ค้นหา
  
Search Engine Optimization Services (SEO)

พลศาสตร์ของไหล

กลศาสตร์ของไหล (อังกฤษ: Fluid dynamics) เป็นสาขาวิชาการย่อยของกลศาสตร์ของไหล ที่ศึกษาการเคลื่อนที่ของของไหล ซึ่งหมายรวมถึงของเหลวและแก๊ส โดยพลศาสตร์ของไหลยังแบ่งแยกย่อยออกเป็นหลายสาขาวิชา เช่น อากาศพลศาสตร์ ที่ศึกษาการเคลื่อนที่ของอากาศ และพลศาสตร์ของเหลวที่ศึกษาการเคลื่อนที่ของของเหลว เราใช้พลศาสตร์ของไหลในหลายวิธี เช่นในการคำนวณแรงและโมเมนต์บนอากาศยาน ในการหาอัตราการไหลของมวลของปิโตรเลียมผ่านท่อ คาดคะเนแบบรูปของสภาพอากาศ ทำความเข้าใจเนบิวลาและสสารระหว่างดาว ตลอดจนงานคอมพิวเตอร์กราฟิกส์

ของไหลในอุดมคติ คือ ของไหลที่มีความสมบูรณ์แบบที่ทำให้วิเคราะห์ง่าย แต่เป็นของไหลที่หายากในความเป็นจริงจึงเป็นของไหลในอุดมคติโดยประมาณเท่านั้น ของไหลในอุดมคติมีคุณสมบัติต่อไปนี้คือ

การเคลื่อนที่ของของไหลด้วยวิธีการเขียนเวกเตอร์ความเร็วของของไหลที่แต่ละจุด มีความยาวของเวกเตอร์แทนอัตราเร็วของการไหลและทิศทางของเวกเตอร์แทนทิศทางการไหล หรืออีกวิธีหนึ่งคือการเขียนที่เราเรียกว่า สายกระแส ซึ่งคือเส้นสัมผัสกับทิศทางของความเร็ว ระยะช่องไฟระหว่างแต่ละเส้นในสายกระแสเป็นตัวระบุความมากน้อยของอัตราของการไหล ถ้าช่องไฟแคบแสดงว่าอัตราเร็วของการไหลมีค่าสุง และช่องไฟระหว่างเส้นห่างกันมากแสดงว่ามีอัตราการไหลต่ำ สำหรับการไหลแบบสม่ำเสมอ เส้นในสายกระแสจะไม่เปลี่ยนแปลง

สมการต่อเนื่องนี้เป็นผลสืบเนื่องของอนุรักษ์มวล สำหรับการไหลที่มีค่าความหนาแน่นคงที่ และไม่เปลี่ยนแปลงไปตามค่าความดัน

การใช้หลักการของการอนุรักษ์มวลวิเคราะห์การไหลของของไหลในท่อทำให้เราเข้าใจความสัมพันธ์ระหว่างอัตราเร็วและพื้นที่หน้าตัด และเราได้ความสัมพันธ์ที่เรียกว่าสมการต่อเนื่อง ในหัวข้อต่อไปเราจะใช้หลักการอนุรักษ์พลังงานวิเคราะห์การไหลของของไหล เพื่อใช้หลักการอนุรักษ์พลังงานคือ

ซึ่งมีความหมายว่าการถ่ายโอนพลังงานคิดได้จากงาน w ซึ่งมีค่าเท่ากับผลบวกของการเปลี่ยนแปลงของพลังงานจลน์และพลังงานศักย์ของของไหลที่ไหลในท่อ

ตามรูปข้างบนแรงภายนอกที่กระทำต่อของไหลที่อยู่ระหว่าพื้นที่หน้าตัดในระนาบ x และ y มีสองแรงคือ แรง F1 จากของไหลที่อยุ่ทางด้านซ้ายมือ และ แรง F2 จากของไหลที่อยุ่ทางด้านขวามือ

เมื่อ ρ2 เป็นความดันของของไหลที่กระทำต่อพื้นที่ A2 จากทางด้านขวามือ แรงภายนอกที่ว่านี้ทำให้ของไหลซึ่งอยุ่ระหว่างพื้นที่หน้าตัดที่ x และ y ย้ายไปอยู่ระหว่างพื้นที่หน้าตัด x’ และ y’ ตามลำดับ ภายในช่วงเวลา∆t

แรง F1 ดันของไหลที่พื้นที่ A1 ให้ปลายล่างของไหลเคลื่อนที่ตามแนวระดับได้เป็นระยะสูงสุด ∆L1 ดังนั้น งานหรือพลังงานที่ถ่ายโอนให้ของไหลในช่วงที่พิจารณาเท่ากับ

ภายใน ∆t เดียวกัน ของไหลในท่อถูกดันทำให้ส่วนปลายด้านบนเคลื่อนที่ ตามแนวระดับได้เป็นระยะทางสุงสุด ∆L2 ดังนั้นพลังงานที่ถ่ายโอนมีค่าเท่ากับ

แต่เนื่องจาก F2 มีทิศทางตรงกันข้ามกับ ∆L2 งาน W2 จึงมีเครื่องหมายลบ หมายความว่าของไหลในช่วงที่เราพิจารณามีการสูญเสียพลังงาน

ในเมื่อ h1และ h2 เป็นความสุงสุดของจุดศูนย์กลางของพื้นที่ A2 และ A1 วัดจากระดับพื้นตามแนวราบพลังงานที่ถ่ายโอนนี้มีค่าเท่ากับการเปลี่ยนแปลงของพลังงานรวม (พลังงานจลน์+พลังงานศักย์) เราสามารถจัดรูปได้ใหม่เป็น

สมการมีชื่อเรียกว่า สมการแบร์นูลี เพื่อเป็นเกียรติแก่ Daniel Bernoulli นักวิทยาสตร์ชาวสวิสผู้ก่อตั้งสมการนี้เป็นคนแรกซึ่งช่วยให้เราเข้าใจปรากฏการณ์ธรรมชาติ และหลักการบินของเครื่องบินแบบต่าง ๆ ตลอดไปจนถึงการบินของนก

เครื่องบินทั่ว ๆ ไปรวมทั่งเครื่องบินเฮลิคอร์ปเตอร์ตลอดไปจนถึงนก อาศัยแรงดันบรรยากาศที่ได้มาจตาหลักการของสมการแบร์นูลี หรือตามหลักการของปรากฏการณ์แบร์นูลี นอกจากเครื่องบินและนก เรือต่าง ๆ เช่น เรือไฮโดรฟอยล์ เรือฮเวอร์คราฟท์ หรือแม้แต่เรือใบหาปลายังได้อาศัยยังได้อาศัยปรากฏการณ์แบร์นูลีทำกิริยาระหว่างเรือกับน้ำ อีกทั้งวัตถุโปรเจกไตล์ เช่น ลูกกอล์ฟลูกฟุตบอลที่สามารถเลี้ยวโค้ง หรือ ไซ้โค้ง ได้อย่างน่าประหลาด สามรถอธิบายตามสมการแบร์นูลีได้ว่า การที่ปีกของเครื่องบินถูกออกแบบให้พื้นที่ผิวด้านบนเป็นผิวโค้งออก ทำให้กระแสอากาศเหนือปีกเคลื่อนที่ด้วยความเร็วสูงกว่ากระแสอากาศใต้ปีก

ในรูปแสดงสายกระแสด้านบนอยู่ชิดกันมากกว่ากระแสอากาศใต้ปีก ตามหลักของสมการแบร์นูลีความดันใต้ปีกมีค่ามากว่าทำให้เกิดแรงยกที่ปีกและเครื่องบินทั้งลำลอยตัวอยู่ในอากาศได้ทั้งนี้สอดคล้องกับหลักการณ์ และทฤษฏีกฎข้อสามของนิวตัน กล่าวคือ จากการทำกิริยาระหว่างปีกเครื่องบินกับอากาศ กระแสอากาศผลักปีนขึ้นด้านบนยกเครื่องบินให้ลอยอยู่ในอากาศได้

กลศาสตร์ของไหล เป็นสาขาหนึ่งของกลศาสตร์ประยุกต์ที่เกี่ยวข้องกับพฤติกรรมของของเหลวและก๊าซสาขาวิชานี้สามารถสามารถแบ่งออกได้เป็น

ค่าปริมาตรจำเพาะ (Specific volume, Vs) คือ ค่าปริมาตรต่อหน่วยมวล ดังนั้นค่านี้จึงเทากับส่วนกลับของความหนาแน่น

ค่าความถ่วงจำเพาะ (Specific Gravity, SG) หมายถึง อัตราส่วนระหว่างระหว่างความหนาแน่นของของไหลต่อความหนาแน่นของน้ำ ณ อุณหภูมิเดียวกัน และเนื่องจากเป็นอัตราส่วนค่าของ GS จึงไม่ขึ้นกับระบบหน่วยที่ใช้

ความดัน (Pressure, P) เมื่อของไหลถูกบรรจุในภาชนะ ของไหลจะมีแรงกระทำในแนวตั้งฉากกับภาชนะ โดยอัตราส่วนระหว่างแรงดัน (force of pressure, F) และพื้นที่ตั้งฉาก (normal area, A) กับแรงดัน

เมื่อเราเจาะรูภาชนะที่บรรจุของเหลวที่ระดับต่าง ๆ รอบ ๆ ภาชนะ จะเห็นว่ามีของเหลวพุ่งออกจากรูที่ระดับต่าง ๆ ได้ไกลไม่เท่ากัน ดังรูปที่ 9.4

พิจารณาของเหลวที่มีความหนาแน่น ρ อยู่นิ่งในภาชนะปิด โดย สังเกตส่วนของเหลวรูปทรงกระบอกที่มีพื้นผิวด้านบนและล่างมีค่า A หนา dy อยู่ลึกจากผิวของเหลว y = h ดังรูปที่ 9.5 ที่ผิวของของเหลวมีความดันบรรยากาศ Pa ถ้าให้ความดันที่พื้นที่ผิวด้านบนของส่วนของเหลวนี้เป็น P กดลง PA ความดันที่พื้นที่ผิวด้านล่างของส่วนของเหลวนี้เป็น P+dP จะเกิดแรงดันขึ้น (P+dP)A ส่วนแรงดันลัพธ์ด้านข้างมีค่าเป็นศูนย์เพราะมีขนาดเท่ากับทิศทางตรงข้าม และน้ำหนักของส่วนของเหลวนี้มีค่า

นั้นคือ ที่ระดับความลึกเดียวกันในของเหลวชนิดเดียวกัน จะมีความดันเท่ากัน กำหนดให้ความดันเนื่องจากน้ำหนักของของเหลว เรียกว่าความดันเกจ (Gauge pressure: Pw) เป็นความดันเนื่องจากของเหลว ขึ้นกับความลึกและความหนาแน่นของของเหลว มีค่าเป็น

เมื่อมีความดันเนื่องจากของเหลว จะทำให้เกิดแรงดันทุกทิศทุกทางและตั้งฉากกับผนังภาชนะหรือผิววัตถุที่สัมผัสกับของเหลวเสมอ และระดับที่ระดับความลึกเท่ากันในของเหลวชนิดเดียวกันที่อยู่นิ่งและอุณหภูมิคงที่ จะมีความดันเท่ากันเสมอ และของเหลวในภาชนะเดียวกันที่ระดับเดียวกันย่อมมีความดันในของเหลวมีค่าเท่ากัน

ความดันเป็นคุณสมบัติที่สำคัญมากอันหนึ่งของของไหล จึงมีอุปกรณ์อย่างถูกออกแบบและพัฒนามาเพื่อทำหน้าที่ในการตรวจวัดความดัน เครื่องมือวัดความดันอย่างง่าย ๆ ซึ่งใช้ปรอทวัดความดันบรรยากาศ (Atmospheric pressure) เรียกว่า บารอมิเตอร์ (barometer) ดังแสดงในรูปที่ 9.6 อุปกรณ์ดังกล่าวจะมีปลายปิดข้างหนึ่ง เติมปรอทให้เต็มแล้วกลับหลอดให้ด้านปลายเปิดจุ่มลงในอ่างที่มีปรอท ปรอทจะไหลลงไปจากหลอดส่วนหนึ่ง แต่จะมีอีกส่วนหนึ่งยังคงค้างอยู่ โดยความดัน P_1 ที่ด้านบนของหลอดจะมีค่าประมาณ 0 และเราจะได้ว่าความดันที่จุด A เนื่องจากความสูงของปรอทในหลอด จะเท่ากับความดันที่จุด B ซึ่งเป็นความดันบรรยากาศ ดังสมการ

เมื่อ h คือความสูงของปรอทในหลอด และเนื่องจากเราสามารถคำนวณความดันบรรยากาศได้จากความสูงของปรอทในบารอมิเตอร์ ดังนั้นในบางครั้งจึงมีการใช้หน่วยของความดันเป็น มิลิเมตรปรอท หรือบางครั้งเรียกว่า ทอร์ (torr) ความดันบรรยากาศที่ระดับน้ำทะเลจะมีค่าประมาณ 1×105 N/m2 หรือ 760 มิลลิเมตรปรอท หรือ 760 ทอร์ เครื่องมือวัดความดันอีกชนิดหนึ่งเรียกว่า มานอมิเตอร์ (Manometer) ซึ่งเป็นหลอดรูปตัว U ที่มีของเหลวบรรจุอยู่ (โดยมากจะเป็นปรอท) ปลายด้านหนึ่งต่อเข้ากับภาชนะซึ่งมีความดัน P2 ส่วนปลายอีกข้างหนึ่งเปิดให้อากาศเข้า ซึ่งมีความดันเป็น

ถ้า P2>P1 จะทำให้ของเหลวด้านปลายเปิดสูงกว่าด้านปลายปิดถ้าจุด B เป็นจุดบนผิวของของเหลวที่อยู่ด้านปลายปิดและ จุด A เป็นจุดที่อยู่ในแนวระดับเดียวกับจุด B ดังนั้น PA=PB เราจะได้ความสัมพันธ์ดังนี้

ความสูง h จะมีค่าเป็นสัดส่วนกับ ซึ่งค่า นี้เราเรียกว่า ความดันเกจ (Gauge Pressure) ส่วนค่า P2 ซึ่งเป็นค่าความดันเกจ บวกกับความดันบรรยากาศ เราเรียกว่า ความดันสัมบูรณ์ (absolute pressure)

“เมื่อมีการเปลี่ยนแปลงความดันเกิดขึ้นที่ส่วนหนึ่งส่วนใดของไหล ความดันที่เปลี่ยนแปลงนั้นจะถ่ายทอดไปยังของไหลโดยรอบทั่ว ๆ ทุกส่วนของของไหลด้วยค่าที่เท่ากันตลอด”

จากหลักการนี้ทำให้เราทราบว่า เมื่อเราเพิ่มความดันที่จุดไหนของภาชนะปิดก็ตาม ของเหลวทุกจุดภายในภาชนะปิดนี้ก็จะมีความดันเพิ่มขึ้นตามไปด้วย ดังแสดงตัวอย่างในรูปที่ 9.6 ถ้าเราออกแรง F1 กระทำต่อพื้นที่ A1 ทำให้เกิดความดัน P1 ทุก ๆ จุดในภาชนะปิดก็จะมีความดันเพิ่มขึ้นอีก P1 ถ้าเช่นกัน และถ้า P2 เป็นความดันที่เกิดขึ้นกับพื้นที่ A2 ซึ่งอยู่ในระดับความสูงเดียวกันกับ A1

จากหลักของปาสคาลทำให้เรารู้ว่า ถ้า A1 มีขนาดเล็กกว่า A2 เมื่อเราออกแรก F1 จะทำให้เกิดแรงดัน F2 ที่มีขนาดมากกว่า F1 เราใช้หลักการนี้สร้างเครื่องกลผ่อนแรงที่เรียกว่า ไฮโดรลิค (Hydraulic) ดังแสดงในรูปที่ 9.9 ความดันภายนอกที่กระทำต่อของไหลซึ่งกักตัวอยู่ในภาชนะจะทำให้ความดันเพิ่มขึ้นที่จุดทุกจุดในของไหลด้วยจำนวนเท่ากับความดันที่ใช้นั้น ข้อสรุปนี้อาศัยพื้นฐานบนข้อเท็จจริงที่ว่า ของเหลวอัดตัวไม่ลงดังนั้นแรงใด ๆ จะถ่ายทอดโดยตรงไปยังผิวภาชนะทุกส่วนกฎข้างต้นนี้รวบรวมขึ้นในกลางคริสต์ศตวรรษที่ 17 โดย พาสคาลซึ่งการค้นพบนี้ทำให้พาสคาลร่ำรวยขึ้น เนื่องจากพาสคาลท้าพนันกับชาวพื้นเมืองฝรั่งเศส ว่าเขาสามารถระเบิดถังเหล้าองุ่นที่แข็งแรงที่สุดด้วยการเทเหล้าองุ่นลงไปเพียงถ้วยเดียว ไม่มีใครเชื่อว่าเขาจะทำได้ ดั้งนั้นการต่อรองจึงสูงมาก ปรากฏว่าเขาสามารถทำถึงเหล้าองุ่นให้แตกได้จริงด้วยการเทเหล้าองุ่นเติมเข้าไปในหลอดเล็กและยาวที่สอดไว้กับถังเหล้าในแนวดิ่ง เพราะว่านักคณิตศาสตร์ชาวฝรั่งเศสผู้นี้ทราบดีว่า ความสูง h ของเหล้าในหลอดจะทำให้ความดันเพิ่มขึ้นจนถึงแตกได้ ประโยชน์สมัยใหม่ของหลักของพาสคาล คือ เบรกไฮดรอลิกและเครื่องอัดไฮดรอลิก เป็นต้น รูปที่ 9.10 แสดงเครื่องอัดไฮดรอลิกซึ่งประกอบด้วยกระบอกสูบ 2 อัน (พื้นที่ภาคตัดขวาง A1 และ A2) บรรจุของเหลวไว้ ออกแรง F1 น้อย ๆ จะได้แรก F2 ออกมาขนาดมาก

นี่คือหลักพื้นฐานของการทำงานของแม่แรงไฮดรอลิกที่ใช้รถยนต์ตามสถานีบริการน้ำมัน ซึ่งในที่นี้ความดัน

สมบัติอย่างหนึ่งของของไหล คือ เมื่อวัตถุจมในของไหล น้ำหนักของวัตถุจะลดลง และบางครั้งวัตถุสามรถลอยบนของไหลได้ นั้นแสดงว่ามีแรงที่ของไหลกระทำต่อวัตถุในทิศทางที่ตรงข้ามกับทิศของน้ำหนักของวัตถุซี่งปรากฏการณ์ดังกล่าวจะสังเกตเห็นได้ชัดในกรณีที่ของไหลกลายเป็นของเหลว และอาร์คิมิดิส (Archimedes) เป็นผู้พบสมบัตินี้ของของไหล และแถลงออกมาเป็น หลักของอาร์คิมิดิส ซึ่งกล่าวว่า

“เมื่อวัตถุจมหรือหลอยอยู่ในของเหลว จะถูกแรงเนื่องจากของเหลวกระทำต่อวัตถุ มีทิศทางตรงข้ามกับน้ำหนัก ขนาดเท่ากับน้ำหนักของเหลวที่มีปริมาตรเท่าส่วนที่วัตถุจมในของเหลว หรือเท่ากับน้ำหนักของของเหลวที่ถูกแทนที่ด้วยวัตถุ”

เรียกแรงนี้ว่า แรงลอยตัว (Buoyant force: FB) ซึ่งแรงนี้เป็นแรงที่เกิดจากแรงดันลัพธ์เนื่องจากของเหลวกระทำต่อวัตถุที่อยู่ในของเหลว พิจารณาวัตถุทรงกระบอกที่มีพื้นที่หน้าตัด A สูง h จมอยู่ในของเหลวที่มีความหนา p พื้นที่หน้าตัดด้านบนและด้านล่างอยู่ลึกจากผิวของเหลวเป็นระยะ h1 และ h2 ตามลำดับ (จากรูปตัวอย่าง) แรงดันที่ผนังด้านข้าง F3 และ F4 มีขนาดเท่ากันตามทิศทางตรงข้าม แรงดันกดลงบนที่ผิวด้านบน

ซึ่งมีค่ามากกว่าแรงดันด้านบน (F1) ทั้งนี้เนื่องมาจากความดันที่มีค่ามากกว่า จะได้ว่า แรงลัพธ์มีค่าเป็น

ในธรรมชาติเราเคยเห็นแมลงยืนหรือเดินบนผิวน้ำได้ บางครั้งเราสามารถทำให้เข็มเย็บผ้า หรือใบมีดโกนที่มีความหนาแน่นมากกว่าน้ำ ลอยอยู่บนน้ำได้เช่นกัน และถ้าสังเกตหยดของเหลวเล็ก ๆ ที่มักมีลักษณะเป็นทรงกลมหรือหยดน้ำค้างบนใบไม้ก็มีลักษณะเป็นทรงกลม แม้แต่ฟองสบู่ก็มีลักษณะเป็นทรงกลม การที่เป็นเช่นนี้เป็นเพราะว่าผิวของของเหลวจะมีแรงยึดเหนี่ยวระหว่างโมเลกุลของของเหลวด้วยกัน พยายามยึดผิวของของเหลวให้ตึง (ให้มีพื้นที่น้อยที่สุด) เรียกว่า “แรงตึงผิวของของเหลว”

เป็นแรงที่ผิวของของเหลวพยายามยึดผิวหน้าไม่ให้ขาดออกจากกัน มีทิศขนานกับผิวของของเหลว และตั้งฉากกับเส้นขอบภาชนะหรือวัตถุที่ของเหลวสัมผัส ดังรูป

แรงตึงผิวเกิดจากแรงดึงดูดระหว่างโมเลกุล ถ้าเป็นแรงดึงดูดระหว่างโมเลกุลชนิดเดียวกันเรียกว่า แรงเชื่อมติด (Cohesive force, โมเลกุลของเหลวกับของเหลว) แต่ถ้าเป็นแรงดึงดูดระหว่างโมเลกุลต่างชนิดกันเรียกว่า แรงยึดติด (adhesion > cohesion) ดังรูปตัวอย่าง ผิวน้ำจะเว้าลงไป ทำให้มุมสัมผัส คือ θ กางน้อยกว่า 90o เมื่อแรงยึดติดมากกว่าแรงเกาะติด เช่น ผิวของปรอท (cohesion > adhesion) ดังรูปตัวอย่าง ผิวปรอทจะโค้งนูนขึ้น ทำให้มุมสัมผัส คือ θ กางมากกว่า 90o แรงตึงผิวของของเหลวจะมีทิศขนานกับผิวของของเหลวและตั้งฉากกับเส้นขอบที่ของของเหลวสัมผัส ดังแสดงในรูป ความตึงผิว เป็นสมบัติของของของเหลวที่พยายามยึดผิวหน้าของเหลวให้มีพื้นที่ผิวน้อยที่สุด มีค่าเท่ากับอัตราส่วนระหว่างแรงตึงผิว ความยาวเส้นขอบของรอยฉีกที่ผิวซึ่งสัมผัสกับอากาศ ดังรูปตัวอย่าง

โดยมี γ เป็นความตึงผิว F คือแรงดึงผิว 1 คือ ความยาวเส้นขอบ จากรูปภาพตัวอย่าง เมื่อใช้แรง F ดึงขอบลวดซึ่งยาว 1 ซึ่งเลื่อนได้ ทำให้ผิวของเหลวที่เป็นแผ่นฟิล์มฉีกขาด เนื่องจากผิวที่สัมผัสอากาศมีสองหน้า ดังนั้น รอยฉีกยาวรวม 21 ดังนั้นจะได้ความตึงผิวเป็น

ความตึงผิวจะขึ้นอยู่กับชนิดและอุณหภูมิของของเหลว ดังภาพ สำหรับความตึงผิวของของเหลวชนิดหนึ่งจะมีค่าเปลี่ยนไปเมื่อมีสารอื่นเจือปน เช่น น้ำเกลือ น้ำฟองสบู่ จะมีค่าความตึงผิวน้อยกว่าน้ำ การซึมตามรูเล็ก (Capillarity) เป็นปรากฏการณ์เนื่องจากความตึงผิวของของเหลว เมื่อจุ่มหลอดเล็กหรือท่อเล็ก (Capillarity) ลงในของเหลวทำให้ของเหลวในหลอดมีระดับสูงกว่าหรือต่ำกว่าผิวของเหลว ดังรูปตัวอย่าง ทั้งนี้เป็นผลเนื่องมาจากแรงตึงผิวของของเหลว ปรากฏการณ์นี้ที่เกิดในธรรมชาติได้แก่ การลำเลียงน้ำของราก, น้ำใต้ดิน การซับน้ำของกระดาษชำระ

จากรูปภาพ แรงตึงผิว Fγ ทำมุม θ กับผนังชนะจะได้องค์ประกอบของแรง Fγ ในแนวดิ่ง Fγ cosθ ซึ่งมีขนาดเท่ากับน้ำหนักของของเหลวในหลอดเหนือผิวของเหลวเพราะของเหลวอยู่ในสภาพสมดุล

พิจารณาฟองสบู่มีรัศมี R ความตึงผิว γ ความดันอากาศภายในฟองสบุ่ P และความดันภายนอกคือ ความดันอากาศ Pa ดังรูป

เมื่อผ่าฟองสบู่ แรงตึงผิวมีทิศขนานกับผิวฟองสบู่มีผิวสัมผัสกับอากาศ 2 ผิว คือ ผิวนอกและผิวใน ความยาวของผิวสัมผัสเป็นรูปวงกลม จะได้

โดยที่ U , S และ V คือ ค่าพลังงานภายใน เอนโทรปี และปริมาตรซึ่งเป็น intensive property (มีหน่วยต่อโมล) จะเห็นได้ว่าสมการนี้เป็นความสัมพันธ์ระหว่างสมบัติทางอุณหพลศาสตร์ และสมบัติเหล่านี้มีค่าขึ้นอยู่กับสภาวะเพียงเท่านั้น โดยไม่ขึ้นอยู่กับเส้นทางของกระบวนการ ดังนั้น ถึงแม้ว่าสมการนี้จะพัฒนามาจากกระบวนการที่ผันกลับได้ แต่เราสามารถใช้สมการนี้กับกระบวนการใด ๆ ก็ได้ตราบเท่าที่ระบบเป็นระบบปิดซึ่งมีมวลสารคงที่

สมการข้างต้นแสดงความสัมพันธ์ระหว่าง P, V, T, U และ S ซึ่งนอกจากสมการนี้แล้ว ยังมีสมการในลักษณะเดียวกันที่พัฒนาขึ้นมาสำหรับสมบัติอื่น ๆ ทางอุณหพลศาสตร์ โดยเริ่มจากนิยามของพลังงานในรูปแบบอื่น ๆ ดังนี้

ในทำนองเดียวกันถ้ากำจัด d(nU) ออกจากสมการที่ 2 (ภายหลังจากที่คูณด้วย n แล้วทำการดิฟเฟอเรทชิเอท)โดยใช้สมการที่ 1 จะได้

และในลักษณะเช่นเดียวกันนี้ หากทำการดิฟเฟอเรนชิเอทสมการที่ 3 ที่คูณด้วย n ตลอดทั้งสมการ แล้วกำจัดพจน์ d(nU) ออกโดยใช้ค่าจากสมการที่ 4 ข้างต้น จะได้

สมการที่ 7-10 เรียกว่าเป็นสมการความสัมพันธ์ของสมบัติพื้นฐาน (fundamental property relation) ซึ่งใช้สำหรับของไหลเนื้อเดียวที่มีองค์ประกอบคงที่ สมการกลุ่มนี้สามารถใช้ในการพัฒนาสมการความสัมพันธ์ของสมบัติทางอุณหพลศาสตร์ที่สำคัญอีกชุดหนึ่ง โดยพิจารณาสมการกลุ่มนี้ในลักษณะเดียวกันกับการดิฟเฟอเรนชิเอทฟังก์ชัน F=F(x,y) ดังนี้

ดังนั้น หากเราเทียบรูปสมการที่ 7-10 กับสมการที่ 11 จะสามารถเขียนความสัมพันธ์ในลักษณะเดียวกันกับสมการที่ 12 สำหรับสมบัติทางอุณหพลศาสตร์ต่าง ๆ ได้ดังนี้

โดยสรุปจะเห็นว่า สมการความสัมพันธ์ของสมบัติพื้นฐานทางอุณหพลศาสาตร์สามารถนำมาใช้ในการพัฒนาสมการความสัมพันธ์แมกซ์แวลล์ สมการทั้งสองชุดนี้มีความสำคัญคำนวณหาสมบัติทางอุณหพลศาสตร์ที่ไม่สามารถวัดค่ได้โดยตรงจากการทดลอง ซึ่งจะได้กล่าวถึงต่อไป

ค่าเอนทัลปีและเอนโทรปีเป็นสมบัติของอุณหพลศาสตร์ที่ไม่อาจวัดได้โดยตรงจากการทดลองแต่สามารถหาได้จากข้องมูลที่วัดได้อื่น ๆ เช่น อุณหภูมิและความดัน ดังนั้นจึงจำเป็นต้องทราบรูปแบบความสัมพันธ์ทางคณิตศาสตร์ระหว่างเอนทัลปี เอนโทรปี กับอุณหภูมิและความดัน ซึงความสัมพันธ์เหล่านี้สามารถพัฒนาขั้นมาได้หากทราบว่าค่าเอนทัลปีและเอนโทรปีเปลี่ยนแปลงไปตามอุณหภูมิและความดันอย่างไร หรือพัฒนามาจากข้อมูล

สำหรับค่าดิฟเฟอเรนเชียลของเอนโทรปีเทียบกับความดันนั้น สามารถหาได้โดยตรงจากสมการแมกซ์เวลล์ (สมการที่ 16)

เมื่อรวมกับสมการที่ 18 จะได้ค่าดิฟเฟอเนเชียลของเอนทัลปีเทียบกับความดันที่เป็นฟังก์ชันของตัวแปรที่สามารถวัดค่าได้ทั้งหมด

เมื่อเรากำหนดให้ Hกับ S เป็นฟังก์ชันของอุณหภูมิและความดัน (สำหรับระบบที่เป็นสารบริสุทธิ์ในวัฏภาคเดียว ซึ่งมีค่า degree of freedom เท่ากับ 2 นั้น เราสามารถคำนวณสมบัติต่าง ๆ ของระบบได้จากตัวแปร 2 ตัว ซึ่งในที่นี้จะเลือกใช้อุณหภูมิและความดัน) ดังนี้

สมการข้างต้นนี้คือสมการแสดงความสัมพันธ์ของเอลทัลปีและเอนโทรปีในรูปของอุณหภูมิและความดันความสัมพันธ์เหล่านี้มีประโยชน์วิเคราะห์ทางอุณหพลศาสตร์ของกระบวนการต่าง ๆ ทั้งนี้การประยุกต์ใช้สำหรับกระบวนการไหลอย่างต่อเนื่องและคงตัวจะได้อธิบายได้อย่างละเอียดในบทต่อไป

และจากสมการที่ 19 สามารถเขียนสมการข้างต้นให้อยู่ในรูปสมการความสัมพันธ์ระหว่างพลังงานภายในกับความดัน ดังนี้

ค่าสัมประสิทธิ์ของ dT และ dP ในสมการที่ 20 และสมการที่ 21 นั้น หาได้จากค่า CP และจากข้อมูล PVT ซึ่งในกรณีของแก๊สอุดมคติความสัมพันธ์ของ PVT เป็นดังนี้

เนื่องจากค่า β และ κ ไม่ขึ้นกับความดันของของเหลวมากนัก การอินทิเกรตสมการที่ 28 และ 29 จึงสมารถสมมุติให้ค่าเหล่านี้เป็นค่าคงที่ได้ โดยนิยมใช้ค่าเฉลี่ยตลอดช่วงความดันมาใช้ในการคำนวณ

พลังงานภายในและเอนโทรปีอาจเขียนให้อยู่ในรูปของฟังก์ชันอุณหภูมิและปริมาตรได้ เมื่อทราบค่า

ถ้าเขียนพลังงานภายในและเอนโทรปีในรูปฟังก์ชันของอุณหภูมิกับปริมาตร หรือ U = U(T,V) และ S = S(T,V) และทำการดิฟเฟอเรนชิเอทจะได้

ซึ่งสมการทั้งสองสมการนี้แสดงความสัมพันธ์ระหว่างพลังงานภายในและเอนโทรปีกับอุณหภูมิและปริมาตรของของไหล

ความสัมพันธ์ของสมบัติพื้นฐานดังแสดงด้วยสมการที่ 7-10 นั้นใช้ได้สำหรับของไหลเนื้อเดียวที่มีองค์ประกอบคงที่ ซึ่งจากสมการเหล่านี้จะเห็นว่าสมบัติทางอุณหพลศาสตร์ เช่น U, H, A และ G มีความสัมพันธ์กับตัวแปร 2 ตัวแปรที่วัดค่าได้ เช่น กรณีของสมการที่ 10 ต่อไปนี้

จากสมการนี้จะเห็นว่า พลังงานกิบส์เป็นฟังก์ชันของอุณหภูมิกับความดัน G = G(P,T) และเนื่องจากอุณหภูมิและความดันเป็นตัวแปรที่สามารถวัดค่าได้โดยง่าย ดังนั้นพลังงานกิบส์จึงเป็นคุณสมบัติทางอุณหพลศาสตร์ที่น่าจะมีประโยชน์นำไปใช้งานต่อไป

นอกจากสมการที่ 10 แล้ว สมการพื้นฐานของพลังงานกิบส์อาจพัฒนาได้จากคุณสมบัติทางคณิตศาสตร์ (ตามนิยามของดิฟเฟอเรนเชียลผลหาร) ดังนี้

ซึ่งจะพบว่าทุกพจน์ของสมการข้างต้นเป็นปริมาณที่ไม่มีหน่วยนอกจากนี้ สมการข้างต้นยังต่างกับสมการที่10 ตรงที่ปริมาณทางด้านขวามือของสมการเป็นค่าเอนทัลปี แทนที่จะเป็นเอนโทรปี ซึ่งทำให้สมการนี้ใช้งานได้ง่ายขึ้น

ซึ่งจะเห็นว่า เมื่อทราบค่าของ G/RT ในรูปของฟังก์ชันของ T และ P จะทำให้คำนวณหาค่า V/RT และ H/RT เช่นเดียวกันกับสมบัติอื่น ๆ เช่น

กล่าวโดยสรุปได้ว่า เมื่อเราทราบสมการ G/RT=g(T,P) แล้ว จะทำให้สามารถหาสมบัติทางอุณหพลศาสตร์อื่น ๆ ได้จากการคำนวณอย่างง่าย ดังนั้นจึงเรียกพลังงานกิบส์ว่าเป็น เจนเนอเรตติงฟังก์ชัน (Generating Function)

แม้ว่าจะสามารถหาสมบัติต่าง ๆ ได้จากข้อมูลเกี่ยวกับพลังงานกิบส์ แต่การหาค่า G หรือ G/RT อาจไม่สามารถทำได้โดยง่ายจากการทดลอง ดังนั้น ในการหาสมบัติต่าง ๆ อาจทำได้โดยนิยามสมบัติขึ้นมาอีกชนิดหนึ่ง ได้แก่ พลังงานกิบส์รีซิดวล (Residual Gibb Energy) ซึ่งมีนิยามดังนี้

โดยที่ G และ Gig คือ ค่าพลังงานกิบส์จริง ๆ ของระบบ และค่าพลังงานกิบส์ของแก๊สอุดมคติที่อุณหภูมิและความดันเดียวกัน

โดยที่ M คือสมบัติเชิงมวลทางอุณหพลศาสตร์ เช่น V, U, H, S หรือ G จากสมการที่ 37 ถ้าเขียนสำหรับกรณีของแก๊สอุดมคติ จะได้

ซึ่งสมการข้างต้นนี้ก็คือ สมการความสัมพันธ์พื้นฐานของสมบัติรีซิดวลของของไหลที่มีองค์ประกอบคงที่ และจากสมการนี้ จะได้ว่า

จะเห็นว่าพลังงานกิบส์รีซิดวลเปรียบเสมือนเป็น Generating function สำหรับค่าสมบัติรีซิดวลอื่น ๆ โดยค่าพลังงานกิบส์รีซิดวลนี้สามารถหาได้จากข้อมูลการทดลอง และเมื่อพิจารณาสมการที่ 43 เราอาจเขียนสมการนี้ใหม่ได้เป็น

ซึ่ง J เป็นค่าคงที่ และไม่ขึ้นกับอุณหภูมิ ดังจะได้อธิบายต่อไป และเมื่อแทนค่า VR ตามสมการที่ 40 ลงไปในสมการข้างต้นจะได้ว่า

จึงสามารถคำนวณได้จากค่าข้อมูล PVT จากการทดลอง ทั้งค่าอินทิกรัลในสมการที่ 6.45 – 6.48 สามารถคำนวณได้โดยวิธีนิวเมอริคอล (numerical method) หรือวิธีกราฟิคอล (graphical method) หรืออาจสามารถอินทิเกรตโดนตรงจาก Equation of state ที่อยู่ในรูปของ Z จะได้ Z ก็ได้ ดังนั้นถ้าทราบข้อมูล PVT หรือรูปสมการ Equation of state ก็จะสามารถคำนวณหาค่า HR กับ SR และค่าสมบัติรีซิดวลอื่น ๆ ได้ดังตัวอย่างต่อไปนี้

ดังนั้น ค่า H และ S จึงสามารถหาได้จากสมการแก๊สอุดมคติและสมบัติรีซิดวลโดยสมการของ Hig และ Sig นั้นหาได้จากการอินทิเกรตสมการที่ 23 และ 24

โดยอินทิเกรตจากสภาวะแก๊สอุดมคติที่สภาวะอ้างอิง (reference condition, T0 และ P0) ไปถึงสภาวะแก๊สอุดมคติที่ T และ P ใด ๆ และเมื่อแทนค่าลงไปในสมการข้างต้นจะได้

สมการข้างต้นสามารถเขียนในรูปที่ง่ายขึ้นโดยใช้ค่าความจุความร้อนเฉลี่ย (และสมมติให้ค่าความจุความร้อนเฉลี่ยเป็นค่าคงที่) จะได้

โดยที่ HR และ SR ในสมการที่ 50-53 นั้นสามารถคำนวณได้จากสมการที่ 46 และ 48 ทั้งนี้ถึงแม้ว่าสมการทั้งสองนี้จะใช้สำหรับแก๊สเพียงเท่านั้น แต่สมบัตรีซิดวลนั้นสามารถใช้ได้กับทั้งแก๊สและของเหลวอย่างไรก็ตามสมบัติรีซิดวลจะมีประโยชน์มากกว่าในกรณีที่ใช้กับแก๊ส เนื่องจากพจน์รีซิดวล HR และ SR ซึ่งเป็นพจน์ที่รวมการคำนวณซับซ้อนเอาไว้ จะมีค่าร้อยเมื่อเทียบกับพจน์ Hig และ Sig แต่สำหรับของเหลวแล้วค่านี้จะมีค่ามากกว่าในกรณีของแก๊สมาก เนื่องจากจะต้องรวมค่าการเปลี่ยนแปลงเอนทัลปีและเอนโทรปีของการกลายเป็นไอไว้ด้วย ดังนั้น สำหรับในกรณีของของเหลว จึงนิยมใช้สมการที่ 28 และสมการที่ 29 ในการคำนวณค่าการเปลี่ยนแปลงของสมบัติ

ทางเลือกอีกทางหนึ่งในการหาค่าอินทิกรัลในสมการที่ 45-48 ก็คือ การหาจาก equation of state ซึ่งแสดงว่าค่า Z (หรือ V) ในรูปฟังก์ชันของ P และ T โดยเนื้อหาในส่วนนี้จะกล่าวถึงวิธีการคำนวณหาค่าสมบัติของแก็สและไอ โดยใช้สมการไวเรียลและสมการ cubic equation of state ดังต่อไปนี้

ถ้าพิจารณากรณีของแก๊สหรือไอ ณ สภาวะที่ความดันไม่สูงนัก (ต่ำกว่า 5 bar) เราสามารถเขียนค่า compressibility factor ในรูปสมการไวเรียลที่ประกอบไปด้วยสองพจน์ได้ ดังนี้

จะเห็นได้จากสมการที่ 55 และ 56 ว่าถ้ามีข้อมูลเพียงพอที่จะหาค่า B และ dB/dT จะทำให้สามารถหาค่าของเอลทัลปีรีซิดวลและเอนโทรปีรีซิดวลได้ ณ สภาวะอุณหภูมิ ความดัน และองค์ประกอบที่กำหนดใด ๆ

จะเห็นได้ว่าเราไม่สามารถใช้ equation of state ที่อยู่ในรูปฟังก์ชันของปริมาตรในการแก้สมการที่ 45-48 ได้โดยตรง ดังนั้นจึงจำเป็นต้องเปลี่ยนรูปสมการที่ 45-48 ให้มีปริมาตรเป็นตัวแปรสำหรับการอินทิเกรดเสียก่อน อย่างไรก็ตาม สมการที่สะดวกใช้งงานมากกว่าสมการในรูปปริมาตรก็คือ สมการในรูปของความหนาแน่น ในกรณีเช่นนี้สมการ PV=ZRT จึงจะเขียนได้เป็น

โดยประเมินค่าพจน์อินทิกรัลของสมการข้างต้นจะทำที่สภาวะอุณหภูมิคงที่เท่ากับ T นอกจากนี้ ควรสังเกตว่า เมื่อ P→0 จะได้ว่า ρ→0 เช่นกัน

ค่าอนุพันธ์ในพจน์แรกทางด้านขวามือของสมการข้างต้นนั้น คำนวณได้จากการดิฟเฟอเรนชิเอทสมการที่ 57 ส่วนค่าอนุพันธ์ในพจน์ที่สองนั้นหาได้จากการดิฟเฟอเรนชิเอทสมการที่ 58 และเมื่อแทนค่าทั้งสองลงไปในสมการข้างต้น จะได้

สมการข้างต้นนี้ใช้สำหรับแก๊สที่มีความดันปานกลาง โดยจำเป็นต้องทราบข้อมูลสัมประสิทธิ์ตัวที่สองและสามของสมการไวเรียล

สมการนี้ใช้งานได้สะดวกมากขึ้นถ้าเขียนในรูปของ Z โดยมีความหนาแน่น ρ เป็นตัวแปรอิสระ ดังนั้นเมื่อหารสมการข้างต้นด้วย ρRT และแทนค่า V=1⁄ρ จะได้สมการดังต่อไปนี้

ปริมาณที่ใช้หาค่าอินทิกรัลในสมการที่ 58-60 คือ Z-1 และ (∂Z⁄∂T)_ρ ซึ่งสามารถหาได้จากสมการข้างต้น ดังต่อไปนี้

สมการนี้จะใช้ง่ายขึ้นเมื่อกำจัด ρ ออกไปโดยทำให้อยู่ในรูปของ Z โดยใช้สมการที่ 3 และจากนิยามของ:

ตัวอย่างของกรณีนี้ได้แก่ สมการแวนเดอร์วาลล์ ซึ่งจะได้ว่า I= β/Z เมื่อหาค่าอินทิกรัล ลัวแทนลงในสมการที่ 58 จะได้

ซึ่งการใช้สมการเหล่านี้จะต้องคำนวณหาค่า Z จากสมการที่ 3.62 สำหรับสถานะไอ และสมการที่ 3.66 สำหรับสมการสถานะของเหลวก่อน

แผนภาพ P-T ในรูปที่ 3.2 ของบทที่ 3 นั้นได้แสดงเส้นแบ่งขอบเขตของสถานะของสารบริสุทธิ์กระบวนการใด ๆ ที่ดำเนินผ่านเส้นแบ่งขอบเขตนี้จะมีการเปลี่ยนแปลงของสถานะเกิดขึ้น พร้อมกันนั้นจะเกิดการเปลี่ยนแปลงสมบัติทางอุณหพลศาสตร์เกิดขึ้นอย่างฉับพลัน นั่นคือที่อุณหภูมิและความดันเดียวกันปริมาตรต่อมวลของของเหลวอิ่มตัวจะแตกต่างจากปริมาตรต่อมวลของแก๊สอิ่มตัวมาก และในทำนองเดียวกัน ค่าพลังงานภายในเอนทัลปีและเอนโทรปีของสารในต่างสถานะก็จะแตกต่างกันมากเช่นกัน อย่างไรก็ตาม สมบัติชนิดหนึ่งที่ถือเป็นข้อยกเว้น คือ ค่าของพลังงานกิบส์ ซึ่งจะมีค่าเท่ากันในทั้งสองสถานะ (ในขณะที่ทั้งสองสถานะอยู่ในสภาวะสมดุลต่อกัน) กล่าวอีกนัยหนึ่งได้ว่า การเปลี่ยนสถานะจะไม่ส่งผลไห้ค่าพลังงานกิบส์มีการเปลี่ยนแปลง ไม่ว่าจะเป็นการระเหิด การหลอมเหลว หรือการกลายเป็นไอ ทั้งนี้เมื่อได้พิจารณาของเหลวบริสุทธิ์ซึ่งอยู่ในสภาวะสมดุลกับแก๊สในกระสูบที่อุณหภูมิ Tsat และความดัน Psat ถ้ามีของเหลวในปริมาณน้อย ๆ ที่ถูกเปลี่ยนกลายเป็นไอภายใต้สภาวะอุณหภูมิและความดันคงที่ จากสมการที่ 6.6 จะได้ว่า d(nG)=0 โดยกระบวนการที่เกิดขึ้นในระบบปิดนี้ ค่า n จะเป็นค่าคงที่ ดังนั้นจะได้ dG=0 ซึ่งหมายความว่า ค่าพลังงานกิบส์ของแก๊สจะต้องมีค่าเท่ากับพลังงานกิบส์ของของเหลว กล่าวคือ

สมการข้างต้นสามารถใช้พัฒนาสมการแคลปิรอน (Clapeyron equation) ซึ่งได้กล่าวถึงในบทเรียนที่ผ่านมา โดยทราบว่าในระบบที่อยู่ในสภาวะสมดุลระหว่างสถานะ ถ้าอุณหภูมิของระบบเปลี่ยนไป ความดันก็จะเปลี่ยนตามไปด้วยตามความสัมพันธ์ระหว่างความดันไอและอุณหภูมิโดยจะเป็นไปตามสมการที่ 6.69

ค่าการเปลี่ยนแปลงเอนโทรปี ∆S^αβ และการเปลี่ยนแปลงของปริมาตร ∆V^αβ คือการเปลี่ยนแปลงที่เกิดขึ้นเมื่อปริมาตรหนึ่งหน่วยของสารบริสุทธิ์เกิดการถ่ายโอนจากสถานะ α ไปเป็น β เช่นนี้ จะได้ ค่าความร้อนแฝงอันเนื่องมาจากการเปลี่ยนสถานะ

สมการ Corresponding-States หลายสมการสามารถใช้ในการหาค่าความดันไอสำหรับของเหลวไม่มีขั้วและของเหลวประเภท non-associating โดยสมการที่ง่ายที่สุดได้แก่สมการ Lee/Kesler ซึ่งเป็นสมการในประเภท Pitzer ที่มีรูปสมการดังนี้

แนะนำว่าค่า ω นั้น สามารถหาโดยอาศัยสมการข้างต้นที่สภาวะจุดเดือดปกติ โดยแทนค่า Tr ด้วยอุณหภูมิขิงจุดเดือดที่ความดัน 1 บรรยากาศ หรือนั่นคือ ω สำหรับสารใด ๆ จะคำนวณได้จาก

ดังที่ได้บรรยายมาข้างต้น จะเห็นว่าในการประมาณค่าสมบัติทางอุณหพลศาสตร์นั้นจำเป็นต้องทราบข้อมูลอันได้แก่ ค่าความร้อนและข้อมูล PVT ของสารในระบบ สำหรับข้อมูล PVT นั้นในบางครั้งอาจมีข้อมูลที่ไม่ครบหรือไม่สมบูรณ์ จึงจำเป็นต้องมีการพัฒนาความสัมพันธ์รูปทั่วไปเพื่อเป็นทางเลือกในการคำนวณหาสมบัติจากข้อมูลที่จำกัดนี้ ความสัมพันธ์ในรูปทั่วไปนี้จะเริ่มจากการจัดรูปสมการที่ n 46 และสมการที่ 48 โดยแทนค่าด้วยสมการต่อไปนี้

ค่าทางขวามือของสมการจะขึ้นอยู่กับความดันลด P_r และค่าอุณหภูมิลด T_r เท่านั้น ดังนั้น H^R/R และ S^R/R จึงสามารถหาได้โดยคำนวณจากข้อมูล P_r และ T_r หรือจากข้อมูล compressibility factor จากสมการรูปทั่วไปที่แสดงค่า compressibility factor Z

พจน์อินทิกรัลพจน์แรกทางด้านขวามือของสมการข้างต้นสามารถหาได้ด้วยวิธีนิวเมอริเคิลหรือวิธีกราฟิคอลโดยใช้ข้อมูลของ Z0 จากตาราง E.1 และตาราง E.3 ในภาคผนวก ส่วนอินทิกรัลที่อยู่หลังค่า ω ในต่ละสมการนั้นก็หาได้ในทำนองเดียวกันจากข้อมูล Z1 ในตาราง E.2 และตาราง E.4 เมื่อแทนพจน์แรกทางขวามือของสมการข้างต้นด้วย

นั้นสรุปไว้ในตาราง E.5 ถึง E.12 ฉะนั้นเมื่อทราบค่าเหล่านี้แล้ว จะสามารถประมาณค่าเอนทัลปีรีชิดวลและเอนโทรปีรีชิดวลได้จากสมการ ที่ 6.84 และสมการที่ 6.85 โดยเรียกสมการข้างต้นว่าหลักการสภาวะสอดคล้อง (correaponding state principle) และสมการนี้มีจำนวนพารามิเตอร์ทั้งหมด 3 ตัว

การประมาณค่าสมบัติใบบางกรณีนั้น อาจสามารถใช้สมการที่มีพารามิเตอร์เพียงแค่สองตัว ซึ่งก็เพียงพอที่จะให้ผลที่ใกล้เคียงความเป็นจริง โดยใช้ข้อมูลในตาราง E.5 และตาราง E.6 เท่านั้น

จะเป็นฟังก์ชันที่ซับซ้อนและไม่สามารถแสดงค่าเหล่านี้ด้วยสมการง่าย ๆ ได้ อย่างไรก็ตาม ที่สภาวะความดันต่ำ ๆ เราอาจใช้สมการไวเรียลสำหรับคำนวณค่า Z เพื่อหาค่าสมบัติรีชิดวลต่อไปได้

เนื่องจากค่า B^0 และ B^1 เป็นฟังก์ชันของอุณหภูมิเท่านั้น การอินทิเกรตสมการข้างต้น ณ อุณหภูมิคงที่จะได้

และ d B 1 d T r {\displaystyle {\frac {dB^{1}}{dT_{r}}}} ในสมการข้างต้นนี้ได้ ดังนั้นโดยสรุปแล้ว สมการอีก 4 สมการที่จะต้องใช้ในการหาค่าสมบัติรีชิดวลจากสมการที่ 87 และสมการที่ 88 คือ จากสมการที่ 3.73

เมื่อทราบสมการรูปทั่วไป (generalized correlation) สำหรับ H^R และ S^R และความจุความร้อนของแก๊สอุดมคติ (ideal gas heat capacity) แล้ว จะทำให้สามารถคำนวณหาเอนทัลปีและเอนโทรปีสำหรับแก๊สที่อุณหภูมิและความดันต่าง ๆ ได้โดยใช้สมการที่ 50 และสมการที่ 51

สำหรับการเปลี่ยนแปลงจากสภาวะที่ 1 ไปยังสภาวะที่ 2 นั้น สามารถเขียนสมการที่ 50 สำหรับสภาวะทั้งสองได้ดังนี้

พจน์ทางขวามือของสมกรที่ 91-94 นั้นไม่มีความเกี่ยวโยงกับขั้นตอนของเส้นทางที่ใช้ในการคำนวณ (calculational path) จากสภาวะเริ่มต้นไปสู่สภาวะสุดท้ายของระบบ ดังนั้น เส้นทางของกระบวนการที่เกิดขึ้นจริงจากสภาวะที่ 1 ไปยังสภาวะที่ 2 (เส้นประ) จึงสามารถแทนได้ด้วยขั้นตอนย่อย 3 ขั้นตอน ดังแสดงในรูปที่ 3 โดยขั้นตอนแรก คือ 1→lig ซึ่งแทนกระบวนการสมมติที่เปลี่ยนจากแก๊สจริงไปแก๊สอุดมคติที่ Tl และ Pl โดยค่าการเปลี่ยนแปลงเอนทัลปีและเอนโทรปีสำหรับกระบวนการนี้คือ

และ S l i g − S l = − S l R {\displaystyle S_{l}^{ig}-S_{l}=-S_{l}^{R}} สำหรับขั้นตอนที่สอง (lig→2ig) เป็นการเปลี่ยนแปลงที่เกิดขึ้นในสภาวะแก๊สอุดมคติ (T1, P1) ไปยัง (T2, P2) โดยสำหรับกระบวนการนี้

แม้ว่าจะไม่มีพื้นฐานทางทฤษฎีใด ๆ ที่ใช้สำหรับสมการทั่วไปของของผสม แต่เราอาจประมาณได้จากการคำนวณโดยใช้พารามิเตอร์ชนิด pseudocritical ซึ่งได้จากกฎเชิงเส้นของการผสม (linear mixing rule) ตามนิยามต่อไปนี้

ค่าที่ได้จะเป็น ω, อุณหภูมิ pseudocritical Tpc และความดัน pseudocritical Ppc สำหรับของผสม ซึ่งจะใช้ แทนค่า Tc และ Pc ในการคำนวณหาพารามิเตอร์ในรูปสภาวะลดดังนี้

เราจะใช้ค่าเหล่านี้แทน Tr และ Pr ในการอ่านค่าต่าง ๆ จากตารางในภาคผนวก E เพื่อคำนวณหา Z โดยใช้สมการที่ 3.67 จากนั้นจึงคำนวณค่า

จากสมการที่ 85 และคำนวณค่า S R R {\displaystyle {\frac {S^{R}}{R}}} จากสมการที่ 86


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด ข้อความคาดการณ์ของโกลด์บาช เอกลักษณ์ของออยเลอร์ ทฤษฎีบทสี่สี วิธีการแนวทแยงของคันทอร์ ทฤษฎีบทมูลฐานของแคลคูลัส ทฤษฎีบทมูลฐานของพีชคณิต ทฤษฎีบทมูลฐานของเลขคณิต ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ทฤษฎีบทสุดท้ายของแฟร์มา ทฤษฎีข้อมูล กลศาสตร์ ทฤษฎีเกม คณิตศาสตร์การเงิน การวิเคราะห์เชิงตัวเลข คณิตศาสตร์ฟิสิกส์ วิทยาการเข้ารหัสลับ การคำนวณ คณิตศาสตร์เชิงการจัด วิยุตคณิต ทฤษฎีความอลวน สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แฟร็กทัล ทอพอลอยี เรขาคณิตสาทิสรูป พีชคณิตเชิงเส้น ทฤษฎีกรุป ทฤษฎีจำนวน อนันต์

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24157