบุรุษของคณะกรรมการกำกับกิจการพลังงานสหรัฐอเมริกาและกรมพลังงานสหรัฐ), พูดถึงไฟฟ้าในอนาคตว่าเป็นของ "ราคาถูกเกินกว่าที่จะคิดมิเตอร์". สเตราส์อาจจะหมายถึงไฮโดรเจนฟิวชั่น, ซึ่งในเวลานั้นกำลังได้รับการพัฒนาอย่างลับๆโดยเป็นส่วนหนึ่งของ'โครงการเชอร์วู้ด', แต่คำพูดของสเตราส์ได้รับการตีความว่าเป็นสัญญาอันหนึ่งของพลังงานราคาถูกมากจากนิวเคลียร์ฟิชชัน. ตัว AEC ของสหรัฐเองได้ออกคำเบิกความที่ไกลความจริงมากขึ้นเกี่ยวกับนิวเคลียร์ฟิชชันต่อสภาคองเกรสสหรัฐเพียงไม่กี่เดือนก่อนหน้านั้น, ที่คาดว่า "ค่าใช้จ่ายสามารถทำให้ลดลงไป ... [ที่] ... ประมาณว่าเท่ากับค่าใช้จ่ายของการผลิตไฟฟ้าจากแหล่งเดิม .. ". ความผิดหวังที่สำคัญจะพัฒนาต่อไปในภายหลังเมื่อโรงไฟฟ้??านิวเคลียร์ใหม่ไม่ได้ให้พลังงานที่ "ถูกเกินกว่าที่จะคิดมิเตอร์".

ในปี 1955 "การประชุมที่เจนีวาครั้งแรก"ขององค์การสหประชาชาติ, ในเวลานั้นเป็นที่รวมของนักวิทยาศาสตร์และวิศวกรที่ใหญ่ที่สุดในโลก, ประชุมกันเพื่อสำรวจเทคโนโลยี. ในปี 1957 EURATOM ได้รับการเปิดตัวเคียงข้างประชาคมเศรษฐกิจยุโรป (ตัวหลังขณะนี้เป็นสหภาพยุโรป). ในปีเดียวกันยังเห็นการเปิดตัวขององค์การพลังงานปรมาณูระหว่างประเทศ (อังกฤษ: International Atomic Energy Agency (IAEA)).

สถานีพลังงานนิวเคลียร์เพื่อการพานิชย์แห่งแรกของโลก, คาลเดอฮอลล์ที่ Windscale ประเทศอังกฤษถูกเปิดในปี 1956 มีกำลังการผลิตเริ่มต้นที่ 50 เมกะวัตต์ (หลังจากนั้นเป็น 200 MW). เครื่องกำเนิดไฟฟ้านิวเคลียร์เชิงพาณิชย์เครื่องแรกที่เปิดดำเนินงานในประเทศสหรัฐอเมริกาเป็นเครื่องปฏิกรณ์ Shippingport (Pennsylvania, ธันวาคม 1957)

หนึ่งในองค์กรแรกที่พัฒนาพลังงานนิวเคลียร์คือกองทัพเรือสหรัฐ, เพื่อวัตถุประสงค์ในการขับเคลื่อนเรือดำน้ำและเรือบรรทุกเครื่องบิน. เรือดำน้ำพลังงานนิวเคลียร์ลำแรก, USS Nautilus (SSN-571), ได้ออกสู่ทะเลในเดือนธันวาคม 1954. เรือดำน้ำนิวเคลียร์ของสหรัฐสองลำ, USS แมงป่องและ USS Thresher ได้หายไปในทะเล. เรือดำน้ำนิวเคลียร์โซเวียตและรัสเซียแปดลำได้หายไปในทะเลเช่นกัน. นี่รวมทั้งอุบัติเหตุของเครื่องปฏิกรณ์ในเรือดำน้ำโซเวียต K-19 ในปี 1961 ซึ่งส่งผลให้มีการเสียชีวิต 8 รายและมากกว่า 30 รายสัมผ้สกับรังสีเกินขนาด. อุบัติเหตุเครื่องปฏิกรณ์เรือดำน้ำโซเวียต K-27 ในปี 1968 ส่งผลให้บาดเจ็บสาหัส 9 รายและ 83 รายได้รับบาดเจ็บอื่นๆ. นอกจากนี้เรือดำน้ำโซเวียต K-429 จมสองครั้ง แต่ถูกกู้ขึ้นมาได้ทั้งสองครั้ง. อุบัติเหตุนิวเคลียร์และรังสีหลายครั้งมีความเกี่ยวข้องกับอุบัติเหตุเรือดำน้ำนิวเคลียร์.

กองทัพสหรัฐยังมีโครงการพลังงานนิวเคลียร์, เริ่มต้นในปี 1954. โรงไฟฟ้??านิวเคลียร์ SM-1 ที่ป้อม Belvoir รัฐเวอร์จิเนีย, เป็นเครื่องปฏิกรณ์พลังงานเครื่องแรกในสหรัฐอเมริกาเพื่อจัดหาพลังงานไฟฟ้าให้กับกริดไฟฟ้าเชิงพาณิชย์ (VEPCO), ในเดือนเมษายน ปี 1957, ก่อน Shippingport. เครื่อง SL-1 เป็นเครื่องปฏิกรณ์พลังงานนิวเคลียร์เพื่อการทดลองของกองทัพสหรัฐที่สถานีทดสอบปฏิกรณ์แห่งชาติในภาคตะวันออกของไอดาโฮ. มันผ่านประสบการณ์ที่เลวร้ายเมื่อไอน้ำระเบิดและการหลอมละลายของนิวเคลียร์ในเดือนมกราคม 1961, ซึ่งฆ่าผู้ใช้งานไปสามราย. ในสหภาพโซเวียตใน'สมาคมการผลิต Mayak' มีอุบัติเหตุเกิดขี้นหลายครั้ง รวมทั้งการระเบิดที่ปล่อยกากกัมมันตรังสีระดับสูงออกมา 50-100 ตัน, ได้ปนเปื้อนดินแดนขนาดใหญ่ในเทือกเขาอูราลตะวันออกและก่อให้เกิดการเสียชีวิตและได้รับบาดเจ็บจำนวนมาก. ระบอบการปกครองของสหภาพโซเวียตเก็บอุบัติเหตุครั้งนี้เป็นความลับไว้ประมาณ 30 ปี. ในที่สุด เหตุการณ์นี้ถูกจัดอยู่ในอันดับ 6 ในเจ็ดอันดับบนสเกล INES (เพียงแค่อันดับที่สามของความรุนแรงเท่านั้นเมื่อเทียบกับภัยพิบัติเชอร์โนบิลและ ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิ).

กำลังการผลิตนิวเคลียร์ที่ติดตั้งเรียบร้อยแล้วได้เพิ่มขึ้นอย่างรวดเร็วในขั้นต้น, โดยเพิ่มขึ้นจากน้อยกว่า 1 กิกะวัตต์ (GW) ใน 1960 เป็น 100 GW ในปี 1970s และ 300 GW ในปลายปี 1980s. ตั้งแต่ปลายปี 1980s กำลังการผลิตทั่วโลกได้เพิ่มขึ้นช้าลงอย่างมาก, คือมีเพียง 366 GW ในปี 2005. ระหว่างราวปี 1970 และปี 1990, มากกว่า 50 GW ของกำลังการผลิตอยู่ระหว่างการก่อสร้าง (สูงสุดมากกว่า 150 GW ในช่วงปลายยุค 70s และช่วงต้นยุค 80s), ในปี 2005, ประมาณ 25 GW ของกำลังการผลิตใหม่มีการวางแผน. มากกว่าสองในสามของโรงไฟฟ้??านิวเคลียร์ทั้งหมดที่ถูกสั่งซื้อหลังมกราคม 1970 ถูกยกเลิกในที่สุด. รวมแล้ว 63 หน่วยนิวเคลียร์ถูกยกเลิกในสหรัฐอเมริการะหว่างปี 1975 และ 1980.

ในช่วงปี 1970s และ 1980s การเพิ่มขึ้นของค่าใช้จ่ายทางเศรษฐกิจ (ที่เกี่ยวข้องกับเวลาในการก่อสร้างที่ขยายออกไปส่วนใหญ่เนื่องจากการเปลี่ยนแปลงกฎระเบียบและการดำเนินคดีความดันกลุ่ม) และการลดลงของราคาเชื้อเพลิงฟอสซิลที่ทำให้โรงไฟฟ้??าพลังงานนิวเคลียร์ที่อยู่ระหว่างการก่อสร้างในขณะนั้นมีความน่าสนใจน้อยลง. ในปี 1980s (สหรัฐ) และปี 1990s (ยุโรป), การไม่เจริญเติบโตของโหลดและการเปิดเสรีกระแสไฟฟ้ายังทำให้การเพิ่มขึ้นของกำลังการผลิตสำหรับโหลดพื้นฐานขนาดใหญ่ที่มีใหม่ไม่น่าสนใจ .

วิกฤตการณ์น้ำมันในปี 1973 มีผลกระทบอย่างมีนัยสำคัญในประเทศฝรั่งเศสและญี่ปุ่น, ซึ่งได้พึ่งพาน้ำมันมากขึ้นในการผลิตไฟฟ้าตลอดมา (39% และ 73% ตามลำดับ) จึงตัดสินใจที่จะลงทุนในพลังงานนิวเคลียร์.

การคัดค้านพลังงานนิวเคลียร์ในท้องถิ่นบางแห่งเกิดขึ้นในช่วงต้นปี 1960s, และในปลายปี 1960s สมาชิกบางคนของชุมชนวิทยาศาสตร์เริ่มแสดงออกถึงความกังวลของพวกเขา. ความกังวลเหล่านี้เกี่ยวข้องกับอุบัติเหตุนิวเคลียร์, การขยายการใช้นิวเคลียร์, ค่าใช้จ่ายสูงของโรงไฟฟ้าพลังงานนิวเคลียร์, การก่อการร้ายนิวเคลียร์และการกำจัดกากกัมมันตรังสี. ในช่วงต้น 1970S, มีการประท้วงขนาดใหญ่ที่เกี่ยวกับโรงไฟฟ้??านิวเคลียร์ที่ถูกนำเสนอใน Wyhl, เยอรมนี. โครงการถูกยกเลิกไปในปี 1975 และการประสบความสำเร็จในการต่อต้านนิวเคลียร์ที่ Wyhl เป็นแรงบันดาลใจให้มีการคัดค้านพลังงานนิวเคลียร์ในส่วนอื่นๆของยุโรปและอเมริกาเหนือ. เมื่อกลางปี 1970s การเคลื่อนไหวต่อต้านนิวเคลียร์ได้ทำเกินกว่าการประท้วงและการเมืองในประเทศเพื่อให้ได้รับความสนใจและมีอิทธิพลมากขึ้น, และพลังงานนิวเคลียร์กลายเป็นประเด็นของการประท้วงของประชาชนที่สำคัญ. แม้ว่าจะไม่มีองค์กรประสานงานเป็นหนึ่งเดียว, และไม่ได้มีเป้าหมายที่แน่นอน, ความพยายามของการเคลื่อนไหวไ??ด้รับการความสนใจอย่างมาก. ในบางประเทศ ความขัดแย้งเรื่องไฟฟ้??านิวเคลียร์ "ได้มาถึงความรุนแรงที่ไม่เคยมีมาก่อนในประวัติศาสตร์ของการถกเถียงทางเทคโนโลยี".

ในฝรั่งเศส, ระหว่างปี 1975 ถึง 1977, ประชาชนราว 175,000 คนออกมาประท้วงต่อต้านพลังงานนิวเคลียร์ในการเดินขบวนสิบครั้ง. ในเยอรมนีตะวันตก, ระหว่างเดือนกุมภาพันธ์ปี 1975 ถึงเดือนเมษายน 1979, ประชาชนราว 280,000 คนเข้าร่วมในการเดินขบวนเจ็ดครั้งที่สถานที่ติดตั้งนิวเคลียร์. ยังมีความพยายามที่จะเข้ายึดในสถานีหลายครั้งอีกด้วย. ในผลพวงของอุบัติเหตุที่เกาะทรีไมล์ในปี 1979, ประชาชนราว 120,000 คนเข้าร่วมการเดินขบวนต่อต้านพลังงานนิวเคลียร์ในกรุงบอนน์. ในเดือนพฤษภาคมปี 1979 ประชาชนราว 70,000 คนรวมทั้งผู้ว่าราชการจังหวัดแคลิฟอร์เนียในขณะนั้น, เจอร์รี่ บราวน์, เข้าร่วมการเดินขบวนและการชุมนุมต่อต้านพลังงานนิวเคลียร์ในกรุงวอชิงตันดีซี. กลุ่มพลังต่อต้านนิวเคลียร์เกิดขึ้นในทุกประเทศที่ได้มีโครงการไฟฟ้านิวเคลียร์. บางส่วนขององค์กรต่อต้านพลังงานนิวเคลียร์เหล่านี้จะถูกรายงานว่ามีการพัฒนาความเชี่ยวชาญอย่างมากในประเด็นการใช้พลังงานและการใช้พลังงานนิวเคลียร์.

ความกังวลเกี่ยวกับสุขภาพและความปลอดภัย, อุบัติเหตุที่เกาะทรีไมล์ในปี 1979 และ ภัยพิบัติเชอร์โนบิลในปี 1986 เป็นส่วนหนึ่งของสาเหตุในการหยุดการก่อสร้างโรงงานใหม่ในหลายประเทศ, แม้ว่าองค์กรนโยบายสาธารณะ, สถาบัน Brookings, จะระบุว่าหน่วยนิวเคลียร์แห่งใหม่, ในเวลาที่ทำการพิมพ์ในปี 2006, ยังไม่ได้มีการสร้างขึ้นในสหรัฐอเมริกาเนื่องจากความต้องการไฟฟ้าที่อ่อนแอและค่าใช้จ่ายเกินงบที่โรงไฟฟ้??านิวเคลียร์เนื่องจากปัญหาด้านกฎระเบียบและการก่อสร้างล่าช้า. ในตอนท้ายของปี 1970s มันก็เป็นที่ชัดเจนว่าพลังงานนิวเคลียร์เกือบจะไม่เติบโตอย่างมากเหมือนกับที่ครั้งหนึ่งเคยเชื่อว่าเป็นอย่างนั้น. ในที่สุด คำสั่งซื้อกว่า 120 เครื่องปฏิกรณ์ในสหรัฐอเมริกาถูกยกเลิกอย่างสิ้นเชิง และการก่อสร้างเครื่องปฏิกรณ์ใหม่ๆต้องหยุดชะงัก. เรื่องในหน้าปกหนังสือ"Forbes magazine"ออกเมื่อวันที่ 11 กุมภาพันธ์ 1985 แสดงความคิดเห็นในความล้มเหลวโดยรวมของโครงการพลังงานนิวเคลียร์ของสหรัฐ, กล่าวว่ามัน "อยู่ในอันดับภัยพิบัติที่บริหารได้ที่ใหญ่ที่สุดในประวัติศาสตร์ธุรกิจ".

ไม่เหมือนกับอุบัติเหตุที่เกาะทรีไมล์, อุบัติเหตุที่ร้ายแรงมากที่เชอร์โนบิลไม่ได้เพิ่มกฎระเบียบที่มีผลกระทบต่อเครื่องปฏิกรณ์ของประเทศตะวันตกเนื่องจากเครื่องปฏิกรณ์เชอร์โนบิลมีการออกแบบแบบ RBMK ที่มีปัญหาในการใช้เฉพาะในสหภาพโซเวียตเท่านั้น, ตัวอย่างเช่นการขาดอาคารเก็บกัก "ที่แข็งแกร่ง". เครื่องปฏิกรณ์ RBMK เหล่านี้หลายเครื่องยังคงใช้อยู่ในปัจจุบัน. อย่างไรก็ตาม ได้มีการเปลี่ยนแปลงในเครื่องปฏิกรณ์ทั้งสองอย่าง (ใช้ยูเรเนียมสมรรถนะสูงที่ปลอดภัยกว่า) และในระบบควบคุม (ป้องกันการปิดระบบความปลอดภัย), ท่ามกลางสิ่งอื่นๆ, เพื่อลดความเป็นไปได้ของการเกิดอุบัติเหตุที่ซ้ำกัน.

องค์การระหว่างประเทศ, เพื่อส่งเสริมความตระหนักด้านความปลอดภัยและการพัฒนาอาชีพที่ผู้ประกอบการในโรงงานนิวเคลียร์, ถูกจัดตั้งขึ้น: สมาคมผู้ประกอบการนิวเคลียร์โลก (อังกฤษ: World Association of Nuclear Operators (WANO)).

การคัดค้านในไอร์แลนด์และโปแลนด์ได้ป้องกันโครงการนิวเคลียร์ที่นั่น, ในขณะที่ออสเตรีย (1978), สวีเดน (1980) และอิตาลี (1987) (ได้รับอิทธิพลจากเชอร์โนบิล) ได้ลงคะแนนในประชามติที่จะต่อต้านหรือรื้อถอนพลังงานนิวเคลียร์. ในเดือนกรกฎาคม 2009, รัฐสภาอิตาลีผ่านกฎหมายที่ยกเลิกผลของการลงประชามติก่อนหน้านี้และได้อนุญาตให้เริ่มต้นทันทีของโครงการนิวเคลียร์ของอิตาลี. หลังจากภัยพิบัตินิวเคลียร์ฟูกูชิม่าไดอิจิ, ได้มีประกาศพักชำระหนี้เป็นเวลาหนึ่งปีสำหรับการพัฒนาพลังงานนิวเคลียร์ ตามด้วยการลงประชามติที่กว่า 94% ของผู้มีสิทธิเลือกตั้ง (ออกมาใช้สิทธิ์ 57%) ปฏิเสธแผนการสำหรับพลังงานนิวเคลียร์ใหม่.

ภายหลัง สงครามโลกครั้งที่สอง ที่อุบัติขึ้นในปีพุทธศักราช 2482 และสิ้นสุดลงในปีพุทธศักราช 2488 นั้น ญี่ปุ่นได้รับความเสียหายอย่างมาก จากการที่สหรัฐอเมริกาได้ใช้อาวุธแบบใหม่โจมตีญี่ปุ่น โดยทิ้งระเบิดปรมาณูลูกแรกลงที่เมืองฮิโรชิมา ซึ่งเป็นฐานบัญชาการกองทัพบกของญี่ปุ่นทางตอนใต้ ประชาชนชาวญี่ปุ่นในเมืองดังกล่าวได้เสียชีวิตไป 80,000 คน และในจำนวนเท่าๆ กันได้รับบาดเจ็บ ตึกรามบ้านช่องกว่า 60% ได้ถูกทำลายลง ซึ่งรวมทั้งตึกที่ทำการของรัฐบาล ย่านธุรกิจ และย่านที่อยู่อาศัย และในอีกสามวันต่อมา ระเบิดปรมาณูลูกที่สองก็ถูกทิ้งลงที่เมืองนางาซากิ ซึ่งเป็นเมืองท่าชายทะเลมีโรงงานอุตสาหกรรมเป็นจำนวนมาก ชาวญี่ปุ่นได้เสียชีวิตระหว่าง 35,000 ถึง 40,000 คน และได้รับบาดเจ็บในจำนวนที่ไล่เลี่ยกัน จากความเสียหายอย่างมหันต์ในคราวนั้น ทำให้ญี่ปุ่นต้องยอมเซ็นสัญญาสันติภาพ ซึ่งระบุให้จักรพรรดิและรัฐบาลญี่ปุ่นอยู่ใต้การปกครองของผู้บัญชาการสูงสุดของทหารสัมพันธมิตร

ในปีพุทธศักราช 2496 ประธานาธิบดีแห่งสหรัฐอเมริกา ได้ประกาศริเริ่มดำเนินโครงการ "ปรมาณูเพื่อสันติ" ขึ้น และในอีกสองปีต่อมา สหประชาชาติได้จัดให้มีการประชุมขึ้นที่กรุงเจนีวา มีนักวิทยาศาสตร์กว่า 4,000 คน จาก 73 ชาติ ได้เข้าร่วมประชุมและพิจารณาถึงการนำพลังงานนิวเคลียร์มาใช้ในทางสันติ เพื่อแสดงให้ชาวโลกทราบว่า พลังงานนิวเคลียร์ที่ใครๆ เห็นว่าเป็นมหันตภัยร้ายแรงสำหรับมนุษย์นั้น อยู่ในวิสัยที่อาจจะควบคุม และนำมาใช้เป็นประโยชน์ได้เช่นกัน และโครงการนี้ได้กระตุ้นให้ประเทศต่าง ๆ ทั่วโลกก่อตั้งสถาบันวิจัยและพัฒนาด้านพลังงานนิวเคลียร์ขึ้นในประเทศของตน เพื่อนำพลังงานนิวเคลียร์มาใช้ประโยชน์ในทางสันติ และช่วยการพัฒนาประเทศในด้านต่าง ๆ

พลังงานนิวเคลียร์ (Nuclear energy) หมายถึง พลังงานไม่ว่าในลักษณะใดซึ่งเกิดจากการปลดปล่อยออกมาเมื่อมีการแยก, รวมหรือแปลงนิวเคลียส (หรือแกน) ของปรมาณู คำที่ใช้แทนกันได้คือ พลังงานปรมาณู (Atomic energy) ซึ่งเป็นคำที่เกิดขึ้นก่อนและใช้กันมาจนติดปาก โดยอาจเป็นเพราะมนุษย์เรียนรู้ถึงเรื่องของปรมาณู (Atom) มานานก่อนที่จะเจาะลึกลงไปถึงระดับนิวเคลียส แต่การใช้ศัพท์ที่ถูกต้องควรใช้คำว่า พลังงานนิวเคลียร์ อย่างไรก็ดีคำว่า Atomic energy ยังเป็นคำที่ใช้กันอยู่ในกฎหมายของหลายประเทศ สำหรับประเทศไทยได้กำหนดความหมายของคำว่าพลังงานปรมาณู ไว้ในมาตรา 3 แห่งพ.ร.บ.พลังงานปรมาณูเพื่อสันติ พ.ศ. 2504 ในความหมายที่ตรงกับคำว่า พลังงานนิวเคลียร์ และต่อมาได้บัญญัติไว้ในมาตรา3 ให้ครอบคลุมไปถึงพลังงานรังสีเอกซ์ด้วย การที่ยังรักษาคำว่าพลังงานปรมาณูไว้ในกฎหมาย โดยไม่เปลี่ยนไปใช้คำว่าพลังงานนิวเคลียร์แทน จึงน่าจะยังคงมีประโยชน์อยู่บ้าง เพราะในทางวิชาการถือว่า พลังงานเอกซ์ไม่ใช่พลังงานนิวเคลียร์ การกล่าวถึง พลังงานนิวเคลียร์ในเชิงปริมาณ ต้องใช้หน่วยที่เป็นหน่วยของพลังงาน โดยส่วนมากจะนิยมใช้หน่วย eV, KeV (เท่ากับ1,000 eV) และ MeV (เท่ากับ 1,000,000 eV) เมื่อกล่าวถึงพลังงานนิวเคลียร์ปริมาณน้อย และนิยมใช้หน่วยกิโลวัตต์- ชั่วโมง หรือ เมกะวัตต์-วัน เมื่อกล่าวถึงพลังงานปริมาณมากๆ โดย: 1MWd=เมกะวัตต์-วัน = 24,000 กิโลวัตต์-ชั่วโมง และ 1MeV=1.854x10E-24 MWd

พลังนิวเคลียร์ (Nuclear power) เป็นศัพท์คำหนึ่งที่มีความหมายสับสน เพราะโดยทั่วไปมักจะมีผู้นำไปใช้ปะปนกับคำว่า พลังงานนิวเคลียร์ โดยถือเอาว่าเป็นคำที่มีความหมายแทนกันได้ แต่ในทางวิศวกรรมนิวเคลียร์เราควรจะใช้คำว่าพลังนิวเคลียร์ เมื่อกล่าวถึงรูปแบบหรือวิธีการเปลี่ยนพลังงานจากรูปหนึ่งไปสู่อีกรูปหนึ่งเช่น โรงไฟฟ้าพลังนิวเคลียร์ย่อมหมายถึง โรงงานที่ใช้เปลี่ยนรูปพลังงานนิวเคลียร์มาเป็นพลังงานไฟฟ้า หรือเรือขับเคลื่อนด้วยพลังนิวเคลียร์ ย่อมหมายถึงเรือที่ขับเคลื่อนโดยเปลี่ยนรูปพลังงานนิวเคลียร์มาเป็นพลังงานกล เป็นต้น พลังนิวเคลียร์เป็นคำที่มาจาก Nuclear power ในภาษาอังกฤษ แต่ในภาษาอังกฤษเอง เมื่อกล่าวถึงเรื่องที่เกี่ยวกับดุลอำนาจระหว่างประเทศ (Nuclear power) กลับหมายถึง มหาอำนาจนิวเคลียร์ หรือประเทศที่มีอาวุธนิวเคลียร์สะสมไว้เพียงพอที่จะใช้เป็นเครื่องมือทางการเมืองได้ (โดยเฉพาะเมื่อใช้เป็นพหูพจน์) การเน้นให้เห็นถึงความแตกต่างระหว่างคำ พลังนิวเคลียร์ และ พลังงานนิวเคลียร์ ก็เพราะในด้านวิศวกรรม พลังควรมีความหมาย เช่นเดียวกับกำลัง ดังนั้นเมื่อกล่าวถึงพลังในเชิงปริมาณ จะต้องใช้หน่วยที่เป็นหน่วยของกำลัง เช่น "โรงไฟฟ้าพลังนิวเคลียร์ ขนาด 600 เมกะวัตต์ (ไฟฟ้า) โรงนี้ใช้เครื่องปฏิกรณ์แบบน้ำเดือด (BWR) ขนาด 1,800 เมกะวัตต์ (ความร้อน) เป็นเครื่องกำเนิดไอน้ำแทนเตาน้ำมัน" เป็นต้น

การทำงานที่เกี่ยวข้องกับสารกัมมันตภาพรังสีเป็นเวลานานอาจทำให้เนื้อเยื่อบางส่วนของร่างกายเสียหาย หรือก่อให้เกิดมะเร็งในส่วนต่าง ๆ ของร่างกายได้ อาทิเช่น มะเร็งเม็ดเลือดขาว และยังทำให้ผู้ที่ได้รับมีความผิดปกติทางเซลล์พันธุกรรมเช่น สัตว์เกิดไม่มีแขน ไม่มีขา ไม่มีตา ไม่มีสมอง และยังทำลายคนที่ไม่รู้วิธีป้องกันป่วยลง แต่อันตรายจากรังสีในปัจจุบันที่ได้รับมากที่สุดคือ ถ่านไฟฉายแต่จะเป็นรังสีจากโคบอล 60 ซึ่งมีวิธีการคือ อย่าแกะสังกะสีออก และใช้แล้วควรทิ้งทันที โดยทั่วไปรังสีที่เจอเป็นอันดับ 2 คือ รังสีเอกซ์ตามโรงพยาบาลในห้องเอกซ์เรย์ ซึ่งจะมีป้ายเตือนไว้หน้าห้องแล้ว และไม่ควรที่จะเข้าใกล้มากนัก หากพบว่ามีวัตถุที่แผ่รังสี ควรที่จะหลีกไป แล้วแจ้งเจ้าหน้าที่ที่เกี่ยวข้อง หากไม่แน่ใจก็ให้สอบถามผู้รู้เช่น ครูโรงเรียนมัธยม หรือเจ้าหน้าที่

อุบัติเหตุเกี่ยวกับการแผ่รังสีและพลังงานนิวเคลียร์รวมถึงโรงไฟฟ้าพลังงานนิวเคลียร์ที่เชอร์โนบิล (1986), ที่ Fukushima Daiichi (2011) และที่เกาะทรีไมล์ (1979). นอกจากนี้ยังมีอุบัติเหตุที่เกิดในเรือดำน้ำนิวเคลียร์.. ในแง่ของการสูญเสียชีวิตต่อหน่วยของพลังงานที่สร้างขึ้น, นักวิเคราะห์ได้รายงานว่าพลังงานนิวเคลียร์ได้ก่อให้เกิดการเสียชีวิตต่อหน่วยของพลังงานน้อยกว่าหน่วยพลังงานที่สร้างขึ้นจากแหล่งที่สำคัญของการผลิตพลังงานอื่นๆ. การผลิตพลังงานจากถ่านหิน, ปิโตรเลียม, ก๊าซธรรมชาติและไฟฟ้าพลังน้ำได้ก่อให้เกิดการเสียชีวิตต่อหน่วยของพลังงานที่สร้างขึ้นมีจำนวนมากกว่าอันเนื่องมาจากมลพิษทางอากาศและผลกระทบที่เกิดอุบัติเหตุ. อย่างไรก็ตาม ค่าใช้จ่ายทางเศรษฐกิจของอุบัติเหตุโรงไฟฟ้??านิวเคลียร์จะสูงและการลอมละลาย (อังกฤษ: meltdowns) อาจต้องใช้เวลาหลายทศวรรษทำความสะอาด. ค่าใช้จ่ายในการเคลื่อนย้ายมนุษย์ในพึ้นที่ที่ได้รับผลกระทบและการดำรงชีวิตที่สูญเสียไปยังมีค่ามหาศาลอย่างมีนัยสำคัญ.

พร้อมกับแหล่งพลังงานที่ยั่งยืนอื่นๆ, พลังงานนิวเคลียร์เป็นวิธีการผลิตไฟฟ้าที่มีผลผลิตคาร์บอนที่ต่ำ, จากการวิเคราะห์ในเอกสารเกี่ยวกับวงจรชีวิตของความเข้มของการปล่อยคาร์บอนโดยรวมพบว่ามันก็คล้ายกับแหล่งพลังงานทดแทนอื่นๆเมื่อมีการเปรียบเทียบของการปล่อยก๊าซเรือนกระจก (อังกฤษ: greenhouse gas (GHG))ต่อหน่วยของพลังงานที่สร้างขึ้น. ??ด้วยการแปลความหมายนี้, จากจุดเริ่มต้นของโรงไฟฟ้??านิวเคลียร์ในเชิงพาณิชย์ในปี 1970, ได้มีการป้องกันไม่ให้เกิดการปล่อยก๊าซประมาณ 64 gigatonnes ของก๊าซคาร์บอนไดออกไซด์เทียบเท่าก๊าซเรือนกระจก (GtCO2-eq) (ก๊าซที่จะเกิดขึ้นจากการเผาไหม้ของเชื้อเพลิงฟอสซิลในโรงไฟฟ้าพลังงานความร้อนที่สร้างพลังงานไฟฟ้าขนาดเดียวกัน).

ในปี 2011 โรงไฟฟ้านิวเคลียร์ผลิต 10% ของกระแสไฟฟ้าของโลก. ในปี 2007, IAEA รายงานว่า มีเครื่องปฏิกรณ์พลังงานนิวเคลียร์ 439 เครื่องกำลังปฏิบัติงานในโลก ใน 31 ประเทศ. แต่อย่างไรก็ตาม หลายประเทศในขณะนี้ได้หยุดการดำเนินงานอันเนื่องมาจากภัยพิบัตินิวเคลียร์ที่ฟูกูชิม่า ในขณะที่พวกเขามีการประเมินในด้านความปลอดภัย. ในปี 2011 การผลิตพลังงานนิวเคลียร์ทั่วโลกลดลง 4.3 % เป็นการลดลง ที่ใหญ่ที่สุดในประวัติศาสตร์, ตามหลังการลดลงอย่างรวดเร็วในญี่ปุ่น(-44.3%) และ เยอรมนี (-23.2%).

ตั้งแต่พลังงานนิวเคลียร์เชิงพาณิชย์เริ่มขึ้นในช่วงกลางทศวรรษ 1950, ปี 2008 เป็นปีแรกที่ ไม่มีโรงไฟฟ้านิวเคลียร์ใหม่ที่ถูกเชื่อมต่อกับกริด แม้ว่าจะมีสองเครื่องได้รับการเชื่อมต่อในปี 2009.

การผลิตต่อปีของโรงไฟฟ้านิวเคลียร์มีแนวโน้มลดลงเล็กน้อยตั้งแต่ปี 2007, ลดลง 1.8% ในปี 2009 ลงมาที่ 2558 TWh หรือเพียง 13-14% ของความต้องการไฟฟ้าของโลก. ปัจจัยหนึ่งในการลดลงของพลังงานนิวเคลียร์ตั้งแต่ปี 2007 คือเนื่องจากการปิดเป็นเวลานานของเครื่องปฏิกรณ์ขนาดใหญ่ที่โรงไฟฟ้านิวเคลียร์ Kashiwazaki - Kariwa ในประเทศญี่ปุ่นหลังจากแผ่นดินไหวที่ นีงะตะ-Chuetsu-โอกิ.Kashiwazaki - Kariwa.

สหรัฐอเมริกาผลิตพลังงานนิวเคลียร์มากที่สุดด้วยพลังงานนิวเคลียร์สูงถึง 19% ของกระแสไฟฟ้าที่ใช้. ในขณะที่ฝรั่งเศสผลิตเป็นเปอร์เซ็นต์สูงสุดของพลังงานไฟฟ้าจากเครื่องปฏิกรณ์นิวเคลียร์ถึง 80% ณ ปี 2006. ในสหภาพยุโรปโดยรวม, พลังงานนิวเคลียร์ผลิตได้ 30% ของไฟฟ้า. นโยบายพลังงานนิวเคลียร์มีความแตกต่างในระหว่างประเทศของสหภาพยุโรป และบางส่วนเช่น ออสเตรีย, เอสโตเนีย, ไอร์แลนด์ และอิตาลี ไม่มีโรงไฟฟ้านิวเคลียร์ที่ใช้งานอยู่. ในการเปรียบเทียบ ฝรั่งเศสมีโรงไฟฟ้าประเภทนี้จำนวนมาก, ที่มี 16 สถานีที่มีเครื่องปฏิกรมากกว่าหนึ่งเครื่องในการใช้งานในปัจจุบัน

ในสหรัฐอเมริกา, ในขณะที่อุตสาหกรรมไฟฟ้าจากถ่านหินและก๊าซ คาดว่าจะมีมูลค่า $ 85 พันล้านในปี 2013, เครื่องกำเนิดไฟฟ้าพลังงานนิวเคลียร์มีการคาดการณ์ว่าจะมีมูลค่า $ 18 พันล้าน.

เรือทหารจำนวนมากและเรือพลเรือนบางลำ (เช่น เรือตัดน้ำแข็งบางลำ) ใช้การขับเคลื่อนด้วยนิวเคลียร์. ยานอวกาศบางลำถูกยิงขึ้นโดยใช้เครื่องปฏิกรณ์นิวเคลียร์เต็มรูปแบบ. มีเครื่องปฏิกรณ์ 33 ชุดเป็นของสหภาพโซเวียต, RORSAT และอีกหนึ่งชุดเป็นของสหรัฐ, SNAP-10A.

การวิจัยนานาชาติยังมีการทำอยู่อย่างต่อเนื่องในการปรับปรุงด้านความปลอดภัยเช่น ความปลอดภัยของโรงไฟฟ้าแบบพาสซีฟ, การใช้นิวเคลียร์ฟิวชัน และการใช้ที่เพิ่มขึ้นของความร้อนในกระบวนการ เช่นการผลิตไฮโดรเจน (ในการสนับสนุนของเศรษฐกิจไฮโดรเจน), การแยกเกลือจากน้ำทะเลและ การใช้งานในระบบเขตร้อน (อังกฤษ: district heating system).

ทั้งปฏิกิริยาฟิชชันและฟิวชั่นปรากฏว่าเป็นโอกาศสำหรับการใช้งานสำหรับขับเคลื่อนยานที่ใช้ในอวกาศเพื่อสร้างความเร็วที่สูงกว่าในการปฏิบัติภารกิจที่มีมวลปฏิกิริยา (อังกฤษ: reaction mass) น้อย. สิ่งนี้เนื่องจากความหนาแน่นของพลังงานที่สูงขึ้นมากของปฏิกิริยานิวเคลียร์: มีค่ามากกว่าเป็นเลข 7 หลัก (10,000,000 เท่า) ที่มีพลังมากขึ้นกว่าปฏิกิริยาเคมีที่ให้พลังงานกับจรวดปัจจุบัน.

การสลายตัวของสารกัมมันตรังสี (อังกฤษ: Radioactive Decay) ได้ถูกนำมาใช้ในระดับที่ค่อนข้างเล็ก (ไม่กี่กิโลวัตต์) ซึ่งส่วนใหญ่ให้พลังกับภารกิจและการทดลองในอวกาศโดยใช้เครื่องกำเนิดเทอร์โมอิเล็กทริกเรดิโอไอโซโทป (อังกฤษ: radioisotope thermoelectric generator) เช่น การพัฒนาในห้องปฏิบัติการแห่งชาติไอดาโฮ.

เช่นเดียวกับหลายโรงไฟฟ้าพลังงานความร้อนแบบเดิมที่ผลิตไฟฟ้าโดยควบคุมพลังงานความร้อนที่ปล่อยออกมาจากการเผาไหม้เชื้อเพลิงฟอสซิล, โรงไฟฟ้านิวเคลียร์แปลงพลังงานที่ปล่อยออกมาจากนิวเคลียสของอะตอมผ่านทางนิวเคลียร์ฟิชชันที่เกิดขึ้นในเครื่องปฏิกรณ์นิวเคลียร์. ความร้อนถูกย้ายออกจากแกนเครื่องปฏิกรณ์โดยระบบระบายความร้อนที่ใช้ความร้อนในการสร้างไอน้ำ, ไอน้ำจะไปขับกังหันไอน้ำที่เชื่อมต่อกับเครื่องกำเนิดไฟฟ้าเพื่อผลิตไฟฟ้าต่อไป

เครื่องปฏิกรณ์นิวเคลียร์เป็นเพียงส่วนหนึ่งของวงจรชีวิตสำหรับพลังงานนิวเคลียร์. กระบวนการเริ่มต้นด้วยการทำเหมืองแร่ (ดูการทำเหมืองแร่ยูเรเนียม). แร่ยูเรเนียมอยู่ใต้ดิน, เหมืองแร่อาจเป็นแบบเปิดหน้าหลุมหรือการกรองในแหล่งกำเนิด. ไม่ว่าในกรณีใดก็ตาม แร่ยูเรเนียมจะถูกสกัด, มักจะถูกแปลงให้เป็นรูปแบบที่มีความเสถียรและมีขนาดกะทัดรัด เช่น yellowcake จากนั้นจะถูกเคลื่อนย้ายไปยังสถานที่ทำกระบวนการ. ที่นี่ yellowcake จะถูกแปลงเป็น hexafluoride ยูเรเนียม ซึ่งจะถูกทำให้มีสมรรถนะสูงโดยใช้เทคนิคต่างๆ. ณ จุดนี้ยูเรเนียมที่มีสมรรถนะสูงจะมี U-235 ตามธรรมชาติมากกว่า 0.7% จะถูกนำมาใช้ทำแท่งเชื้อเพลิงของเครื่องปฏิกรณ์ที่มีองค์ประกอบและรูปทรงเรขาคณิตที่เหมาะสม. แท่งเชื้อเพลิงจะใช้งานได้ประมาณ 3 รอบการดำเนินงาน (ปกติรวม 6 ปีในขณะนี้)ภายในเครื่องปฏิกรณ์, โดยทั่วไปจนถึงประมาณ 3 % ของยูเรเนียมของพวกมันจะถูกฟิชชันไป, จากนั้นพวกมันจะถูกย้ายไปยังจุดรวมเชื้อเพลิงใช้แล้ว, ที่จุดนี้ไอโซโทปอายุสั้นที่เกิดจากปฏิกิริยาฟิชชันจะสามารถสลายตัวไป. หลังจากนั้นประมาณ 5 ปีที่ อยู่ในจุดรวมเชื้อเพลิงใช้แล้ว, เชื้อเพลิงที่ใช้แล้วนี้จะถูกทำให้เย็นลงโดยวิธีกัมมันตภาพรังสีเพื่อให้อุณหภูมิลดลงพอที่จะจัดการได้ และมันจะถูกย้ายไปยังถังเก็บแห้งหรือไปแปรสภาพ (อังกฤษ: reprecess).

ยูเรเนียมเป็นองค์ประกอบที่ค่อนข้างทั่วไปในเปลือกโลก. ยูเรเนียมประมาณว่ามีอยู่ทั่วไปเช่นเดียวกันกับดีบุกหรือเจอร์เมเนียมในเปลือกของโลก และมีประมาณ 40 เท่าที่จะพบได้บ่อยกว่าแร่เงิน. ยูเรเนียมเป็นส่วนประกอบของหินส่วนใหญ่, สิ่งสกปรกและของมหาสมุทร. ความจริงที่ว่ายูเรเนียมมีอยู่กระจัดกระจายอย่างมากทำให้เป็นปัญหา เพราะการทำเหมืองแร่ยูเรเนียมมีความเป็นไปได้ทางเศรษฐกิจก็ต่อเมื่อมันมีการรวมตัวที่เข้มข้นมาก. แต่กระนั้น ทรัพยากรยูเรเนียมของโลกที่วัดได้ในปัจจุบัน, ที่สามารถผลิตออกมาได้คุ้มค่าทางเศรษฐกิจในราคา 130 USD/กก., จะมีพอให้ใช้ได้ระหว่าง 70 ถึง 100 ปี.

ตามข้อมูลของ OECD ในปี 2006, มีการคาดว่าจะมีมูลค่าของยูเรเนียมที่ 85 ปีในแหล่งแร่ที่ระบุ, เมื่อยูเรเนียมนั้นถูกนำไปใช้ในเทคโนโลยีเครื่องปฏิกรณ์ในปัจจุบัน(light water), ที่มียูเรเนียมที่สามารถกู้ได้คุ้มค่าทางเศรษฐกิจเป็นเวลา 670 ปีในทรัพยากรและแหล่งแร่ฟอสเฟตธรรมดาโดยรวม, ในขณะที่ ยังมีการใช้เทคโนโลยีเครื่องปฏิกรณ์ปัจจุบัน, ทรัพยากรที่สามารถเรียกคืนได้จากระหว่าง 60-100 USD/กิโลกรัมของยูเรเนียม. โออีซีดีได้ตั้งข้อสังเกตว่า:

แม้ว่าอุตสาหกรรมนิวเคลียร์ได้ขยายออกไปอย่างมีนัยสำคัญ, เชื้อเพลิงจะมีเพียงพอที่จะสามารถใช้ได้นานหลายศตวรรษ. ถ้าเครื่องปฏิกรณ์แบบ bleeder ที่ก้าวหน้าอาจได้รับการออกแบบในอนาคตที่จะใช้ประโยชน์ได้อย่างมีประสิทธิภาพของยูเรเนียมและ actinides ทั้งหมดที่ถูกรีไซเคิลหรือที่หมดไป ดังนั้น ประสิทธิภาพการใช้ทรัพยากรจะได้รับการปรับปรุงให้ดีขึ้นต่อไปอีกถึงแปดเท่า

ตัวอย่างเช่น OECD ได้กำหนดว่า ด้วยรอบเชื้อเพลิงของเครื่องปฏิกรณ์รวดเร็ว (อังกฤษ: fast reactor) ที่บริสุทธ์ ที่มีการเผาไหม้ของ, และการรีไซเคิลของ, ยูเรเนียมและ actinides ทั้งหมด, actinides ซึ่งปัจจุบันสร้างสารอันตรายมากที่สุดในกากนิวเคลียร์, จะมีมูลค่าของ ยูเรเนียมในทรัพยากรและแร่ฟอสเฟตธรรมดาโดยรวมถึง 160,000 ปี. อ้างอิงจาก red book ของ OECD ในปี 2011, อันเนื่องมาจากการสำรวจที่เพิ่มขึ้น, แหล่งแร่ยูเรเนียมที่รู้จักได้เติบโตขึ้น 12.5% ตั้งแต่ปี 2008, ด้วย การเพิ่มขึ้นนี้ แปลได้ว่าจะมียูเรเนียมมากกว่าหนึ่งศตวรรษ ถ้าอัตราการใช้โลหะที่จะยังคงอยู่ในระดับของปี 2011.

ปัจจุบัน เครื่องปฏิกรณ์แบบ light water มีการใช้เชื้อเพลิงนิวเคลียร์ที่ค่อนข้างไม่มีประสิทธิภาพด้วยการทำปฏิกิริยาฟิชชันกับไอโซโทปของยูเรเนียม-235 ที่หายากมากเท่านั้น. การนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่(อังกฤษ: Nuclear reprocessing)สามารถนำกากของเสียนี้กลับมาใช้ใหม่ได้, และการออกแบบเครื่องปฏิกรณ์ที่มีประสิทธิภาพมากขึ้น, เช่นเครื่องปฏิกรณ์ Generation III ที่กำลังก่อสร้างในปัจจุบันได้ประลบความสำเร็จในการเผาไหม้ทรัพยากรที่มีอยู่ได้อย่างมีประสิทธิภาพ สูงกว่าเครื่องปฏิกรณ์ generation II รุ่นโบราณในปัจจุบัน ที่สร้างขึ้นเป็นส่วนใหญ่ของเครื่องปฏิกรณ์ทั่วโลก.

บทความหลัก : เครื่องปฏิกรณ์นิวเคลียร์, เครื่องปฏิกรณ์แบบ ฺBreeder และ พลังงานนิวเคลียร์ที่มีการเสนอให้เป็นพลังงานทดแทน

ตรงข้ามกับเครื่องปฏิกรณ์ light water ในปัจจุบันที่ใช้ยูเรเนียม-235 (0.7% ของยูเรเนียมธรรมชาติทั้งหมด), เครื่องปฏิกรณ์แบบ Fast Breeder จะใช้ยูเรเนียม-238 (99.3% ของยูเรเนียมธรรมชาติทั้งหมด). มีการประเมินว่ามียูเรเนียม-238 มูลค่าถึงห้าพันล้านปีสำหรับใช้ใน โรงไฟฟ้าเหล่านี้.

เทคโนโลยี Breeder มีการใช้ในหลายเครื่องปฏิกรณ์, แต่ค่าใช้จ่ายในการนำกลับไปเข้ากระบวนการใหม่ของเชื้อเพลิงอย่างปลอดภัยที่สูงสำหรับระดับของเทคโนโลยีในปี 2006, ต้องใช้ยูเรเนียมราคาสูงกว่า 200 USD/กก.ก่อนที่จะคุ้มทุนทางเศรษฐกิจ. อย่างไรก็ตาม เครื่องปฏิกรณ์แบบ Breeder ยังคงถูกเรียกหาเพราะพวกมันมีศักยภาพในการเผาไหม้ actinides ทิ้งทั้งหมดของกากนิวเคลียร์ในคลังสินค้าคงคลังในปัจจุบันในขณะที่ยังคงผลิตพลังงานและสร้างปริมาณ เพิ่มเติมของเชื้อเพลิงสำหรับเครื่องปฏิกรณ์อีกหลายเครื่องผ่านกระบวนการ Breeding. ในปี 2005 มีเครื่องปฏิกรณ์แบบ Breeder อยู่สองเครื่องที่ผลิตพลังงาน: ฟีนิกซ์ในประเทศฝรั่งเศส ซึ่งได้ปิดตัวลงตั้งแต่ปี 2009 หลังจาก 36 ปีของการเดินเครื่อง และ BN-600 เครื่องปฏิกรณ์ที่สร้างขึ้นในปี 1980 ที่เมือง Beloyarsk, รัสเซีย ซึ่งยังคงใช้งานอยู่ ณ ปี 2013. กระแสไฟฟ้าที่ผลิตได้ของ BN-600 คือ 600 เมกะวัตต์ - รัสเซียมีแผนจะขยายการใช้ในประเทศด้วยเครื่องปฏิกรณ์แบบ Breeder รุ่น BN-800, กำหนดให้เริ่มใช้งานในปี 2014, และการออกแบบทางเทคนิคของเครื่องปฏิกรณ์ Breeder ที่มีขนาดใหญ่กว่า, เครื่องปฏิกรณ์ BN-1200, กำหนดให้มีการสรุปได้ในปี 2013, กับการก่อสร้างที่กำหนดไว้สำหรับปี 2015. เครื่องปฏิกรณ์ Beeder ของญี่ปุ่น, Monju, เริ่มต้นเดินเครื่องใหม่ (หลังจากปิดตัวลงในปี 1995)ในปี 2010 เป็นเวลา 3 เดือน, แต่ต้องปิดตัวลงอีกครั้งหลังจากที่มีอุปกรณ์ตกลงไปในเครื่องปฏิกรณ์ในระหว่างการตรวจสอบ, มันถูกวางแผนให้เริ่มเดินเครื่องอีกครั้งในช่วงปลายปี 2013. ทั้งจีนและอินเดียกำลังสร้างเครื่องปฏิกรณ์แบบ Breeder. เครื่องปฏิกรณ์แบบ Breeder เร็วต้นแบบอินเดีย, 500 MWe, กำหนดเริ่มเดินเครื่องในปี 2014 และมีแผนจะสร้างขึ้นอีกห้าเครื่องในปี 2020. เครื่องปฏิกรณ์เร็วเชิงทดลองของจืนเริ่มผลิตไฟฟ้าในปี 2011.

อีกทางเลือกหนึ่งของเครื่องปฏิกรณ์แบบ Breeder เร็วก็คือ เครื่องปฏิกรณ์แบบ Breeder ความร้อนที่ใช้ยูเรเนียม-233 จากทอเรียมเป็นเชื้อเพลิงฟิชชันใน thorium fuel cycle. ทอเรียมพบได้บ่อยประมาณ 3.5 เท่าของยูเรเนียมในเปลือกของโลก และมีลักษณะทางภูมิศาสตร์ที่แตกต่างกัน. สารนี้จะขยายฐานทรัพยากรที่สามารถทำปฏิกิริยาฟิชชันในทางปฏิบัติได้โดยรวมถึง 450%. ในโปรแกรมพลังงานนิวเคลียร์สามขั้นตอนของอินเดียจะมีการใช้เชื้อเพลิง ทอเรียมในขั้นตอนที่สาม เนื่องจากมีทรัพยากรทอเรียมสำรองอยู่มากมายแต่มียูเรเนียมน้อย.

ของเสียที่สำคัญที่สุดจากโรงไฟฟ้าพลังงานนิวเคลียร์คือเชื้อเพลิงนิวเคลียร์ที่ใช้แล้ว. มันประกอบด้วยยูเรเนียมที่ไม่แปรเปลี่ยนเป็นหลัก เช่นเดียวกับปริมาณที่มีนัยสำคัญของ actinides ที่เป็น transuranic (ส่วนใหญ่เป็นพลูโตเนียมและคูเรียม). นอกจากนี้, ประมาณ 3% ของมันเป็นผลิตภัณฑ์ฟิชชันจากปฏิกิริยานิวเคลียร์. พวก actinides (ยูเรเนียม, พลูโตเนียม และ คูเรียม) มีความรับผิดชอบสำหรับกลุ่มของกัมมันตภาพรังสีในระยะยาว, ในขณะที่ ผลิตภัณฑ์ฟิชชันมีความรับผิดชอบในกลุ่มของกัมมันตภาพรังสีระยะสั้น.

การจัดการกากกัมมันตรังสีระดับสูงสร้างความกังวลในการจัดการและการกำจัดของสารกัมมันตรังสีระดับสูง ที่ถูกสร้างขึ้นในระหว่างการผลิตพลังงานนิวเคลียร์. ปัญหาทางเทคนิคในการบรรลุงานนี้เป็นที่น่ากลัว, เนื่องจากเป็นระยะเวลานานมากที่ของเสียกัมมันตรังสีจะยังคงร้ายแรงต่อสิ่งมีชีวิต. โดยเฉพาะความกังวลจากสองผลิตภัณฑ์ฟิชชันอายุยาว ได้แก่ เทคนีเชียม-99 (ครึ่งชีวิต 220,000 ปี) และ ไอโอดีน-129 (ครึ่งชีวิต 15,700,000 ปี), ซึ่งจะมีอิทธิพลในการสร้างกัมมันตภาพรังสีจากเชื้อเพลิงนิวเคลียร์ที่ใช้แล้วไปหลายพันปี. องค์ประกอบ transuranic ที่ลำบากที่สุดในเชื้อเพลิงใช้แล้วคือ เนปทูเนียม-237 (ครึ่งชีวิตสองล้านปี) และพลูโตเนียม-239 (ครึ่งชีวิต 24,000 ปี). ผลของมันคือ กากกัมมันตรังสี ระดับสูงต้องใช้การบำบัดและการจัดการที่มีความซับซ้อนเพื่อประสบความสำเร็จในการแยกมันจากชีวมณฑล. สิ่งนี้มักจะจำเป็นในการบำบัด, ตามด้วยกลยุทธ์การจัดการในระยะยาวที่เกี่ยวข้องกับการจัดเก็บถาวรหรือการกำจัดหรือการเปลี่ยนแปลงของเสียให้อยู่ในรูปแบบที่ไม่เป็นพิษ.

รัฐบาลทั่วโลกกำลังพิจารณาช่วงของการจัดการของเสียและตัวเลือกในการกำจัด, ที่มักจะเกี่ยวข้องกับการจัดเก็บลึกลงไปในพื้นโลก (อังกฤษ: deep-geologic placement), แม้ว่าจะมีความคืบหน้าที่จำกัดในการดำเนินการแก้ปัญหาการจัดการของเสียในระยะยาว. นี่เป็นส่วนหนึ่ง เพราะระยะเวลาเป็นปัญหาเมื่อต้องรับมือกับกากกัมมันตรังสีที่มีขนาดตั้งแต่ 10,000 ถึงหลายล้านปี, อ้างถึงการศึกษาหลายครั้งที่มีพื้นฐานมาจากผลกระทบของปริมาณรังสีโดยประมาณ.

อย่างไรก็ตาม การออกแบบของเครื่องปฏิกรณ์นิวเคลียร์ที่นำเสนอบางเครื่อง เช่นเครื่องปฏิกรณ์ Integral Fast Reactor และ Molten salt reactor สามารถใช้กากนิวเคลียร์จากเครื่องปฏิกรณ์ light water มาเป็นเชื้อเพลิงได้, ทำการ transmutating มันให้เป็นไอโซโทปที่จะปลอดภัย หลังจากนี้หลายร้อยปี แทนที่จะเป็นนับหมื่นปี. สิ่งนี้อาจให้ทางเลือกที่น่าสนใจมากกว่าการกำจัดโดยฝังลึกใต้ผิวโลก.

ความเป็นไปได้อีกทางหนึ่งก็คือ การใช้ทอเรียมในเครื่องปฏิกรณ์ที่ได้รับการออกแบบมาโดยเฉพาะสำหรับทอเรียม (แทนที่จะผสมทอเรียมด้วยยูเรเนียมและพลูโตเนียม (เช่นในเครื่องปฏิกรณ์ที่กำลังใช้งานอยู่). เชื้อเพลิงทอเรียมที่ใช้แล้วยังคงมีกัมมันตรังสีเพียงไม่กี่ร้อยปีแทนที่จะเป็นนับหมื่นปี.

เนื่องจาก ส่วนเล็กๆของอะตอมเรดิโอไอโซโทปที่ย่อยสลายต่อหน่วยเวลาจะแปรผกผันกับครึ่งชีวิตของมัน, กัมมันตภาพรังสีที่สัมพันธ์กันของปริมาณของกากกัมมันตรังสีของมนุษย์ที่ถูกฝังจะลดลงเมื่อเวลาผ่านไป เมื่อเทียบกับเรดิโอไอโซโทปธรรมชาติ (เช่นโซ่การสลายตัวของ 120 ล้านล้านตันของทอเรียม และ 40 ล้านล้านตันของยูเรเนียม ซึ่ง, ที่ร่องรอยสัมพันธ์ของความเข้มข้นของชิ้นส่วนต่อล้านหน่วย, จะอยู่บนเปลือกโลกที่ 3*1019 ตันมวล). ตัวอย่างเช่น ในช่วงระยะเวลาหลายพันปี, หลังจากที่เรดิโอไอโซโทปครึ่งชีวิตสั้นที่แอคทีฟที่สุดได้สลายตัว, กากนิวเคลียร์สหรัฐอเมริกาที่ฝังไว้จะเพิ่มกัมมันตภาพรังสีใน 2,000 ฟุตด้านบนของหินและดินในประเทศสหรัฐอเมริกา (10 ล้าน กิโลเมตร2) เพิ่มขึ้น ? 1 ใน 10 ล้านส่วนมากกว่าปริมาณสะสมของเรดิโอไอโซโทปธรรมชาติในปริมาตรดังกล่าว, ถึงแม้ว่า บริเวณใกล้เคียงของสถานที่จะมีความเข้มข้นของไอโซโทปรังสีเทียมใต้ดินสูงกว่าค่าเฉลี่ยดังกล่าว.

อุตสาหกรรมนิวเคลียร์ยังผลิตกากกัมมันตรังสีระดับต่ำเป็นปริมาณมากอีกด้วยในรูปแบบของรายการปนเปื้อน เช่น เสื้อผ้า, เครื่องมือที่ใช้มือ, เรซินสำหรับเครื่องกรองน้ำ และ (เมื่อตอนรื้อถอน)วัสดุต่างๆที่สร้างเป็นตัวเครื่องปฏิกรณ์ขึ้นมา. ในสหรัฐอเมริกา, คณะกรรมการกำกับกิจการพลังงานมีความพยายามซ้ำแล้วซ้ำอีกเพื่อยอมให้วัสดุในระดับต่ำให้ได้รับการจัดการเฉกเช่นของเสียปกติ: นั่นคือฝังกลบ, กลับมาใช้ใหม่เป็นของใช้ของผู้บริโภค เป็นต้น

ในประเทศที่มีพลังงานนิวเคลียร์, กากกัมมันตรังสีประกอบด้วยของเสียที่เป็นพิษน้อยกว่า 1% ของของเสียที่เป็นพิษในภาคอุตสาหกรรมโดยรวม, ซึ่งส่วนมากยังคงเป็นอันตรายเป็นเวลานาน. โดยรวมแล้ว พลังงานนิวเคลียร์ผลิตวัสดุของเสียน้อยโดยปริมาตรกว่าโรงไฟฟ้าเชื้อเพลิงฟอสซิล. โดยเฉพาะโรงไฟฟ้าที่เผาถ่านหินมีข้อสังเกตในการผลิตเถ้าที่เป็นพิษและกัมมันตภาพรังสีอย่างอ่อนจำนวนมาก เนื่องจากถ่านหินมีการสะสมทางธรรมชาติที่เกิดขึ้นในโลหะและวัสดุกัมมันตรังสีอย่างอ่อน. รายงานในปี 2008 จากห้องปฏิบัติการแห่งชาติ Oak Ridge สรุปได้ว่า ไฟฟ้าจากถ่านหินจริงๆแล้วจะส่งผลให้กัมมันตภาพรังสีถูกปล่อยออกมาในสภาพแวดล้อมมากกว่าการดำเนินงานของพลังงานนิวเคลียร์, และว่าค่าของยาที่มีผลกระทบต่อประชากรเทียบเท่า หรือปริมาณยาที่ให้กับประชาชนจากการแผ่รังสีจากโรงไฟฟ้าถ่านหินจะเป็น 100 เท่าของการดำเนินการของโรงงานนิวเคลียร์ในอุดมคติ. อันที่จริง เถ้าถ่านหินมีกัมมันตรังสีน้อยกว่าเชื้อเพลิงใช้แล้วมากเมื่อเทียบน้ำหนักที่เท่ากัน, แต่เถ้าถ่านหินถูกผลิตในปริมาณที่มากกว่าต่อหน่วยของ พลังงานที่สร้างขึ้น, และเถ้าเหล่านี้ถูกปล่อยออกโดยตรงในสภาพแวดล้อมเป็นเถ้าลอยในอากาศ, ในขณะที่โรงไฟฟ้านิวเคลียร์ใช้สิ่งป้องกันเพื่อปกป้องสิ่งแวดล้อมจากสารกัมมันตรังสี, เช่น ภาชนะเก็บถังแห้ง.

การกำจัดของเสียนิวเคลียร์มักจะกล่าวกันว่าเป็น'ส้นเท้าอุตสาหกรรมของ Achilles'. ปัจจุบัน ของเสียส่วนใหญ่จะถูกเก็บไว้ที่สถานที่ตั้งของเครื่องปฏิกรณ์แต่ละแห่งและมีสถานที่กว่า 430 แห่งทั่วโลกที่วัสดุกัมมันตรังสียังคงมีการสะสมอย่างต่อเนื่อง. ผู้เชี่ยวชาญบางคนแนะนำว่าหลุมเก็บใต้ดินส่วนกลางที่มีการจัดการ, การป้องกันรักษา, และการเฝ้าดูอย่างดีจะช่วยได้อย่างมาก. มี "ฉันทามติระหว่างประเทศเกี่ยวกับคำแนะนำในการจัดเก็บกากนิวเคลียร์ในหลุมเก็บลึกทางธรณีวิทยา" ที่ไม่มีการเคลื่อนไหวของกากนิวเคลียร์ในเครื่องปฏิกรณ์นิวเคลียร์ฟิวชั่นธรรมชาติใน Oklo, ประเทศกาบอง, อายุ 2 พันล้านปี, ถูกอ้างว่าเป็น " แหล่งที่มาของข้อมูลที่จำเป็นในวันนี้".

เมื่อปี 2009 ไม่มีหลุมเก็บใต้ดินที่มีวัตถุประสงค์ในเชิงพาณิชย์ในการดำเนินงานดังกล่าว. โรงแยกของเสียต้นแบบในรัฐนิวเม็กซิโกได้รับกากนิวเคลียร์ตั้งแต่ปี 1999 จากเครื่องปฏิกรณ์ผลิตไฟฟ้า แต่ชื่อที่เรียกจะเป็น'สถานีอำนวยความสะดวกวิจัยและพัฒนา'

การนำกลับไปเข้ากระบวนการใหม่อาจมีศักยภาพที่จะสามารถกู้คืนได้ถึง 95% ของยูเรเนียมและพลูโตเนียมที่เหลืออยู่ในเชื้อเพลิงนิวเคลียร์ใช้แล้ว, ทำให้มันเป็นเชื้อเพลิงใหม่ผสมออกไซด์. ขบวนการนี้จะลดการผลิตกัมมันตภาพรังสีในระยะยาวภายในของเสียที่เหลือ, เนื่องจากผลิตภัณฑ์ที่ได้นี้เป็นผลิตภัณฑ์ฟิชชันอายุสั้นขนาดใหญ่และจะลดปริมาตรของมันลงกว่า 90%. การนำกลับไปเข้ากระบวนการใหม่ของเชื้อเพลิงจากเครื่องปฏิกรณ์พลเรือนปัจจุบันจะทำอยู่ในสหราชอาณาจักร, ฝรั่งเศส และ รัสเซีย(ในอดีต), เร็วๆนี้จะมีการปรับในประเทศจีนและอาจเป็นอินเดีย, และกำลังจะถูกดำเนินการในระดับกว้างในประเทศญี่ปุ่น. การนำกลับไปเข้ากระบวนการใหม่อย่างเต็มศักยภาพยังไม่ประสบความสำเร็จเพราะต้องใช้เครื่องปฏิกรณ์แบบ breeder, ที่ยังไม่มีใช้ในเชิงพาณิชย์. ฝรั่งเศสได้อ้างถีงการนำกลับไปเข้ากระบวนการใหม่ที่??ประสบความสำเร็จสูงสุด แต่ในปัจจุบัน มันทำการรีไซเคิลได้เพียง 28% (โดยมวล)ของการใช้เชื้อเพลิงต่อปีเท่านั้น, 7% ภายในฝรั่งเศสและอีก 21% ในรัสเซีย

การนำกลับไปเข้ากระบวนการใหม่ไม่ได้รับอนุญาตให้ดำเนินการในสหรัฐอเมริกา. รัฐบาลของโอบามาไม่อนุญาตให้ทำการนำกลับไปเข้ากระบวนการใหม่ของกากนิวเคลียร์โดยอ้างความกังวลในการขยายการใช้นิวเคลียร์. ในสหรัฐอเมริกา เชื้อเพลิงนิวเคลียร์ที่ใช้แล้วในขณะนี้ทั้งหมดถือว่าเป็นของเสีย.

ยูเรเนียมที่มีสมรรถนะสูงจะผลิตยูเรเนียมที่สลายตัวหมด (อังกฤษ: depleted uranium (DU))ได้หลายตัน. DU ประกอบด้วย U-238 ที่มีไอโซโทปที่เกิดปฏิกิริยาฟิชชันได้ง่ายส่วนใหญ่ของ U-235 ถูกถอดออกไปแล้ว. U-238 เป็นโลหะที่แกร่งในการนำไปใช้ทางการค้าทั้งหลายตัวอย่างเช่นการผลิตอากาศยาน, การป้องกันการกระจายรังสีและเกราะ เนื่องจากว่ามันมีความหนาแน่นสูงกว่าตะกั่ว. DU ยังถูกใช้อย่างขัดแย้งกันในอาวุธต่างๆ; เช่นหัวเจาะเกราะ DU (อังกฤษ: DU penetrator) (กระสุนหรือหัวเจาะเกราะของ APFSDS)ที่สามารถ "ลับให้คมด้วยตัวเอง" เนื่องจากแนวโน้มของยูเรเนียมที่จะแตกออกตามแนวเฉือน.

เศรษฐศาสตร์ของโรงไฟฟ้??านิวเคลียร์แห่งใหม่เป็นเรื่องที่ถกเถียงกันเพราะมีหลายมุมมองที่แปลกแยกในหัวข้อนี้และเกี่ยวพันกับการลงทุนหลายพันล้านดอลล่าร์สำหรับทางเลือกของแหล่งพลังงาน. โรงไฟฟ้??าพลังงานนิวเคลียร์มักจะมีค่าใช้จ่ายเงินทุนสูงสำหรับการสร้างโรงงาน แต่ค่าใช้จ่ายด้านเชื้อเพลิงที่ต่ำ. ดังนั้น เมื่อเทียบกับวิธีการผลิตไฟฟ้าอื่น ๆ จะขึ้นอยู่เป็นอย่างยิ่งกับสมมติฐานเกี่ยวกับระยะเวลาการก่อสร้างและการจัดหาเงินทุนสำหรับโรงงานนิวเคลียร์รวมทั้งค่าใช้จ่ายในอนาคตของเชื้อเพลิงฟอสซิลและพลังงานหมุนเวียนเช่นเดียวกับโซลูชั่นการจัดเก็บพลังงานสำหรับแหล่งพลังงานที่ไม่สม่ำเสมอ. ประมาณการค่าใช้จ่ายยังต้องพิจารณาถึงการรื้อถอนโรงงานและต้นทุนการเก็บรักษากากนิวเคลียร์. ในทางกลับกัน มาตรการที่จะบรรเทาภาวะโลกร้อนเช่นการเก็บภาษีคาร์บอนหรือการซื้อขายมลพิษคาร์บอนอาจให้ประโยชน์กับเศรษฐศาสตร์ของพลังงานนิวเคลียร์.

ในปีที่ผ่านมา ได้มีการชะลอตัวของการเติบโตของความต้องการไฟฟ้าและการจัดหาเงินทุนได้กลายเป็นเรื่องยากมากขึ้นซึ่งมีผลกระทบต่อโครงการขนาดใหญ่เช่นเครื่องปฏิกรณ์นิวเคลียร์ที่มีค่าใช้จ่ายล่วงหน้ามีขนาดใหญ่มากและรอบโครงการระยะยาวที่แบกรับความเสี่ยงที่หลากหลาย. ในยุโรปตะวันออก หลายโครงการที่ก่อตั้งมานานกำลังดิ้นรนเพื่อหาเงินลงทุน, ที่โดดเด่นคือที่ Belene ในบัลแกเรียและเครื่องปฏิกรณ์เพิ่มเติมที่ Cernavoda ในโรมาเนียและผู้อุดหนุนที่มีศักยภาพบางส่วนมีการถอนตัว. ในกรณีที่ก๊าซราคาถูกยังมีให้ใช้ได้และในอนาคตอุปทานค่อนข้างมั่นคง, สิ่งเหล่านี้จึงแสดงให้เห็นถึงอุปสรรคสำคัญสำหรับโครงการนิวเคลียร์.

การวิเคราะห์ทางเศรษฐศาสตร์ของพลังงานนิวเคลียร์จะต้องคำนึงถึงผู้ที่แบกรับความเสี่ยงของความไม่แน่นอนในอนาคต. ในวันนี้โรงไฟฟ้??าพลังงานนิวเคลียร์ที่กำลังดำเนินงานทั้งหมดได้รับการพัฒนาโดยรัฐเป็นเจ้าของหรือหน่วยงานยูทิลิตี้ผูกขาดที่รัฐกำกับดูแล, ในขณะที่หลายความเสี่ยงที่เกี่ยวข้องกับค่าใช้จ่ายในการก่อสร้าง, ประสิทธิผลการดำเนินงาน, ราคาเชื้อเพลิง, ความรับผิดสำหรับอุบัติเหตุและปัจจัยอื่นๆจะตกเป็นภาระของผู้บริโภคมากกว่าผู้ให้บริการ. นอกจากนี้ เนื่องจากความรับผิดที่อาจเกิดขึ้นจากการเกิดอุบัติเหตุนิวเคลียร์มีมาก, ค่าใช้จ่ายทั้งหมดของความรับผิดการประกันภัยทั่วไปจะถูกจำกัด/ตัดยอดจากรัฐบาล, ซึ่งคณะกรรมการกำกับกิจการพลังงานของสหรัฐได้สรุปว่าประกอบด้วยเงินอุดหนุนอย่างมีนัยสำคัญ. หลายประเทศในขณะนี้ได้เปิดเสรีตลาดไฟฟ้าเพื่อที่ความเสี่ยงเหล่านี้, และความเสี่ยงของคู่แข่งที่ถูกกว่าที่เกิดขึ้นก่อนที่ค่าใช้จ่ายเงินทุนจะถูกกู้คืน, จะตกเป็นภาระของผู้สร้างและผู้ดำเนินการโรงงานแทนที่จะเป็นของผู้บริโภค, ที่นำไปสู่??การประเมินผลที่แตกต่างกันอย่างมีนัยสำคัญของเศรษฐกิจของโรงไฟฟ้??านิวเคลียร์แห่งใหม่.

หลังจากภัยพิบัตินิวเคลียร์ Fukushima Daiichi ในปี 2011 ค่าใช้จ่ายต่างๆคาดว่าจะเพิ่มขึ้นในการดำเนินงานปัจจุบันและในการก่อสร้างโรงไฟฟ้??าพลังงานนิวเคลียร์แห่งใหม่, เนื่องจากความต้องการที่เพิ่มขึ้นสำหรับการจัดการเชื้อเพลิงใช้แล้วบนสถานที่ตั้งและการออกแบบที่ถูกยกระดับสำหรับภัยคุกคามขั้นพื้นฐานมากมาย.

ดูเพิ่มเติม: การเกิดอุบัติเหตุพลังงาน, ความปลอดภัยนิวเคลียร์, อุบัติเหตุนิวเคลียร์และการกระจายรังสี, รายการของภัยพิบัติทางนิวเคลียร์และเหตุการณ์กัมมันตรังสี

อุบัติเหตุนิวเคลียร์และการกระจายรังสีที่เกิดขึ้นบางครั้งมีตวามร้ายแรง. เบนจามิน เค Sovacool ได้รายงานว่า ทั่วโลกมีอุบัติเหตุเกิดขึ้นที่โรงไฟฟ้าพลังงานนิวเคลียร์ 99 ครั้ง. ห้าสิบเจ็ดครั้งเกิดขึ้นตั้งแต่ภัยพิบัติเชอร์โนบิล, และ 57% (56 จาก 99) ของการเกิดอุบัติเหตุที่เกี่ยวข้องกับนิวเคลียร์ทั้งหมดได้เกิดขึ้นใน USA.

อุบัติเหตุโรงไฟฟ้านิวเคลียร์รวมถึงอุบัติเหตุเชอร์โนบิล (1986) ที่มีประมาณ 60 คนเสียชีวิตจากอุบัติเหตุและคาดว่าในที่สุดแล้วจะมีผู้เสียชีวิตทั้งหมดตั้งแต่ 4000 ถึง 25,000 คนจากโรคมะเร็งที่ซ่อนเร้นในภายหลัง. ภัยพิบัตินิวเคลียร์ฟูกูชิม่าไดอิจิ (2011) ยังไม่ได้ก่อให้เกิดการเสียชีวิตใดๆที่เกี่ยวข้องกับการกระจายของรังสีและคาดว่าในที่สุดแล้วจะมีผู้เสียชีวิตทั้งหมดตั้งแต่ 0-1000 คน, และอุบัติเหตุที่เกาะสามไมล์ไอส์แลนด์ (1979) ไม่มีผู้เสียชีวิตจากสาเหตุการเกิดโรคมะเร็งหรืออย่างอื่นจากการติดตามการศึกษาของอุบัติเหตุครั้งนี้. อุบัติเหตุที่เกิดกับเรือดำน้ำขับเคลื่อนด้วยนิวเคลียร์รวมถึงอุบัติเหตุที่เกิดกับเครื่องปฏิกรณ์เรือดำน้ำโซเวียต K-19 (1961), อุบัติเหตุที่เกิดกับเครื่องปฏิกรณ์เรือดำน้ำโซเวียต K-27(1968), อุบัติเหตุเครื่องปฏิกรณ์เรือดำน้ำโซเวียต K- 431(1985). การวิจัยระหว่างประเทศได้ทำอย่างต่อเนื่องในการปรับปรุงด้านความปลอดภัยเช่นโรงงานที่ปลอดภัยแบบพาสซีฟ และความเป็นไปได้ในการใช้งานในอนาคตของนิวเคลียร์ฟิวชัน.

ในแง่ของการสูญเสียชีวิตต่อหน่วยของพลังงานที่ผลิต, พลังงานนิวเคลียร์ได้ก่อให้เกิดการเสียชีวิตจากอุบัติเหตุน้อยต่อหน่วยของพลังงานที่สร้างขึ้นกว่าแหล่งอื่นๆที่สำคัญของการผลิตพลังงาน. พลังงานที่ผลิตจากถ่านหิน, ปิโตรเลียม, ก๊าซธรรมชาติและไฟฟ้าพลังน้ำได้ก่อให้เกิดการเสียชีวิตมากกว่าต่อหน่วยของพลังงานที่สร้างขึ้น, จากมลพิษทางอากาศและการเกิดอุบัติเหตุพลังงาน. สิ่งนี้จะพบได้ในการเปรียบเทียบต่อไปนี้, เมื่อมีการเสียชีวิตทันทีที่เกี่ยวข้องกับนิวเคลียร์จากการเกิดอุบัติเหตุเมื่อเทียบกับการเสียชีวิตทันทีจากแหล่งพลังงานอื่นๆเหล่านี้, เมื่อเสียชีวิตแบบแฝง, หรือที่คาดไว้, หรือทางอ้อมจากมะเร็งอันเนื่องมาจากอุบัติเหตุพลังงานนิวเคลียร์เมื่อเทียบกับการเสียชีวิตโดยทันทีจากแหล่งพลังงานดังกล่าวข้างต้น และเมื่อนำผลรวมของการเสียชีวิตโดยทันทีและเสียชีวิตโดยทางอ้อมมาเปรียบเทียบระหว่างจากพลังงานนิวเคลียร์และจากเชื้อเพลิงฟอสซิลทั้งหมด, การเสียชีวิตที่เกิดจากการทำเหมืองแร่ของทรัพยากรทางธรรมชาติที่จำเป็นในการผลิตกระแสไฟฟ้าและทำให้เกิดมลพิษในอากาศ. ด้วยข้อมูลเหล่านี้, การใช้ประโยชน์จากพลังงานนิวเคลียร์ได้รับการคำนวณว่าได้ป้องกันไม่ให้เกิดการเสียชีวิตจำนวนมากโดยลดสัดส่วนของพลังงานที่อาจถูกสร้างขึ้นโดยเชื้อเพลิงฟอสซิลและคาดว่าจะยังคงทำเช่นนั้นต่อไป.

อุบัติเหตุโรงไฟฟ้านิวเคลียร์ตามที่เบนจามินเค Sovacool, อยู่ในตำแหน่งอันดับแรกในแง่ของค่าใช้จ่ายทางเศรษฐกิจที่คิดเป็นร้อยละ 41 ของความเสียหายของทรัพย์สินทั้งหมดที่เป็นผลมาจากอุบัติเหตุพลังงาน. อย่างไรก็ตาม การวิเคราะห์ที่นำเสนอในวารสารต่างประเทศ "การประเมินความเสี่ยงเชิงนิเวศน์และมนุษย์" พบว่าถ่านหิน, น้ำมัน, ก๊าซปิโตรเลียมเหลวและอุบัติเหตุน้ำมีค่าใช้จ่ายมากขึ้นกว่าการเกิดอุบัติเหตุจากโรงไฟฟ้านิวเคลียร์.

หลังจากภัยพิบัตินิวเคลียร์ Fukushima ที่ญี่ปุ่นในปี 2011 เจ้าหน้าที่ปิด 54 โรงไฟฟ้าพลังงานนิวเคลียร์ของประเทศ แต่ก็มีการคาดการณ์ว่าหากญี่ปุ่นไม่เคยนำพลังงานนิวเคลียร์มาใช้, อุบัติเหตุและมลพิษจากโรงไฟฟ้าถ่านหินหรือก๊าซอาจจะทำให้เกิดการเสียชีวิตมากกว่านี้. เมื่อปี 2013 โรงไฟฟ้าที่ Fukushima ยังคงมีกัมมันตรังสีที่สูง, ประมาณ 160,000 คนที่ถูกอพยพยังคงอาศัยอยู่ในที่อยู่อาศัยชั่วคราว, และที่ดินบางส่วนจะไม่สามารถทำฟาร์มได้นานหลายศตวรรษ. การทำความสะอาดอาจต้องใช้เวลาถึง 40 ปีหรือมากกว่านั้นและต้องใช้ค่าใช้จ่ายนับพันล้านดอลลาร์.

การอพยพโดยบังคับให้ออกจากพื้นที่อุบัติเหตุนิวเคลียร์อาจนำไปสู่การแยกทางสังคม, ความวิตกกังวล, ความซึมเศร้า, ปัญหาสุขภาพจิตใจ, พฤติกรรมเสี่ยง, อาจถึงกับฆ่าตัวตาย. ปัญหาดังกล่าวเคยเป็นผลของภัยพิบัตินิวเคลียร์เชอร์โนบิลในปิ 1986 ในยูเครน. การศึกษาอย่างครอบคลุมในปี 2005 สรุปว่า "ผลกระทบต่อสุขภาพจิตของเชอร์โนบิลเป็นปัญหาสาธารณสุขที่ใหญ่ที่สุดที่ถูกปลดปล่อยโดยอุบัติเหตุจนถึงวันนี้". แฟรงก์ เอ็น ฟอน ฮิพเพล นักวิทยาศาสตร์ของสหรัฐ ได้แสดงความคิดเห็นเกี่ยวกับภัยพิบัตินิวเคลียร์ฟูกูชิม่าในปี 2011 ว่า "ความกลัวของรังสีที่เป็นไอออนอาจมีผลกระทบทางจิตวิทยาในระยะยาวกับส่วนใหญ่ของประชากรในพื้นที่ปนเปื้อน".

เทคโนโลยีและวัสดุหลายชนิดที่เกี่ยวข้องกับการสร้างโครงการไฟฟ้านิวเคลียร์มีความสามารถในการใช้สองแบบ, ในสองแบบนั้น พวกมันสามารถใช้ในการสร้างอาวุธนิวเคลียร์ถ้าประเทศใดประเทศหนึ่งเลือกที่จะทำเช่นนั้น. เมื่อเกิดเหตุการณ์นี้โครงการไฟฟ้านิวเคลียร์จะกลายเป็นเส้นทางที่นำไปสู่??อาวุธนิวเคลียร์หรือภาคผนวกของประชาชนในการโครงการอาวุธที่เป็น"ความลับ". ความกังวลเรื่องกิจกรรมนิวเคลียร์ของอิหร่านเป็นกรณีหนึ่งในจุดนี้.

เป้าหมายพื้นฐานเพื่อความปลอดภัยของชาวอเมริกันและของโลกคือการลดความเสี่ยงแพร่กระจายของนิวเคลียร์ที่เกี่ยวข้องกับการขยายตัวของพลังงานนิวเคลียร์ หากการพัฒนานี้เป็น"การจัดการไม่ดีหรือความพยายามทั้งหลายเพื่อจำกัดความเสี่ยงไม่ประสบความสำเร็จ, อนาคตของนิวเคลียร์จะเป็นอันตราย". ความร่วมมือพลังงานนิวเคลียร์ทั่วโลกเป็นหนึ่งในความพยายามระหว่างประเทศดังกล่าวเพื่อสร้างเครือข่ายการกระจายในที่ซึ่งประเทศกำลังพัฒนาที่กำลังต้องการพลังงาน จะได้รับเชื้อเพลิงนิวเคลียร์ในอัตราที่ลดราคา, ในการแลกเปลี่ยนสำหรับประเทศนั้นที่จะเห็นพ้องที่จะละเลยในการพัฒนาโครงการเสริมสมรรถนะยูเรเนียมในประเทศของตัวเอง

ตามบทความของเบนจามิน เค Sovacool, "จำนวนของเจ้าหน้าที่ระดับสูง, แม้แต่ภายในสหประชาชาติ, ได้ถกเถียงกันอยู่ว่าพวกเขาสามารถทำได้เล็กน้อยที่จะหยุดรัฐในการใช้เครื่องปฏิกรณ์นิวเคลียร์ในการผลิตอาวุธนิวเคลียร์". รายงานของสหประชาชาติในปี 2009 กล่าวว่า:

การฟื้นตัวของความสนใจในพลังงานนิวเคลียร์อาจทำให้เกิดการแพร่กระจายทั่วโลกของการเสริมสมรรถนะยูเรเนียมและเทคโนโลยีการนำกลับไปเข้ากระบวนการใหม่ของเชื้อเพลิงใช้แล้วซึ่งมีความเสี่ยงที่เห็นได้ชัดของการขยายเพราะเทคโนโลยีเหล่านี้สามารถผลิตวัสดุที่ทำปฏิกิริยาฟิชชันได้ง่ายที่ใช้งานได้โดยตรงในอาวุธนิวเคลียร์.

อีกด้านหนึ่ง ปัจจัยหนึ่งที่มีอิทธิพลสนับสนุนเครื่องปฏิกรณ์พลังงานจะเนื่องจากการร้องขอที่เครื่องปฏิกรณ์เหล่านี้มีในการลดคลังอาวุธนิวเคลียร์ผ่านโครงการเมกะตันเป็นเมกะวัตต์, โครงการหนึ่งที่สามารถลดการใช้ยูเรเนียมที่ได้รับการเสริมสมรรถนะอย่างสูงถึง 425 เมตริกตัน, ซึ่งเท่ากับ 17,000 หัวรบขีปนาวุธนิวเคลียร์, โดยแปลงมันให้เป็นเชื้อเพลิงสำหรับเครื่องปฏิกรณ์นิวเคลียร์เชิงพาณิชย์, และมันก็เป็นความสำเร็จมากที่สุดของโครงการเดียวที่ไม่ขยายตัวจนถึงวันนี้.

โครงการเมกะตันเป็นเมกะวัตต์ได้รับการยกย่องว่าเป็นความสำเร็จครั้งใหญ่โดยสนับสนุนอาวุธต่อต้านนิวเคลียร์เพราะมันได้เป็นแรงผลักดันยิ่งใหญ่ที่อยู่เบื้องหลังการลดลงอย่างรวดเร็วในปริมาณของอาวุธนิวเคลียร์ทั่วโลกตั้งแต่สงครามเย็นสิ้นสุด. อย่างไรก็ตามโดยไม่ต้องเพิ่มเครื่องปฏิกรณ์นิวเคลียร์และความต้องการมากขึ้นสำหรับเชื้อเพลิงฟิชชัน, ค่าใช้จ่ายในการรื้อถอนและการกลั่นให้ต่ำลงได้ชักนำให้รัสเซียต่อต้านการต่อเนื่องการลดอาวุธของพวกเขา

ปัจจุบัน ตามความเห็นของศาสตราจารย์แมทธิว Bunn แห่งมหาวิทยาลัยฮาร์เวิร์ด "พวกรัสเซียไม่สนใจระยะไกลในการขยายโครงการหลังปี 2013. เราได้จัดการให้มีการจัดตั้งวิธีการที่พวกเขาจะจ่ายมากขึ้นและได้กำไรน้อยลงเพียงแค่ให้พวกเขาทำยูเรเนียมใหม่ที่มีสมรรถนะต่ำสำหรับเครื่องปฏิกรณ์จากไม่มีอะไรเลย. แต่มีวิธีอื่นที่จะจัดตั้งขึ้นที่จะทำกำไรได้มากสำหรับพวกเขาและยังจะให้บางส่วนของผลประโยชน์เชิงกลยุทธ์ของพวกเขาในการส่งเสริมการส่งออกนิวเคลียร์ของพวกเขา".

ในโครงการเมกะตันเป็นเมกะวัตต์, ประมาณ $ 8 พันล้านของยูเรเนียมเกรดอาวุธจะถูกแปลงเป็นยูเรเนียมเกรดเครื่องปฏิกรณ์ในการกำจัดอาวุธนิวเคลียร์ 10,000 ชุด.

ในเดือนเมษายน 2012 มี 31 ประเทศที่มีโรงไฟฟ้??าพลังงานนิวเคลียร์พลเรือน. ในปี 2013, มาร์ค Diesendorf กล่าวว่ารัฐบาลของฝรั่งเศส, อินเดีย, เกาหลี, ปากีสถาน, สหราชอาณาจักรและแอฟริกาใต้มีการใช้พลังงานนิวเคลียร์และ/หรือเครื่องปฏิกรณ์เพื่องานวิจัยเพื่อช่วยในการพัฒนาอาวุธนิวเคลียร์หรือเพื่อมีส่วนร่วมในการจัดหาระเบิดนิวเคลียร์จากเครื่องปฏิกรณ์ทางทหาร.

บทความหลัก: ผลกระทบทางสิ่งแวดล้อมของพลังงานนิวเคลียร์และการเปรียบเทียบของวงจรชีวิตของการปล่อยก๊าซเรือนกระจก

การวิเคราะห์วงจรชีวิต (อังกฤษ: Life cycle analysis (LCA)) ของการปล่อยก๊าซคาร์บอนไดออกไซด์จะแสดงพลังนิวเคลียร์เมื่อเปรียบเทียบกับแหล่งพลังงานหมุนเวียน. การปล่อยมลพิษจากการเผาไหม้เชื้อเพลิงฟอสซิลมีหลายครั้งที่สูงกว่ามาก.

อ้างถึง คณะกรรมการวิทยาศาสตร์ด้านผลกระทบของการแผ่รังสีอะตอมแห่งสหประชาชาติ (อังกฤษ: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)), การดำเนินงานโรงไฟฟ้??านิวเคลียร์สม่ำเสมอที่รวมถึงวัฏจักรเชื้อเพลิงนิวเคลียร์จะมีผลทำให้เรดิโอไอโซโทปถูกปล่อยออกสู่สิ่งแวดล้อมเป็นจำนวนถึง 0.0002 mSv (มิลลิ Sievert) ต่อปีของการเสี่ยงสาธารณะเฉลี่ยทั่วโลก. (นั่นเป็นขนาดเล็กเมื่อเทียบกับการเปลี่ยนแปลงในรังสีพื้นหลังธรรมชาติซึ่งมีค่าเฉลี่ยทั่วโลกที่ 2.4 mSv/a แต่บ่อยครั้งที่แปรเปลี่ยนระหว่าง 1 mSv/a และ 13 mSv/a ขึ้นอยู่กับสถานที่ตั้งของบุคคลตามที่กำหนดโดย UNSCEAR). ตามรายงานปี 2008, มรดกที่เหลืออยู่ของอุบัติเหตุโรงไฟฟ้??านิวเคลียร์ที่เลวร้ายที่สุด (ภัยพิบัติเชอร์โนบิล) เป็น 0.002 mSv/a ในความเสี่ยงเฉลี่ยทั่วโลก (ตัวเลขที่เป็น 0.04 mSv ต่อคนเฉลี่ยกับประชาชนทั้งหมดในซีกโลกเหนือในปีที่เกิดอุบัติเหตุในปี 1986, ถึงแม้จะสูงกว่าอย่างมากในหมู่ประชากรท้องถิ่นและคนงานกู้คืนที่ได้รับผลกระทบมากที่สุด).

การเปลี่ยนแปลงสภาพภูมิอากาศที่ก่อให้เกิดสภาพอากาศสุดขั้วเช่นคลื่นความร้อน, ระดับความชื้นในอากาศลดลงและภัยแล้งอาจมีผลกระทบอย่างมีนัยสำคัญในโครงสร้างพื้นฐานของพลังงานนิวเคลียร์. น้ำทะเลเป็นตัวกัดกร่อน ดังนั้นการจัดหาพลังงานนิวเคลียร์มีแนวโน้มที่จะได้รับผลกระทบทางลบจากปัญหาการขาดแคลนน้ำจืด. ปัญหาทั่วไปนี้อาจกลายเป็นปัญหามากขึ้นเมื่อเวลาผ่านไป. สิ่งนี้สามารถบังคับให้เครื่องปฏิกรณ์นิวเคลียร์ปิดตัวลงได้อย่างที่เกิดขึ้นในฝรั่งเศสในช่วงคลื่นความร้อนปี 2003 และ 2006. อุปทานพลังงานนิวเคลียร์ได้ลดลงอย่างรุนแรงจากอัตราการไหลของแม่น้ำที่ต่ำและภัยแล้งซึ่งหมายความว่าแม่น้ำได้มาถึงจุดอุณหภูมิสูงสุดสำหรับหล่อเย็นเครื่องปฏิกรณ์. ในระหว่างที่เกิดคลื่นความร้อน, เครื่องปฏิกรณ์ 17 เครื่องต้องจำกัดการส่งพลังงานออกหรือปิดตัวลง. 77% ของกระแสไฟฟ้าในฝรั่งเศสถูกผลิตโดยพลังงานนิวเคลียร์และในปี 2009 สถานการณ์ที่คล้ายกันสร้างปัญหาการขาดแคลนถึง 8GW และบังคับให้รัฐบาลฝรั่งเศสต้องนำเข้าไฟฟ้า. กรณีอื่นๆได้รับรายงานจากเยอรมนีที่อุณหภูมิสูงได้ลดการผลิตพลังงานนิวเคลียร์ 9 ครั้ง เนื่องจากอุณหภูมิที่สูงระหว่างปี 1979 และ 2007. โดยเฉพาะอย่างยิ่ง:

เหตุการณ์ที่คล้ายกันเกิดขึ้นในที่อื่นๆในยุโรปในช่วงฤดู??ร้อนปีเดียวกัน. ถ้าภาวะโลกร้อนยังคงดำเนินต่อไป, การหยุดชะงักแบบนี้ก็มีแนวโน้มที่จะเพิ่มขึ้น.

ราคาของพลังงานที่ใส่เข้าไปและค่าใช้จ่ายด้านสิ่งแวดล้อมของทุกโรงไฟฟ้??านิวเคลียร์ยังคงต่อเนื่องเป็นเวลานานหลังจากสิ่งอำนวยความสะดวกเสร็จสิ้นการผลิตกระแสไฟฟ้าที่มีประโยชน์สุดท้าย. ทั้งเครื่องปฏิกรณ์นิวเคลียร์และสิ่งอำนวยความสะดวกที่เป็นยูเรเนียมสมรรถนะสูงจะต้องถูกปลดประจำการ, กลับคืนสถานที่และชิ้นส่วนของมันให้อยู่ในระดับที่ปลอดภัยมากพอที่จะถูกมอบหมายให้ไปใช้ในงานอื่นๆ. หลังจากระยะเวลาการระบายความร้อนออกที่อาจนานเป็นศตวรรษ, เครื่องปฏิกรณ์จะต้องถูกรื้อถอนและตัดเป็นชิ้นเล็กๆเพื่อถูกบรรจุในภาชนะบรรจุเพื่อการกำจัดขั้นสุดท้าย. กระบวนการนี??้เป็นกระบวนการที่มีราคาแพงมาก, ใช้เวลานาน, อันตรายสำหรับคนงาน, เป็นอันตรายต่อสภาพแวดล้อมทางธรรมชาติ, และนำเสนอโอกาสใหม่สำหรับความผิดพลาดของมนุษย์, อุบัติเหตุหรือการก่อวินาศกรรม.

พลังงานทั้งหมดที่จำเป็นสำหรับการรื้อถอนจะมีมากถึง 50% มากกว่าพลังงานที่จำเป็นสำหรับการก่อสร้างมันขึ้นมา. ในกรณีส่วนใหญ่ ขั้นตอนการรื้อถอนมีค่าใช้จ่ายระหว่าง 300 ล้านดอลลาร์สหรัฐไปจนถึง 5.6 พันล้านดอลลาร์สหรัฐ. การรื้อถอนที่สถานที่ติดตั้งนิวเคลียร์ที่เคยประสบอุบัติเหตุร้ายแรงมีราคาแพงที่สุดและใช้เวลานานที่สุด. ในสหรัฐอเมริกามี 13 เครื่องปฏิกรณ์ที่มีการปิดตัวลงอย่างถาวรและอยู่ในบางขั้นตอนของการรื้อถอน, และไม่มีเครื่องไหนเลยที่เสร็จสิ้นกระบวนเรียบร้อยแล้ว.

การอภิปรายพลังงานนิวเคลียร์จะเกี่ยวข้องกับความขัดแย้ง. ซึ่งได้ล้อมรอบการใช้งานและการใช้เครื่องปฏิกรณ์นิวเคลียร์ฟิชชันในการผลิตไฟฟ้าจากเชื้อเพลิงนิวเคลียร์สำหรับวัตถุประสงค์ทางพลเรือน. การอภิปรายเกี่ยวกับพลังงานนิวเคลียร์ขึ้นสู่จุดสูงสุดระหว่างปี 1970 และ 1980 เมื่อมัน "เข้าถึงความรุนแรงที่ไม่เคยเกิดมาก่อนในประวัติศาสตร์ของการขัดแย้งทางเทคโนโลยี", ในบางประเทศ.

ฝ่ายเสนอของพลังงานนิวเคลียร์ยืนยันว่าพลังงานนิวเคลียร์เป็นแหล่งพลังงานที่ยั่งยืนที่ช่วยลดการปล่อยก๊าซคาร์บอนและเพิ่มความมั่นคงด้านพลังงานโดยลดการพึ่งพาแหล่งพลังงานที่นำเข้า. ผู้เสนอยังอ้างต่อไปว่าพลังงานนิวเคลียร์แทบจะไม่ผลิตมลพิษทางอากาศทั่วไปอย่างสื้นเชิง, เช่นก๊าซเรือนกระจกและหมอกควัน, ในทางตรงกันข้ามกับทางเลือกหลักที่นำโดยเชื้อเพลิงฟอสซิล. พลังงานนิวเคลียร์สามารถผลิตพลังงานที่มีพื้นฐานจากโหลดแตกต่างจากพลังงานหมุนเวียนจำนวนมากที่มีแหล่งพลังงานที่ไม่สม่ำเสมอ, ขาดวิธีในการจัดเก็บพลังงานขนาดใหญ่และราคาถูก. M. King Hubbert เห็นว่าน้ำมันเป็นทรัพยากรที่จะหมดไปและเสนอพลังงานนิวเคลียร์เป็นแหล่งพลังงานทดแทน. ฝ่ายเสนออ้างต่อไปอีกว่าความเสี่ยงในการจัดเก็บขยะมีน้อยและสามารถจะลดลงไปได้อีกโดยใช้เทคโนโลยีใหม่ล่าสุดในเครื่องปฏิกรณ์รุ่นใหม่, และสถิติความปลอดภัยในการดำเนินงานในโลกตะวันตกก็ดีเลิศเมื่อเทียบกับโรงไฟฟ้??าชนิดอื่นๆที่สำคัญ .

ฝ่ายค้านเชื่อว่าพลังงานนิวเคลียร์แสดงภาพของภัยคุกคามอย่างใหญ่หลวงต่อคนและสิ่งแวดล้อม. ภัยคุกคามเหล่านี้รวมถึงปัญหาของขบวนการผลิต, การขนส่งและการเก็บรักษากากนิวเคลียร์กัมมันตรังสี, ความเสี่ยงของการแพร่กระจายอาวุธนิวเคลียร์และการก่อการร้าย, เช่นเดียวกับความเสี่ยงต่อสุขภาพและความเสียหายด้านสิ่งแวดล้อมจากการทำเหมืองแร่ยูเรเนียม. พวกเขายังยืนยันว่าตัวเครื่องปฏิกรณ์เองเป็นเครื่องที่ซับซ้อนขนาดมโหฬารที่หลายสิ่งหลายอย่างสามารถทำงานผิดพลาดได้, และอุบัติเหตุนิวเคลียร์ร้ายแรงก็เคยเกิดขึ้นมาแล้ว. นักวิจารณ์ไม่เชื่อว่าความเสี่ยงทั้งหลายของการใช้นิวเคลียร์ฟิชชันเพื่อเป็นแหล่งพลังงานจะสามารถชดเชยอย่างเต็มที่โดยพัฒนาของเทคโนโลยีใหม่. พวกเขายังคงแย้งว่าเมื่อทุกขั้นตอนของห่วงโซ่เชื้อเพลิงนิวเคลียร์ที่ต้องใช้พลังงานอย่างมากถูกนำมาพิจารณา, ตั้งแต่การทำเหมืองแร่ยูเรเนียมจนถึงการรื้อถอนนิวเคลียร์, พลังงานนิวเคลียร์ไม่ได้เป็นแหล่งที่มาของกระแสไฟฟ้าที่ผลิตคาร์บอนต่ำและเป็นแหล่งที่ประหยัดในทางเศรษฐกิจทั้งสองอย่าง.

ดูเพิ่มเติม: การอภิปรายเรื่องพลังงานหมุนเวียน, พลังงานนิวเคลียร์ที่ถูกเสนอให้เป็นพลังงานหมุนเวียน,และพลังงานหมุนเวียน 100%

เมื่อปี 2013 สมาคมนิวเคลียร์โลกได้กล่าวว่า "มีความสนใจที่ไม่เคยมีมาก่อนในพลังงานหมุนเวียนโดยเฉพาะพลังงานแสงอาทิตย์และพลังงานลมซึ่งให้กระแสไฟฟ้าโดยไม่ให้ก่อให้เกิดการปล่อยก๊าซคาร์บอนไดอ๊อกไซด์เพิ่มขึ้น. การหาประโยชน์เหล่านี้สำหรับการผลิตไฟฟ้าจะขึ้นอยู่กับค่าใช้จ่ายและประสิทธิภาพของเทคโนโลยี ซึ่งได้รับการปรับปรุงอย่างต่อเนื่องจึงช่วยลดค่าใช้จ่ายต่อกิโลวัตต์สูงสุด".

การผลิตไฟฟ้าพลังงานหมุนเวียนจากแหล่งที่มาเช่นพลังงานลมและพลังงานแสงอาทิตย์เป็นที่วิพากษ์วิจารณ์ในบางครั้งสำหรับการไม่ต่อเนื่องหรือแปรผัน. อย่างไรก็ตาม สำนักงานพลังงานระหว่างประเทศได้ข้อสรุปว่าการใช้งานของเทคโนโลยีพลังงานหมุนเวียน (RETs), เมื่อมันเพิ่มความหลากหลายของแหล่งที่มาของกระแสไฟฟ้า, จะช่วยให้เกิดความยืดหยุ่นของระบบ. อย่างไรก็ตาม รายงานยังสรุปว่า (หน้า 29): "ที่ระดับสูงของการเจาะกริดโดย RETs ผลกระทบของอุปสงค์ที่ไม่ตรงกันและอุปทานสามารถก่อให้เกิดความท้าทายสำหรับการจัดการของกริด. ลักษณะนี้อาจส่งผลกระทบต่อวิธีการ, และระดับที่, RETs จะสามารถทดแทนเชื้อเพลิงฟอสซิลและความสามารถในการผลิตไฟฟ้านิวเคลียร์.".

อุปทานไฟฟ้าหมุนเวียนในช่วง 20-50+% ได้รับการดำเนินการแล้วในหลายระบบในยุโรป, แม้ว่าในบริบทของระบบกริดยุโรปแบบรวม. ในปี 2012 ส่วนแบ่งของไฟฟ้าที่ผลิตจากแหล่งพลังงานหมุนเวียนในประเทศเยอรมนีจะเป็น 21.9%, เมื่อเทียบกับ 16.0% สำหรับพลังงานนิวเคลียร์หลังจากเยอรมนีปิดตัวลง 7-8 จาก 18 เครื่องปฏิกรณ์นิวเคลียร์ในปี 2011. ในสหราชอาณาจักร ปริมาณของพลังงานที่ผลิตจากพลังงานหมุนเวียนคาดว่าจะเกินพลังงานที่มาจากนิวเคลียร์ราวปี 2018 และสกอตแลนด์วางแผนที่จะได้รับกระแสไฟฟ้าจากพลังงานหมุนเวียนในปี 2020. ส่วนใหญ่ของการติดตั้งพลังงานหมุนเวียนทั่วโลกอยู่ในรูปของไฟฟ้าพลังน้ำ

IPCC ได้กล่าวว่าหากรัฐบาลทั้งหลายให้การสนับสนุนและเทคโนโลยีของพลังงานหมุนเวียนเต็มรูปแบบถูกนำมาใช้, พลังงานหมุนเวียนสามารถให้พลังงานของโลกได้เกือบ 80% ภายในสี่สิบปี. ราเชนท Pachauri ประธาน IPCC กล่าวว่าการลงทุนในพลังงานหมุนเวียนที่จำเป็นจะเสียค่าใช้จ่ายเพียงประมาณ 1% ของจีดีพีทั่วโลกเป็นประจำทุกปี. วิธีการนี้อาจควบคุมระดับก๊าซเรือนกระจกให้อยู่ในระดับน้อยกว่า 450 ส่วนต่อล้านซึ่งเป็นระดับที่ปลอดภัยเกินกว่าที่การเปลี่ยนแปลงสภาพภูมิอากาศจะกลายเป็นภัยพิบัติและเปลี่ยนแปลงกลับไม่ได้.

ค่าใช้จ่ายของโรงไฟฟ้านิวเคลียร์มีแนวโน้มที่จะสูงขึ้นในขณะที่ค่าใช้จ่ายในการผลิตไฟฟ้าจากพลังงานลมจะลดลง ประมาณปี 2011, พลังงานลมไม่แพงไปกว่าก๊าซธรรมชาติ [ต้องการอ้างอิง] และกลุ่มต่อต้านนิวเคลียร์ได้ชี้ให้เห็นว่าในปี 2010 พลังงานแสงอาทิตย์มีราคาถูกกว่าพลังงานนิวเคลียร์. ข้อมูลจาก EIA ในปี 2011 คาดว่าในปี 2016 พลังงานแสงอาทิตย์จะมีค่าใช้จ่ายในการผลิตกระแสไฟฟ้าเกือบสองเท่าของการผลิตด้วยนิวเคลียร์ (21?/กิโลวัตต์ชั่วโมงสำหรับแสงอาทิตย์, 11.39?/กิโลวัตต์ต่อชั่วโมงสำหรับนิวเคลียร์) และจากลมค่อนข้างน้อย (9.7?/kWh). อย่างไรก็ตาม EIA ของสหรัฐอเมริกายังได้เตือนว่าค่าใช้จ่ายเชื้อเพลิงของแหล่งที่มาที่ไม่สม่ำเสมอเช่นลมและพลังงานแสงอาทิตย์จะไม่สามารถเทียบได้โดยตรงกับค่าใช้จ่ายของแหล่งที่มาที่ "dispatchable" (แหล่งที่สามารถปรับเปลี่ยนเพื่อตอบสนองกับความต้องการได้).

จากจุดยืนด้านความปลอดภัย, พลังงานนิวเคลียร์, ในแง่ของการสูญเสียชีวิตต่อหน่วยไฟฟ้าที่ผลิต, มีจำนวนการเสียชีวิตที่เท่ากับและในหลายกรณีต่ำกว่าหลายแหล่งพลังงานหมุนเวียน. อย่างไรก็ตาม ไม่มีเชื้อเพลิงใช้แล้วที่มีกัมมันตรังสีที่ต้องมีการจัดเก็บหรือการนำกลับไปเข้ากระบวนการใหม่สำหรับแหล่งพลังงานหมุนเวียนแบบเดิม. โรงงานนิวเคลียร์จะต้องถูกรื้อและเคลื่อนย้ายออกไป. โรงงานนิวเคลียร์ที่ถูกรื้อออกเป็นชิ้นจะต้องถูกเก็บไว้ที่เก็บกากนิวเคลียร์ใต้ดิน.

ตั้งแต่ประมาณปี 2001 คำว่า "ยุคฟื้นฟูศิลปวิทยานิวเคลียร์" ถูกนำมาใช้เพื่ออ้างถึงการฟื้นฟูอุตสาหกรรมพลังงานนิวเคลียร์ที่เป็นไปได้, ขับเคลื่อนโดยเพิ่มขึ้นของราคาเชื้อเพลิงฟอสซิลและความกังวลใหม่เกี่ยวกับการตอบสนองของข้อจำกัดของการปล่อยก๊าซเรือนกระจก. อย่างไรก็ตาม สมาคมนิวเคลียร์โลกได้รายงานว่าการผลิตไฟฟ้าด้วยนิวเคลียร์ในปี 2012 อยู่ที่ระดับต่ำสุดตั้งแต่ปี 1999.

ในเดือนมีนาคม 2011 เหตุฉุกเฉินนิวเคลียร์ที่โรงไฟฟ้านิวเคลียร์ฟูกูชิม่า I และการปิดสิ่งอำนวยความสะดวกอื่นๆในโรงงานนิวเคลียร์ของญี่ปุ่นทำให้เกิดคำถามในหมู่นักวิจารณ์บางคนเกี่ยวกับอนาคตของการฟื้นฟู. Platts ได้รายงานว่า "วิกฤตที่โรงไฟฟ้านิวเคลียร์ Fukushima ของญี่ปุ่นได้ย้ำเตือนประเทศชั้นนำต่างๆที่ใช้พลังงานให้ตรวจสอบความปลอดภัยของเครื่องปฏิกรณ์ที่มีอยู่ของพวกเขาและตั้งข้อสงสัยกับความเร็วและขนาดของแผนการขยายทั่วโลก". ในปี 2011 ซีเมนส์เดินออกจากภาคพลังงานนิวเคลียร์ตามหลังภัยพิบัติที่ Fukushima และการเปลี่ยนแปลงที่สืบเนื่องของนโยบายพลังงานของเยอรมันและสนับสนุนการเปลี่ยนแปลงการใช้พลังงานของรัฐบาลเยอรมันที่วางแผนจะใช้เทคโนโลยีพลังงานหมุนเวียน. จีน, เยอรมัน, สวิตเซอร์แลนด์, อิสราเอล, มาเลเซีย, ไทย, สหราชอาณาจักร, อิตาลี และฟิลิปปินส์ ได้ทบทวนโครงการนิวเคลียร์ของพวกเขา. อินโดนีเซียและเวียดนามยังคงวางแผนที่จะสร้างโรงไฟฟ้าพลังงานนิวเคลียร์. ประเทศต่างๆเช่นออสเตรเลีย, ออสเตรีย, เดนมาร์ก, กรีซ, ไอร์แลนด์, ลัตเวีย, Liechtenstein, ลักเซมเบิร์ก, โปรตุเกส, อิสราเอล, มาเลเซีย, นิวซีแลนด์ และนอร์เวย์ยังคงคัดค้านโรงไฟฟ้านิวเคลียร์. หลังการเกิดอุบัติเหตุนิวเคลียร์ฟูกูชิม่า I, สำนักงานพลังงานระหว่างประเทศได้ลดลงครึ่งหนึ่งของประมาณการเพิ่มกำลังการผลิตไฟฟ้านิวเคลียร์ที่สร้างในปี 2035.

สมาคมนิวเคลียร์โลกได้กล่าวว่า "การผลิตไฟฟ้านิวเคลียร์เดือดร้อนจากการตกต่ำหนึ่งปีที่ใหญ่ที่สุดที่เคยได้รับมาตลอดปี 2012 เมื่อกลุ่มของกองทัพเรือญี่ปุ่นยังคงอยู่แบบออฟไลน์ตลอดหนึ่งปีเต็ม". ข้อมูลจากสำนักงานพลังงานปรมาณูระหว่างประเทศแสดงให้เห็นว่าโรงไฟฟ้าพลังงานนิวเคลียร์ทั่วโลกผลิตไฟฟ้าได้ 2346 TWh ในปี 2012-7% น้อยกว่าในปี 2011" ตัวเลขแสดงให้เห็นถึงผลกระทบของหนึ่งปีเต็มที่เครื่องปฏิกรณ์นิวเคลียร์ของญี่ปุ่น 48 เครื่องไม่มีการผลิตไฟฟ้าเลย. การปิดถาวรของเครื่องปฏิกรณ์แปดหน่วยในประเทศเยอรมนียังเป็นอีกปัจจัยหนึ่ง. ปัญหาที่คริสตัลริเวอร์, ฟอร์ทคาลฮูนและอีกสองหน่วยที่ซาน Onofre ในสหรัฐอเมริกาหมายถึงการที่พวกมันไม่ได้ผลิตพลังงานเลยทั้งปี, ในขณะที่เครื่อง Doel 3 และ Tihange 2 ของเบลเยียมออกจากการทำงานเป็นเวลาหกเดือน. เมื่อเทียบกับปี 2010, อุตสาหกรรมนิวเคลียร์ที่ผลิตไฟฟ้าน้อยลง 11% ในปี 2012.

อ่านเพิ่มเติม: รายชื่อของหน่วยนิวเคลียร์ที่คาดหวังในสหรัฐอเมริกา, พลังงานนิวเคลียร์ในประเทศสหรัฐอเมริกา, นโยบายพลังงานนิวเคลียร์, และบรรเทาภาวะโลกร้อน

ดังที่ได้ระบุไว้แล้ว, ในอุตสาหกรรมพลังงานนิวเคลียร์ในประเทศตะวันตกมีประวัติของการก่อสร้างล่าช้า, ค่าใช้จ่ายสูงเกินงบ, การยกเลิกการก่อสร้างโรงงาน, และปัญหาด้านความปลอดภัยนิวเคลียร์แม้จะมีเงินอุดหนุนและการสนับสนุนจากรัฐอย่างมีนัยสำคัญ. ในเดือนธันวาคม 2013, นิตยสารฟอร์บรายงานว่าในประเทศที่พัฒนาแล้ว "เครื่องปฏิกรณ์ไม่ได้เป็นแหล่งที่มีศักยภาพของพลังงานใหม่". แม้ในประเทศที่พัฒนาแล้วที่พวกเขาตัดสินใจด้านเศรษฐกิจได้ดี, มันก็ยังเป็นไปไม่ได้เพราะ "ค่าใช้จ่ายมหาศาลของนิวเคลียร์, การเมืองและเป็นที่นิยมฝ่ายค้าน และความไม่แน่นอนของกฎระเบียบ". มุมมองนี้ะสะท้อนกับคำพูดของอดีตซีอีโอของ Exelon จอห์น โรว์ ที่บอกว่าในปี 2012 โรงไฟฟ้านิวเคลียร์ใหม่ "ไม่ make sense แต่อย่างใดในตอนนี้"และจะไม่เป็นไปได้ในเชิงเศรษฐกิจในอนาคตอันใกล้. จอห์น Quiggin อาจารย์เศรษฐศาสตร์ยังกล่าวว่าปัญหาหลักของทางเลือกนิวเคลียร์ก็คือว่ามันเป็นไปไม่ได้ทางเศรษฐศาสตร์. Quiggin กล่าวอีกว่าเราจำเป็นต้องมีการใช้พลังงานอย่างมีประสิทธิภาพมากขึ้นและการค้าพลังงานหมุนเวียนมากขึ้น. อดีตสมาชิก NRC ปีเตอร์ แบรดฟอร์ดและศาสตราจารย์เอียน โลว์ได้กล่าวเมื่อเร็ว ๆ นี้คล้ายกัน. อย่างไรก็ตาม "เชียร์ลีดเดอร์นิวเคลียร์" และ lobbyists ในประเทศตะวันตกบางคนยังคงสนับสนุนเครื่องปฏิกรณ์, มักจะด้วยการนำเสนอการออกแบบใหม่ แต่ยังไม่เคยถูกทดลองอย่างกว้างขวางเพื่อเป็นแหล่งที่มาของพลังงานใหม่ .

กิจกรรมการสร้างขึ้นใหม่กำลังเกิดขึ้นมากในประเทศกำลังพัฒนาเช่นเกาหลีใต้, อินเดียและจีน. จีนมี 25 เครื่องปฏิกรณ์อยู่ระหว่างการก่อสร้างและมีแผนจะสร้างมากขึ้น. อย่างไรก็ตาม อ้างถึงหน่วยงานวิจัยของรัฐบาล, จีนจะต้องไม่สร้าง "เครื่องปฏิกรณ์พลังงานนิวเคลียร์มากเกินไปให้เร็วเกินไป" เพื่อหลีกเลี่ยงการขาดแคลนเชื้อเพลิง, อุปกรณ์และคนงานในโรงงานที่ผ่านการรับรอง.

ในสหรัฐอเมริกา ใบอนุญาตของเครื่องปฏิกรณ์เกือบครึ่งหนึ่งได้รับการต่ออายุออกไปอีก 60 ปี. เครื่องปฏิกรณ์ Generation III สองเครื่องใหม่อยู่ระหว่างการก่อสร้างใน Vogtle, ซึ่งเป็นโครงการก่อสร้างคู่ที่แสดงความหมายถึงการสิ้นสุดของระยะเวลา 34 ปีของความเมื่อยล้าในการก่อสร้างเครื่องปฏิกรณ์พลังงานนิวเคลียร์พลเรือนของสหรัฐ. ใบอนุญาตประกอบการของสถานีเกือบครึ่งหนึ่งใน 104 เครื่องปฏิกรณ์พลังงานในสหรัฐ, เมื่อปี 2008, ได้รับการต่ออายุไปอีก 60 ปี. เมื่อปี 2012, เจ้าหน้าที่อุตสาหกรรมนิวเคลียร์สหรัฐอเมริกาคาดหวังว่าจะมีเครื่องปฏิกรณ์ใหม่อีก 5 ชุดที่จะเข้ามาให้บริการในปี 2020, ทั้งหมดในโรงงานที่มีอยู่. ใน 2013, เครื่องปฏิกรณ์ 4 เครื่องที่อายุมากและไม่สามารถแข่งขันได้จะถูกปิดอย่างถาวร. หน่วยงานรัฐด้านกฎหมายที่เกี่ยวข้องกำลังพยายามที่จะปิด Vermont Yankee และโรงไฟฟ้านิวเคลียร์ Indian Point.

หน่วยงาน NRC ของสหรัฐและกระทรวงพลังงานสหรัฐได้เริ่มต้นการวิจัยในความยั่งยืนของเครื่องปฏิกรณ์ Light water ซึ่งหวังว่าจะนำไปสู่การอนุญาตให้ขยายอายุของใบอนุญาตเครื่องปฏิกรณ์ให้ได้เกิน 60 ปีโดยมีเงื่อนไขว่าการรักษาความปลอดภัยสามารถรักษาได้โดยที่ความสามารถในการปลดปล่อยสารที่ไม่ใช่ CO2โดยเครื่องปฏิกรณ์ที่เกษียนอายุ "อาจจะให้บริการที่จะท้าทายความมั่นคงด้านพลังงานของสหรัฐที่อาจมีผลในการเพิ่มขึ้นของการปล่อยก๊าซเรือนกระจกและนำไปสู่ความไม่สมดุลระหว่างอุปสงค์และอุปทานไฟฟ้า".

มีอุปสรรคที่อาจเกิดขึ้นกับการผลิตของโรงไฟฟ้าพลังงานนิวเคลียร์เมื่อมีบริษัทเพียงไม่กี่แห่งทั่วโลกที่มีความสามารถในการปลอมแปลงภาชนะความดันเครื่องปฏิกรณ์ชิ้นเดียว ซึ่งเป็นสิ่งจำเป็นในการออกแบบเครื่องปฏิกรณ์ทั่วไปมากที่สุด. บริษัทยูทิลิตี้ทั่วโลกกำลังส่งคำสั่งซื้อล่วงหน้าสำหรับความจำเป็นที่ต้องใช้จริงสำหรับภาชนะเหล่านี้. ผู้ผลิตอื่นๆกำลังตรวจสอบตัวเลือกต่างๆรวมทั้งการทำชิ้นส่วนด้วยตัวเองหรือหาวิธีที่จะทำชิ้นส่วนที่คล้ายกันโดยใช้วิธีการอื่น.

ตามที่สมาคมนิวเคลียร์โลก, ทั่วโลกในช่วงปี 1980s เครื่องปฏิกรณ์นิวเคลียร์ใหม่หนึ่งตัวเริ่มก่อสร้างขึ้นทุก 17 วันโดยเฉลี่ย, และในปี 2015 อัตรานี้อาจเพิ่มขึ้นเป็นหนึ่งต้วในทุกๆ 5 วัน. เมื่อปี 2007 เครื่อง Watts Bar 1 ในเทนเนสซี, ซึ่งเริ่มออนไลน์ในวันที่ 7 กุมภาพันธ์ปี 1996, เป็นเครื่องปฏิกรณ์นิวเคลียร์ของสหรัฐในเชิงพาณิชย์ตัวสุดท้ายที่ออนไลน์. เรื่องนี้มักจะถูกยกมาเป็นหลักฐานของการรณรงค์ทั่วโลกที่ประสบความสำเร็จสำหรับการใช้พลังงานนิวเคลียร์ที่หยุดทำการ. การขาดแคลนไฟฟ้า, ราคาเชื้อเพลิงฟอสซิลที่เพิ่มขึ้น, ภาวะโลกร้อน, และการปล่อยโลหะหนักจากการใช้เชื้อเพลิงฟอสซิล, เทคโนโลยีใหม่ ๆ เช่นโรงงานที่ปลอดภัยอย่างพาสซีฟ, และความมั่นคงด้านพลังงานของประเทศอาจต่ออายุความต้องการสำหรับโรงไฟฟ้าพลังงานนิวเคลียร์

ในปี 2011 "นักเศรษฐศาสตร์"รายงานว่าพลังงานนิวเคลียร์"ดูอันตราย, ไม่เป็นที่นิยม, มีราคาแพงและมีความเสี่ยง" และ "มันสามารถแทนที่ด้วยความค่อนข้างและสามารถถูกละเลยที่ไม่มีการเปลี่ยนแปลงโครงสร้างขนาดใหญ่ในวิธีที่โลกทำงาน".

ในช่วงต้นเดือนเมษายน 2011, นักวิเคราะห์ของธนาคารเพื่อการลงทุนยูบีเอสที่มีฐานอยู่ในสวิสกล่าวว่า "ที่ Fukushima, เครื่องปฏิกรณ์สี่เครื่องไม่สามารถควบคุมได้อยู่หลายสัปดาห์, ทำให้เกิดความสงสัยว่าเศรษฐกิจแม้ว่าจะก้าวหน้าจะสามารถควบคุมความปลอดภัยในนิวเคลียร์ได้หรือไม่ .... เราเชื่อว่าอุบัติเหตุที่ Fukushima ร้ายแรงที่สุดเท่าที่เคยมีสำหรับความน่าเชื่อถือของพลังงานนิวเคลียร์".

ในปี 2011 นักวิเคราะห์ของดอยซ์แบงค์สรุปว่า "ผลกระทบทั่วโลกของอุบัติเหตุ Fukushima คือการเปลี่ยนแปลงพื้นฐานในการรับรู้ของประชาชนเกี่ยวกับวิธีที่ประเทศจะจัดลำดับและให้คุณค่าแก่สุขภาพของประชาชน, ความปลอดภัย, ความมั่นคงและสภาพแวดล้อมทางธรรมชาติเมื่อพิจารณาวิถีการใช้พลังงานในปัจจุบันและอนาคต". ผลก็คือ "พลังงานหมุนเวียนจะเป็นผู้ชนะในระยะยาวที่ชัดเจนในระบบพลังงานส่วนใหญ่, บทสรุปที่ได้รับการสนับสนุนโดยสำรวจของผู้มีสิทธิออกเสียงจำนวนมากที่ดำเนินการในช่วงไม่กี่สัปดาห์ที่ผ่านมา. ในขณะเดียวกัน เราจะพิจารณาก๊าซธรรมชาติให้เป็น, อย่างน้อยที่สุด ,เชื้อเพลิงสำหรับการเปลี่ยนผ่านที่สำคัญ, โดยเฉพาะอย่างยิ่งในภูมิภาคเหล่านั้นที่มีการพิจารณาว่ามันมีความมั่นคง".

ในเดือนกันยายน 2011 ยักษ์ใหญ่ด้านวิศวกรรมเยอรมัน, ซีเมนส์, ประกาศว่าบริษัทจะถอนตัวออกทั้งหมดจากอุตสาหกรรมนิวเคลียร์, เป็นการตอบสนองต่อภัยพิบัตินิวเคลียร์ฟูกูชิม่าในประเทศญี่ปุ่น, และบอกว่าบริษัทจะไม่สร้างโรงไฟฟ้??าพลังงานนิวเคลียร์อีกต่อไปไม่ว่าที่ใดๆในโลก. ประธานของบริษัท, ปีเตอร์ Loscher, กล่าวว่า "ซีเมนส์กำลังจะจบสิ้นแผนการที่จะให้ความร่วมมือกับ Rosatom, บริษัทพลังงานนิวเคลียร์ที่รัฐควบคุมของรัสเซีย, ในการก่อสร้างหลายสิบโรงไฟฟ้??านิวเคลียร์ทั่วรัสเซียตลอดสองทศวรรษที่กำลังมาถึง". นอกจากนี้ในเดือนกันยายน 2011, ผู้อำนวยการทั่วไปของ IAEA, Yukiya อะมาโนะ, กล่าวว่าภัยพิบัตินิวเคลียร์ญี่ปุ่น "ก่อให้เกิดความวิตกกังวลลึกๆของประชาชนทั่วโลกและทำความเสียหายกับความเชื่อมั่นในพลังงานนิวเคลียร์".

ในเดือนกุมภาพันธ์ปี 2012, คณะกรรมการกำกับกิจการพลังงานสหรัฐอเมริกาได้อนุมัติการก่อสร้างเครื่องปฏิกรณ์เพิ่มเติมสองเครื่องที่โรงไฟฟ้า Vogtle, เครื่องปฏิกรณ์เครื่องแรกที่จะได้รับการอนุมัติในกว่า 30 ปีนับตั้งแต่เกิดอุบัติเหตุที่เกาะทรีไมล์ แต่ประธานของ NRC, เกรกอรี่ Jaczko, ออกเสียงที่ไม่เห็นด้วยโดยอ้างถึงความกังวลด้านความปลอดภัยอันเนื่องมาจากภัยพิบัตินิวเคลียร์ Fukushima ปี 2011 ที่ญี่ปุ่น และพูดว่า "ฉันไม่สามารถสนับสนุนการออกใบอนุญาตนี้เหมือนกับว่า Fukushima ไม่เคยเกิดขึ้น". หนึ่งสัปดาห์หลังจากโรงงานด้านใต้ได้รับใบอนุญาตเพื่อเริ่มต้นก่อสร้างที่สำคัญในสองเครื่องปฏิกรณ์ใหม่, กลุ่มสิ่งแวดล้อมและต่อต้านนิวเคลียร์นับสิบจะฟ้องร้องให้หยุดโครงการขยายโรงงาน V??ogtle, กล่าวหาว่า "เป็นปัญหาความปลอดภัยของประชาชนและสิ่งแวดล้อมเนื่องจากอุบัติเหตุเครื่องปฏิกรณ์นิวเคลียร์ Fukushima Daiichi ของญี่ปุ่นยังไม่ได้ถูกนำขึ้นมาพิจารณา".

หลายประเทศเช่นออสเตรเลีย, ออสเตรีย, เดนมาร์ก, กรีซ, ไอร์แลนด์, อิตาลี, ลัตเวีย, Liechtenstein, ลักเซมเบิร์ก, มอลตา, โปรตุเกส, อิสราเอล, มาเลเซีย, นิวซีแลนด์และนอร์เวย์ไม่มีเครื่องปฏิกรณ์พลังงานนิวเคลียร์และยังคงคัดค้านพลังงานนิวเคลียร์. อย่างไรก็ตาม, ตรงกันข้าม, บางประเทศยังคงโปรดปรานและสนับสนุนการวิจัยนิวเคลียร์ฟิวชันทางการเงิน, รวมทั้งการระดมทุนที่หลากหลายของสหภาพยุโรปในโครงการ ITER

พลังงานลมทั่วโลกมีการเพิ่มขึ้น 26%/ปี, และพลังงานแสงอาทิตย์ 58%/ปี, จากปี 2006-2011, เนื่องจากการแทนที่สำหรับการผลิตไฟฟ้าด้วยความร้อน.

เครื่องปฏิกรณ์ฟิชชันในปัจจุบันที่ดำเนินงานอยู่ทั่วโลกเป็นระบบ generation ที่สองหรือที่สาม, ที่ส่วนใหญ่ของระบบ generation ที่หนึ่งได้ถูกปลดประจำการไปนานแล้ว. การวิจัยในการผลิตเครื่องปฏิกรณ์ Generation IV เริ่มต้นอย่างเป็นทางการโดย Generation IV International Forum (GIF) ตามเป้าหมายแปดเทคโนโลยี, ที่รวมถึงการปรับปรุงความปลอดภัยนิวเคลียร์, การปรับปรุงความต้านทานการแพร่ขยาย, การลดของเสีย, การปรับปรุงการใช้ทรัพยากรทางธรรมชาติ, ความสามารถในการใช้กากนิวเคลียร์ที่มีอยู่ในการผลิตกระแสไฟฟ้า, และลดค่าใช้จ่ายในการสร้างและดำเนินการโรงงานดังกล่าว. ส่วนใหญ่ของเครื่องปฏิกรณ์เหล่านี้แตกต่างกันอย่างมีนัยสำคัญจากเครื่องปฏิกรณ์ light water ที่ดำเนินการในปัจจุบัน, และมักจะไม่คาดว่าจะมีให้ใช้สำหรับการก่อสร้างเชิงพาณิชย์ก่อนปี 2030.

เครื่องปฏิกรณ์นิวเคลียร์ที่จะสร้างขึ้นที่ Vogtle คือเครื่องปฏิกรณ์รุ่นที่สามใหม่, AP1000, ที่ได้รับการบอกเล่าว่าจะมีการปรับปรุงความปลอดภัยเหนือกว่าของเครื่องปฏิกรณ์พลังงานตัวเก่า. อย่างไรก็ตาม John Ma วิศวกรโครงสร้างอาวุโสที่ NRC กังวลว่าบางส่วนของผิวเหล็กของ AP1000 จะเปราะมากจน "พลังงานกระทบ" จากการกระแทกของเครื่องบินหรือพายุกระหน่ำวิถีโค้งจะสามารถทำลายผนัง. Edwin Lyman, นักวิทยาศาสตร์อาวุโสที่ Union of Concerned Scientists ได้กังวลเกี่ยวกับความแข็งแรงของแท่งบรรจุเหล็กกล้าและโล่คอนกรีตที่สร้างรอบ AP1000.

สหภาพดังกล่าวยังได้อ้างถึงเครื่องปฏิกรณ์แรงดันยุโรป (อังกฤษ: European Pressurized Reactor), ขณะนั้นอยู่ระหว่างการก่อสร้างในประเทศจีน, ฟินแลนด์และฝรั่งเศส, ในฐานะที่เป็นเพียงการออกแบบเครื่องปฏิกรณ์ใหม่ภายใต้การพิจารณาในประเทศสหรัฐอเมริกาเท่านั้นว่า "... ดูเหมือนจะมีศักยภาพที่จะปลอดภัยกว่าและมั่นคงกว่าอย่างมีนัยสำคัญจากการถูกโจมตีมากกว่าเครื่องปฏิกรณ์ของว??ันนี้.".

ข้อเสียอย่างหนึ่งของเทคโนโลยีเครื่องปฏิกรณ์ใหม่คือความเสี่ยงด้านความปลอดภัยที่อาจจะมากขกว่าในขั้นต้นเมื่อผู้ประกอบการเครื่องปฏิกรณ์มีประสบการณ์น้อยกับการออกแบบใหม่. วิศวกรนิวเคลียร์เดวิด Lochbaum ได้อธิบายว่าเ??กือบทั้งหมดของอุบัติเหตุนิวเคลียร์ร้ายแรงได้เกิดขึ้นกับสิ่งที่เป็นช่วงเวลาของเทคโนโลยีล่าสุด. เขาแย้งว่า "มีปัญหากับเครื่องปฏิกรณ์ใหม่และการเกิดอุบัติเหตุจะมีเป็นสองเท่า: หนึ่งคือสถานการณ์ที่เกิดขึ้นนั้นเป็นไปไม่ได้ที่จะวางแผนในการจำลองและสองมนุษย์ทำผิดพลาด". ตามที่หนึ่งในผู้อำนวยการห้องปฏิบัติการวิจัยสหรัฐพูดไว้ "การผลิต, การก่อสร้าง, การดำเนินงาน, และการบำรุงรักษาเครื่องปฏิกรณ์ใหม่จะเผชิญกับเส้นโค้งการเรียนรู้ที่สูงชัน: เทคโนโลยีขั้นสูงจะมีความเสี่ยงที่สูงของการเกิดอุบัติเหตุและความผิดพลาด. เทคโนโลยีที่อาจจะได้รับการพิสูจน์แล้ว แต่คนยังไม่ได้".

พลังงานนิวเคลียร์ไฮบริดเป็นวิธีที่ถูกนำเสนอในการสร้างพลังงานไฟฟ้าโดยใช้การผสมกันของกระบวนการนิวเคลียร์ฟิวชันและฟิชชัน. แนวคิดนี้ถอยหลังไปในปี 1950 และได้รับการสนับสนุนในเวลาสั้นๆโดย Hans Bethe ในช่วงปี 1970s, แต่ส่วนใหญ่ยังคงอยู่ไม่ได้ถูกสำรวจจนกระทั่งการฟื้นตัวของดอกเบี้ยในปี 2009, เนื่องจากความล่าช้าในการสำนึกของฟิวชั่นบริสุทธิ์. เมื่อโรงงานพลังงานนิวเคลียร์ฟิวชันอย่างยั่งยืนถูกสร้างขึ้น, มันมีศักยภาพที่จะมีความสามารถในการสกัดพลังงานฟิชชันทั้งหมดที่ยังคงอยู่ในเชื้อเพลิงฟิชชันใช้แล้ว, ความสามารถในการลดปริมาณของเสียนิวเคลียร์โดยขนาด,และที่สำคัญกว่า, การขจัด actinides ทั้งหมดทีปรากฏในเชื้อเพลิงใช้แล้ว, สารที่ก่อให้เกิดความกังวลด้านความมั่นคง.

ปฏิกิริยานิวเคลียร์ฟิวชั่นมีศักยภาพที่จะปลอดภัยมากกว่าและสร้างกากกัมมันตรังสีน้อยกว่าเครื่องปฏิกรณ์นิวเคลียร์ฟิชชัน. ปฏิกิริยาเหล่านี้ปรากฏว่ามีศักยภาพที่จะทำงานได้, แม้ว่าในทางเทคนิคค่อนข้างยากและยังต้องถูกสร้างขึ้นในขนาดที่สามารถถูกนำมาใช้ในโรงงานผลิตไฟฟ้าที่ทำงานได้. พลังงานฟิวชั่นได้อยู่ภายใต้การตรวจสอบในทางทฤษฎีและการทดลองตั้งแต่ปี 1950s.

การก่อสร้างสิ่งอำนวยความสะดวกของ'เครื่องปฏิกรณ์เทอโมนิวเคลียร์เพื่อทดลองนานาชาติ'เริ่มในปี 2007, แต่โครงการได้วิ่งเข้าสู่ความล่าช้าและงบประมาณส่วนเกินจำนวนมาก. สิ่งอำนวยความสะดวกขณะนี้ไม่คาดว่าจะเริ่มดำเนินการได้จนกว่าจะถึงปี 2027 - 11 ปีหลังจากที่คาดการณ์ไว้ในตอนแรก. สถานีพลังงานนิวเคลียร์ฟิวชันเชิงพาณิชย์ที่ตามมา, DEMO, ได้รับนำเสนอ. นอกจากนี้ยังมีคำแนะนำสำหรับโรงไฟฟ้??าที่ใช้วิธีการฟิวชั่นที่แตกต่างกัน, นั่นคือของโรงไฟฟ้??าฟิวชั่นเฉื่อย.

การผลิตไฟฟ้าพลังงานฟิวชันมีความเชื่อในตอนแรกว่าจะประสบความสำเร็จได้อย่างง่ายดายเหมือนกับพลังงานฟิวชั่นที่เคยประสบ. อย่างไรก็ตาม ความต้องการอย่างมากสำหรับปฏิกิริยาต่อเนื่องและการเก็บกักพลาสม่านำไปสู่??การคาดการณ์ที่ถูกขยายออกไปหลายทศวรรษ. ในปี 2010, มากกว่า 60 ปีหลังจากที่ความพยายามครั้งแรก, การผลิตไฟฟ้าเชิงพาณิชย์ก็ยังคงเชื่อว่าจะไม่น่าก่อนปี 2050.

มีหลายองค์กรที่มีจุดยืนเกียวกับพลังงานนิวเคลียร์ต่างกัน, บางแห่งเป็นฝ่ายที่เห็นด้วย, บางแห่งเป็นฝ่ายค้าน


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เป็นต่อ ขั้นเทพ เป็นข่าว ซีรีส์ คณะนิเทศศาสตร์ ซิทคอม ยีนเด่น (ละครโทรทัศน์) เฮง เฮง เฮง เป็นต่อ นักเขียนบท เจ้าชายฌัก รัชทายาทแห่งโมนาโก กาญจน์เกล้า ด้วยเศียรเกล้า วอลเลย์บอลชายทีมชาติไทย ปิยะรัฐ ตุ้นทัพไทย อรรถพร ธีมากร ไมเคิล คลาร์ก ดันแคน เจ้าพงศ์แก้ว ณ ลำพูน ระบบทศนิยมดิวอี้ ตึกนิวยอร์กเวิลด์ เทพมารสะท้านภพ ไทเก็ก หมัดทะลุฟ้า สุภาพบุรุษตระกูลหยาง ตำนานเดชนางพญางูขาว เจิ้ง เจียอิ่ง อู๋ จัวซี กู่ เทียนเล่อ มังกรคู่สู้สิบทิศ แม่พระปฏิสนธินิรมล เจมส์ ฟิกก์ ธัญยกันต์ ธนกิตติ์ธนานนท์ โกะโร อินะงะกิ ฉัตรชัย ดุริยประณีต ธงไชย แมคอินไตย์ คิม เบซิงเงอร์ จิม มอร์ริสัน เดวิด คาร์ราดีน บ๊อบ อารัม สมเด็จพระราชินีนาถคริสตินาแห่งสวีเดน พรรคประชาชนบรูไน แอมโบรสแห่งมิลาน รังสี ทัศนพยัคฆ์ คิเคโร เจ้าหญิงคาทารีนา-อะมาเลีย เจ้าหญิงแห่งออเรนจ์ บุษกร ตันติภนา จอห์น เทอร์รี เฟอร์นันโด วาร์กัส ช่วง มูลพินิจ พิศมัย วิไลศักดิ์ พระมเหสีจองซอง การโจมตีท่าเรือเพิร์ล กองทัพเรือจักรวรรดิญี่ปุ่น Grammy Awards Allmusic ซิงเกิล นักธุรกิจ แร็ปเปอร์ เลสลี นีลเซน มะสึโอะ บะโช นันทนัช โล่ห์สุวรรณ ผู้รักษาประตู สจวร์ต เทย์เลอร์ แดเนียล เฮนนีย์ แอนนา นิโคล สมิธ หลวงพ่อเกษม เขมโก ลี กวน ยู คริส โจนนาว ซิลเวอร์แชร์ เค.แมกซ์ ซินบี แตวุง เค-วัน นักมวยไทย อักษรฮันกุล นักบุญเดนิส ออสการ์ ชินด์เลอร์ เช เกบารา สมเด็จพระสันตะปาปาปิอุสที่ 12 สมเด็จพระเจ้าอเล็กซานเดอร์ที่ 1 แห่งยูโกสลาเวีย หทัยภัทร สมรรถวิทยาเวช พชร ธรรมมล คนึงพิมพ์ พรมกร แบรนดอน เราธ์ แผ่นดินถล่ม สิ่งก่อสร้างที่สูงที่สุดในโลก อนุสาวรีย์วอชิงตัน อำเภอเมืองสุพรรณบุรี ปริ๊นซ์ ออฟ เทนนิส แม่พระแห่งลูกประคำ เลย์ เซบัสเตียน โกอาเตส ตะวัน จารุจินดา แอรอน แอชมอร์ ชอว์น แอชมอร์ ชิลเบร์ตู ซิลวา ภาคภูมิ แจ้งโพธิ์นาค ซามี ฮูเปีย โทนี แบรกซ์ตัน ไซมอน โคเวลล์ วลาดิมีร์ ปูติน พระเจ้าเฟรเดอริกที่ 1 แห่งเดนมาร์ก อาคารรัฐสภาไทย สาธารณรัฐอินโดนีเซีย

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23406