ค้นหา
  
Search Engine Optimization Services (SEO)

ปรากฏการณ์เรือนกระจก

ปรากฏการณ์เรือนกระจก (อังกฤษ: greenhouse effect) คือ ขบวนการที่รังสีความร้อนจากพื้นผิวโลกจะถูกดูดซับโดยก๊าซเรือนกระจกในชั้นบรรยากาศ และแผ่รังสีออกไปอีกครั้งในทุกทิศทาง เนื่องจากการแผ่รังสีออกไปอีกครั้งถูกส่งกลับมายังพื้นผิวโลกและบรรยากาศด้านล่าง เป็นผลทำให้ระดับอุณหภูมิพื้นผิวโลกเฉลี่ยสูงขึ้นถ้าไม่มีก๊าซเหล่านี้

การแผ่รังสีดวงอาทิตย์ที่ความถี่แสงที่ตามองเห็นผ่านชั้นบรรยากาศเป็นส่วนใหญ่และทำให้อุณหภูมิพื้นผิวโลกสูงขึ้น แล้วจะมีการแผ่พลังงานนี้ออกมาในรูปรังสีความร้อนอินฟราเรดที่มีความถี่ต่ำกว่า การแผ่รังสีอินฟราเรดถูกก๊าซเรือนกระจกดูดซับไว้ และจะมีการแผ่พลังงานปริมาณมากกลับไปยังพื้นผิวโลกและชั้นบรรยากาศที่ต่ำกว่า กลไกดังกล่าวตั้งชื่อตามปรากฏการณ์ที่การแผ่รังสีดวงอาทิตย์ผ่านกระจกแล้วทำให้เรือนกระจกอุ่นขึ้น แต่วิธีการกักเก็บความร้อนนั้นแตกต่างไป โดยเรือนกระจกเป็นการลดการไหลของอากาศ แยกอากาศที่อุ่นข้างในเพื่อที่ความร้อนจะไม่สูญเสียไปโดยพาความร้อน

โจเซฟ ฟูริเออร์ (Joseph Fourier) เป็นผู้ค้นพบปรากฏการณ์เรือนกระจกเมื่อ พ.ศ. 2367 สวานเต อาร์เรเนียส (Svante Arrhenius) เป็นผู้ทดสอบหาปริมาณความร้อนเมื่อ พ.ศ. 2439

ถ้าวัตถุดำพาความร้อนในอุดมคติมีระยะห่างจากดวงอาทิตย์เท่ากับโลก วัตถุดำนี้จะมีอุณหภูมิราว 5.3 ?C อย่างไรก็ดี เนื่องจากโลกสะท้อนแสงอาทิตย์ที่เข้ามาราว 30% อุณหภูมิยังผล (อุณหภูมิของวัตถุดำที่จะแผ่รังสีปริมาณเท่ากัน) จะอยู่ที่ราว ?18 ?C ซึ่งต่ำกว่าอุณหภูมิพื้นผิวที่แท้จริงที่ราว 14 ?C อยู่ 33 ?C กลไกที่สร้างความแตกต่างนี้ระหว่างอุณหภูมิพื้นผิวที่แท้จริงกับอุณหภูมิยังผลเป็นเพราะชั้นบรรยากาศและสิ่งที่รู้จักกันในชื่อปรากฏการณ์เรือนกระจก

ปรากฏการณ์เรือนกระจกตามธรรมชาติของโลกทำให้สิ่งมีชีวิตสามารถอาศัยอยู่ได้ ทว่า กิจกรรมของมนุษย์ โดยเฉพาะการเผาไหม้เชื้อเพลิงซากดึกดำบรรพ์และการทำลายป่า ได้เพิ่มปรากฏการณ์เรือนกระจกธรรมชาติ ทำให้เกิดปรากฏการณ์โลกร้อน

โลกรับพลังงานจากดวงอาทิตย์ในรูปของการแผ่รังสีของดวงอาทิตย์ พลังงานเกือบทั้งหมดมีขนาดความยาวช่วงคลื่นที่มองเห็นได้และในช่วงความยาวคลื่นอินฟราเรดที่เกือบมองเห็น (บางครั้งเรียกว่าช่วงคลื่นใกล้อินฟราเรด) โลกมีอัตราส่วนรังสีสะท้อน (albedo) ประมาณ 30% ของรังสีดวงอาทิตย์ที่แผ่ลงมา ที่เหลือร้อยละ 70 จะถูกดูดซับไว้ ทำความอบอุ่นให้แก่พื้นดิน บรรยากาศและมหาสมุทร

การที่อุณหภูมิของโลกอยู่ในภาวะเสถียรซึ่งไม่ร้อนขึ้นหรือเย็นลงอย่างรวดเร็วเกินไปได้นั้น การดูดกลืนรังสีดวงอาทิตย์สู่โลกจะต้องอยู่ในสภาวะสมดุลเป็นอย่างมากกับรังสีอินฟราเรดที่สะท้อนกลับออกสู่อวกาศ โดยที่ความเข้มของการแผ่กระจายรังสีอินฟราเรดเพิ่มขึ้นตามการเพิ่มของอุณหภูมิ เราจึงคิดว่าอุณหภูมิของโลกขึ้นอยู่กับปริมาณของฟลักซ์หรือแรง (flux) ของอินฟราเรดที่จะต้องถ่วงดุลกับฟลักซ์ของรังสีดวงอาทิตย์ การแผ่ของรังสีดวงอาทิตย์เกือบทั้งหมดทำพื้นผิวของโลกร้อนขึ้น ไม่ใช่เป็นการทำให้บรรยากาศร้อนขึ้น บรรยากาศชั้นบนไม่ใช่ผิวโลกที่เป็นตัวช่วยให้การแผ่กระจายรังสีอินฟราเรดหนีออกสู่อวกาศ โฟตอนอินฟราเรดที่ส่งออกมาทางผิวโลกเกือบทั้งหมดจะถูกดูดซับไว้ในบรรยากาศโดยก๊าซเรือนกระจกและเมฆ ไม่ได้หนีออกโดยตรงสู่ห้วงอวกาศ

เหตุผลที่พื้นผิวโลกร้อนขึ้นนี้อาจทำให้เข้าใจได้ง่ายๆ ด้วยการเริ่มต้นจากการใช้แบบจำลองปรากฏการณ์เรือนกระจกอย่างง่ายที่คิดเฉพาะการแผ่กระจายรังสีโดยไม่นำไปรวมกับการถ่ายโอนพลังงานในบรรยากาศโดยพาความร้อน ในกรณีการคิดการแผ่กระจายรังสีเพียงอย่างเดียวนี้ เราอาจคิดได้ว่าบรรยากาศแผ่กระจายรังสีอินฟราเรดทั้งจากด้านสู่ด้านบนลงมาและจากด้านล่างขึ้นไป ฟลักซ์ของรังสีอินฟราเรดที่ปล่อยออกจากผิวโลกจะต้องสมดุลไม่เพียงกับการดูดกลืนฟลักซ์ของรังสีดวงอาทิตย์เท่านั้น แต่จะต้องสมดุลกับฟลักซ์ของอินฟราเรดที่บรรยากาศปล่อยลงมาด้วย อุณหภูมิพื้นผิวโลกจะร้อนขึ้นจนถึงระดับการปลดปล่อยความร้อนในปริมาณเท่ากับผลรวมของรังสีดวงอาทิตย์และอินฟราเรดที่เข้ามา

ภาพชัดเจนกว่าที่อาจนำมาคิดกับฟลักซ์การพาความร้อน และความร้อนแฝงนั้นออกจะซับซ้อนมากกว่า แต่แบบจำลองอย่างง่ายที่จะกล่าวถึงต่อไปนี้สามารถแสดงแก่นสารได้ชัดเจนกว่า โดยเริ่มจากการสังเกตที่เห็นได้ว่าภาวะทึบแสงของบรรยากาศที่มีแผ่รังสีอินฟราเรดว่าเป็นตัวกำหนดช่วงสูงของโฟตอนในบรรยากาศเกือบทั้งหมดที่ถูกปล่อยออกสู่ห้องอวกาศ หากบรรยากาศมีภาวะทึบแสงมากขึ้น โฟตอนทั่วไปที่จะหนีออกสู่ห้วงอวกาศจะถูกปลดปล่อยจากชั้นบรรยากาศที่สูงขึ้น เนื่องจากการแผ่กระจายของรังสีอินฟราเรดคือตัวทำให้เกิดความร้อน ดังนั้นอุณหภูมิของบรรยากาศในระดับการปลดปล่อยที่ทำให้เกิดผลจึงถูกกำหนดโดยความต้องการที่ฟลักซ์ของการปลดปล่อยสมดุลกับการดูดกลืนฟลักซ์ของรังสีดวงอาทิตย์

แต่อุณหภูมิของบรรยากาศโดยทั่วไปจะลดลงตามความสูงเหนือผิวพื้นในอัตราประมาณ 6.5 ?C ต่อความสูง 1 กิโลเมตรโดยเฉลี่ยจนถึงบรรยากาศชั้นสตราโตสเฟียร์ที่ความสูงประมาณ 10 – 15 กิโลเมตรจากผิวโลก (โฟตอนเกือบทั้งหมดที่ถูกปล่อยออกสู่ห้วงอวกาศโดยบรรยากาศชั้นโทรโปสเฟียร์ซึ่งเป็นอาณาบริเวณที่อยู่ระหว่างผิวโลกกับสตราโตสเฟียร์ ดังนั้นเราจึงไม่นับบรรยากาศชั้นสตราโตสเฟียร์) แบบจำลองที่ง่ายที่สุดแต่เป็นแบบที่มีประโยชน์ที่สุดได้แก่แบบจำลองที่มีสมมุติฐานว่าโปรไฟล์ของอุณหภูมิมีความคงที่และฟลักซ์ของพลังงานเป็นแบบไม่มีการแผ่กระจายและกำหนดค่าอุณหภูมิไว้ ณ ระดับฟลักซ์ของการแผ่กระจายรังสีที่หนีออกสู่ห้วงอวกาศ ด้วยแบบจำลองนี้เราสามารถคำนวณอุณหภูมิผิวพื้นโดยเพิ่มของอุณหภูมิในอัตรา 6.5 ?C ต่ำลงทุก 1 กิโลเมตร จนถึงผิวโลก ยิ่งบรรยากาศมีภาะวะทึบแสงมากขึ้นและระดับของการปลดปล่อยรังสีอินฟราเรดที่เพิ่มสู่ห้วงอวกาศมีมากขึ้นเท่าใด ผิวพื้นของโลกก็จะร้อนขึ้นเท่านั้น

คำว่า “ปรากฏการณ์เรือนกระจก” นี้เองที่เป็นตัวทำให้เกิดความสับสนว่าเรือนกระจกของจริงไม่ได้ร้อนขึ้นโดยกลไกนี้ (ดูหัวขัอ เรือนกระจกจริงข้างล่าง) การโต้เถียงที่แพร่หลายมักอ้างผิดๆ ว่ามันเป็นเช่นนั้น ความคลาดเคลื่อนนี้บางครั้งยังมีปรากฏในเอกสารทางวิทยาศาสตร์หรือเอกสารของรัฐฯ (เช่น เอกสารของ อี.พี.เอ.เป็นต้น)

กลศาสตร์ควอนตัม เป็นวิชาที่ให้พื้นฐานสำหรับใช้คำนวณปฏิสัมพันธ์ระหว่างโมเลกุลและการแผ่กระจายรังสี ปฏิสัมพันธ์เกือบทั้งหมดนี้เกิดขึ้นเมื่อความถี่ของการแผ่กระจายรังสีที่เทียบได้กับเส้นสเปกตรัม (spectral lines) ของโมเลกุลซึ่งกำหนดโดยโหมดของการสั่นสะเทือนและการหมุนควงของโมเลกุล (การกระตุ้นทางอีเลกทรอนิกส์โดยทั่วไปใช้ไม่ได้กับการแผ่กระจายรังสีอินฟราเรดเนื่องจากความต้องการพลังงานในปริมาณที่มากกว่าที่จะใช้กับโฟตอนอินฟราเรด)

ความกว้างของเส้นสเปกตรัมเป็นองค์ประกอบสำคัญที่จะช่วยให้เกิดความเข้าใจถึงความสำคัญของการดูดกลืนการแผ่รังสี ความกว้างของสเปกตรัมในบรรยากาศโดยทั่วไปกำหนดด้วย “การแผ่กว้างของแรงดัน” ซึ่งก็คือการบิดเบี้ยวของสเปกตรัมเนื่องจากการปะทะกับโมเลกุลอื่น การดูดกลืนรังสีอินฟราเรดเกือบทั้งหมดในบรรยากาศอาจนึกเปรียบเทียบได้ว่าป็นการชนกันระหว่างสองโมเลกุล การดูดกลืนที่เกิดจากโฟตอนทำปฏิกิริยากับโมเลกุลโดดมีขนาดเล็กมากๆ ปัญหาที่เกิดจากการณ์ลักษณะทั้งสามนี้คือ โฟตอน 1 ตัวและโมเลกุล 2 ตัวดังกล่าวสร้างความท้าทายโดยตรงที่ให้น่าสนใจมากขึ้นในเชิงของการคำนวณทางกลศาสตร์ควอนตัม การวัดสเปกตรัม (spectroscopic measurements) อย่างระมัดระวังในห้องทดลองให้ผลการคำนวณการถ่ายโอนการแผ่รังสีในการศึกษาบรรยากาศได้น่าเชื่อถือมากกว่าการใช้การคำนวณเชิงกลศาสตร์ควอนตัมแบบเก่า

โมเลกุล/อะตอมที่เป็นองค์ประกอบใหญ่ของบรรยากาศ ซึ่งได้แก่ออกซิเจน (O2) , ไนโตรเจน (N2) และ อาร์กอน (Ar) ไม่ทำปฏิกิริยากับรังสีอินฟราเรดมากนักขณะที่โมเลกุลของออกซิเจนและไนโตรเจนสามารถสั่นตัวได้เนื่องจากความสมดุลในตัว การสั่นตัวจึงไม่เกิดการแยกตัวเชิงภาวะชั่วครู่ของประจุไฟฟ้า (transient charge separation) การขาดความเป็น “ขั้วคู่” ของภาวะชั่วครู่ดังกล่าวจึงไม่มีทั้งการดูดกลืนเข้าและการปล่อยรังสีอินฟราเรดออก ในบรรยากาศของโลกก๊าซที่ทำหน้าที่หลักในการดูดกลืนอินฟราเรดมากที่สุดคือไอน้ำ คาร์บอนไดออกไซด์และโอโซน (O3) นอกจากนี้ โมเลกุลอย่างเดียวกันก็ยังเป็นกลุ่มโมเลกุลหลักในการปล่อยอินฟราเรด CO2 และ O3 มีลักษณะการสั่นของโมเลกุลแบบยวบยาบซึ่งเมื่ออยู่ในภาวะที่เป็นหน่วยเล็กสุด (quantum state) มันจะถูกกระตุ้นจากการชนของพลังงานที่เข้าปะทะกับบรรยากาศของโลก ตัวอย่างเช่น คาร์บอนไดออกไซด์ซึ่งเป็นโมเลกุลเป็นแบบเกาะกันตามยาวแต่มีรูปแบบการสั่นที่สำคัญคือการแอ่นตัวของโมเลกุลที่คาร์บอนไดออกไซด์ที่อยู่ตรงกลางเอนไปข้างหนึ่งและออกซิเจนแอ่นไปอีกข้างหนึ่งทำให้เกิดประจุไฟฟ้าแยกตัวออกมาเป็น “ขั้วคู่” (dipole moment) ชั่วขณะหนึ่งซึ่งทำให้โมเลกุลของคาร์บอนไดออกไซด์ดูดกลืนรังสีอินฟราเรดไว้ได้ การปะทะทำให้เกิดการถ่ายโอนพลังงานไปทำให้ก๊าซที่อยู่รอบๆ ร้อนขึ้น หรืออีกนัยหนึ่งก็คือโมเลกุลของ CO2 ถูกสั่นโดยปะทะนั่นเอง ประมาณร้อยละ 5 ของโมเลกุล CO2 ถูกสั่นโดยที่อุณหภูมิของห้องและปริมาณร้อยละ 5 นี้เองที่เปล่งรังสีออกมา การเกิดที่สำคัญของปรากฏการณ์เรือนกระจกจึงเนื่องมาจากการปรากฏอยู่ของคาร์บอนไดออกไซด์ที่สั่นไหวง่ายเมื่อถูกกระตุ้นโดยอินฟราเรด CO2

ยังมีรูปแบบอื่นอีก 2 รูปแบบ ได้แก่การแอ่นตัวที่สมดุลไม่เปล่งรังสีกับการแอ่นตัวที่ไม่สมดุลที่ทำให้เกิดความถี่ในการสั่นสูงเกินที่จะถูกกระตุ้นได้ด้วยการปะทะจากความร้อนของบรรยากาศได้แม้มันจะยังทำหน้าที่ดูดกลืนอินฟราเรดได้บ้างก็ตาม รูปแบบการสั่นตัวของโมเลกุลของน้ำอยู่อัตราที่สูงเกินที่จะแผ่รังสีออกมาได้อย่างมีผล แต่มันยังสามารถดูดกลืนรังสอินฟราเรดที่มีความถี่สูงได้ ไอน้ำมีรูปโมเลกุลแอ่น มีขั้วคู่ที่ถาวร (ปลายของอะตอมออกซิเจนมีอีเลกตรอนมากและอะตอมของไฮโดรเจนมีน้อย) ซึ่งหมายความว่าแสงอินฟราเรดสามารถเปล่งออกและดูดกลืนได้ในระหว่างช่วงต่อของการหมุนตัวและการหมุนตัวก็เกิดได้จากการชนระหว่างการถ่ายโอนพลังงาน เมฆก็นับเป็นตัวดูดกลืนรังสีอินฟราเรดที่สำคัญ ดังนั้น น้ำจึงมีปรากฏการณ์เชิงอเนกแผ่รังสีอินฟราเรดผ่านช่วงการเป็นไอและช่วงการกลั่นตัว ตัวดูดกลืนที่สำคัญอื่นๆ รวมถึงก๊าซมีเทน ไนตรัสออกไซด์และคลอโรฟลูโอโรคาร์บอน

การโต้เถียงเกี่ยวกับความสำคัญในความสัมพันธ์ของตัวดูดกลืนรังสีอินฟราเรดชนิดต่างๆ ยังมีความสับสนที่เนื่องมาจากการทับซ้อนกันระหว่างเส้นสเปกตรัมที่เกิดจากก๊าซต่างชนิดที่ถ่างออกเนื่องจากแรงกดดันที่กว้างขึ้น ซึ่งมีผลทำให้การดูดกลืนของก๊าซชนิดหนึ่งไม่อาจเป็นอิสระจากก๊าซอื่นที่มีร่วมอยู่ในขณะนั้นได้ ช่องทางที่อาจทำได้วิธีหนึ่งคือการแยกเอาก๊าซดูดกลืนที่ต้องการวัดออก ปล่อยก๊าซดูดกลืนอื่นๆ ไว้และคงอุณหภูมิไว้ตามเดิมแล้วจึงวัดรังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศ ค่าที่ลดลงของการดูดกลืนรังสีอินฟราเรดที่วัดได้จึงกลายเป็นตัวสำคัญขององค์ประกอบ และเพื่อให้แม่นยำขึ้น การบ่งชี้ปรากฏการณ์เรือนกระจกให้ชัดเจนว่ามีความแตกต่างกันระหว่างการแผ่รังสอินฟราเรดจากผิวโลกสู่ห้วงอวกาศที่ปราศจากบรรยากาศ กับการแผ่รังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศตามที่เกิดขึ้นจริง จากนั้นจึงคำนวณอัตราร้อยละของการลดลงของปรากฏการณ์เรือนกระจกเมื่อส่วนประกอบ (constituent) ถูกแยกออกไป ตารางข้างล่างนี้คือผลการคำนวณโดยใช้วิธีนี้ ซึ่งได้ใช้แบบจำลองมิติเดี่ยวของบรรยากาศ การใช้แบบจำลอง 3 มิติที่นำมาใช้คำนวณเมื่อเร็วๆ นี้ได้ผลออกมาใกล้เคียงกัน

ด้วยการคำนวณวิธีนี้ ทำให้เราคิดได้ว่าไอน้ำเป็นตัวที่ทำให้เกิดปรากฏการณ์เรือนกระจกประมาณร้อยละ 30 คาร์บอนไดออกไซด์ร้อยละ 9 แต่ผลจากการดึงตัวประกอบทั้งสองเมื่อนำมารวมกันจะได้มากกว่าผลรวมที่ได้จากการลดผลกระทบของตัวประกอบทั้ง 2 ตัวซึ่งในกรณีนี้มากกว่าร้อยละ 45 ข้อกำหนดที่เป็นเงื่อนไขคือตัวเลขเหล่านี้คำนวณได้โดยมีข้อแม้ว่าการกระจายของเมฆต้องตายตัว แต่การแยกเอาไอน้ำออกจากบรรยากาศทั้งๆ ที่มีเมฆมากดูจะไม่สมเหตุผลทางกายภาพเท่าใดนัก นอกจากนี้ปรากฏการณ์ของก๊าซที่กำหนดให้มักเป็นประเภทที่ในแง่ของปริมาณไม่เป็นไปตามยาว ทั้งนี้เนื่องจากการดูดกลืนโดยก๊าซ ณ ระดับหนึ่งในบรรยากาศทำให้โฟตอนแยกออกไปโดยไม่มีผลกระทบใดๆ กับก๊าซที่อยูในระดับความสูงอื่น ประเภทของการประมาณการที่ปรากฏในตารางข้างต้นมักประสบปัญหาที่เป็นที่ถกเถียงกันได้มากเกี่ยวกับปรากฏการณ์โลกร้อน การประมาณการที่แตกต่างไปที่พบในแหล่งข้อมูลอื่นๆ มักได้มาจากการนิยามที่แตกต่างกันไม่ไม่ได้สะท้อนให้เห็นถึงความไม่แน่นอนในการถ่ายโอนพลังงานที่กล่าวถึง

จุดกู่ไม่กลับ (Tipping point) ของภาวะโลกร้อนคือจุดของการเปลี่ยนที่กระทำโดยกิจกรรมของมนุษย์ที่เสริมให้กระบวนการที่เคยเป็นไปตามปกติของธรรมชาติถึง จุดที่ไม่สามารถดึงกลับได้ อีก นักวิทยาศาสตร์ภูมิอากาศบางคนเชื่อว่าปรากฏการณ์ดังกล่าวนี้จะเกิดขึ้นในปี พ.ศ. 2560 หรืออีก 52 ปีข้างหน้า ในขณะที่นักวิทยาศาสตร์คนอื่น เช่นเจมส์ แฮนเสน (James Hansen) นักวิทยาศาสตร์ภูมิอากาศคนสำคัญของนาซาเชื่อว่าช่วงเวลากู่ไม่กลับดังกล่าวได้มาถึงแล้วในขณะนี้

เมื่อมีวงวนของปรากฏการณ์ เช่นความเข้มข้นของก๊าซเรือนกระจกชนิดหนึ่งเกิดขึ้นกลายเป็นตัวเพิ่มอุณหภูมิ การป้อนกลับย่อมเกิดขึ้นเป็นวงวนดังดล่าว ถ้าปรากฏการณ์อุณหภูมิเกิดขึ้นไปในทิศทางเดียวกันการป้อนกลับก็จะเป็นเชิงบวก และถ้าเป็นไปในทิศทางตรงกันข้ามก็จะเป็นการป้อนกลับเชิงลบ ในบางครั้งผลป้อนกลับอาจเกิดขึ้นได้ด้วยเหตุเดียวกันกับแรง แต่ก็อาจเกิดโดยผ่านก๊าซเรือนกระจกตัวอื่นหรือปรากฏการณ์อื่นก็ได้ เช่นการเปลี่ยนแปลงของน้ำแข็งที่ปกคลุมผิวโลกซึ่งมีผลต่ออัตราส่วนรังสีสะท้อนของโลก

ผลป้อนกลับเชิงบวกไม่จำเป็นต้องทำให้เกิดปรากฏการณ์หนีห่าง (runaway effect) เสมอไป ด้วยการแผ่รังสีจากผิวโลกที่เพิ่มอุณหภูมิขึ้นเป็นสัดส่วนยกกำลังสี่ ผลป้อนกลับย่อมจะต้องมีระดับความรุนแรงพอที่จะสร้างปรากฏการณ์หนีห่างออกไปได้ การเพิ่มอุณหภูมิของก๊าซเรือนกระจกนี้จะทำให้เกิดไอน้ำเพิ่ม เป็นเหตุให้ร้อนเพิ่มขึ้นอีกนี้คือผลป้อนกลับเชิงบวก ปรากฏการณ์ดังกล่าวไม่อาจทำให้ปรากฏการณ์หนีห่างเกิดขึ้นได้ มิฉะนั้นปรากฏการณ์หนีห่างดังกล่าวคงเกิดขึ้นมานานแล้ว ปรากฏการณ์ผลป้อนกลับเชิงบวกมีการเกิดได้ทั่วไปและคงมีตัวตนอยู่เสมอ ในขณะปรากฏการณ์หนีห่างเกิดขึ้นได้ยากกว่าและเมื่อเกิดก็ไม่อาจคงอยู่ได้ตลอดเวลา

ถ้าปรากฏการณ์จากการวนซ้ำครั้งที่สองเกิดขึ้นและมีขนาดมากกว่าการวนซ้ำครั้งแรก เหตุการณ์นี้จะทำให้เกิดปรากฏการณ์ที่เป็นกัลปาวสาน และถ้าเกิดขึ้นและให้ผลป้อนกลับที่หยุด ณ ขณะเมื่อเกิดอุณหภูมิสูงมากเรียกว่า “ปรากฏการณ์เรือนกระจกแบบหนีห่าง” ผลป้อนกลับแบบหนีห่างอาจเกิดขึ้นได้ในทิศทางตรงกันข้ามที่นำไปสู่ยุคน้ำแข็งได้ ปรากฏการณ์หนีห่างจะหยุดลงถ้าความเป็นอนันต์ของอุณหภูมิไม่เกิดขึ้น มันจะหยุดเนื่องจากเหตุต่างๆ เช่นการลดปริมาณของก๊าซเรือนกระจกหรือการเปลี่ยนของก๊าซหรือการเปลี่ยนแปลงของน้ำแข็งที่คลุมผิวโลกที่ลดลงจนไม่เหลือ หรือเพิ่มพื้นที่ปกคลุมใหญ่ขึ้นจนใหญ่ต่อไปอีกไม่ได้

ตามสมมุติฐาน “ปืนคลาเทรต” (clathrate gun hypothesis) การหนีห่างของปรากฏการณ์เรือนกระจกอาจเกิดขึ้นได้โดยปลดปล่อยก๊าซมีเทนจากสถานะของแข็งที่เป็นผลของภาวะโลกร้อนถ้าปริมาณของมีเทนแข็งมีมากพอและมีสภาพไม่เสถียร มีการคาดคะเนว่าเหตุการณ์สูญพันธุ์ครั้งใหญ่ในยุคเพอร์เมียน-ไทรแอสสิกเกิดจากปรากฏการณ์หนีห่างดังกล่าว และยังคิดกันว่าปริมาณมีเทนที่สูงขึ้นมากครั้งนั้นอาจเกิดจากที่ราบทรุนดาของไซบีเรียที่เริ่มละลาย ก๊าซมีเทนซึ่งมีความแรงในการเป็นก๊าซเรือนกระจกมากกว่าคาร์บอนไดออกไซด์ถึง 21 เท่า

ปรากฏการณ์หนีห่างของเรือนกระจกมีความเกี่ยวข้องกับ CO2 และไอน้ำดังที่เกิดบนดาวพระศุกร บนดาวพระศุกรในปัจจุบันมีไอน้ำในบรรยากาศน้อยมาก ถ้าไอน้ำมีส่วนทำให้ดาวศุกรร้อนขึ้นในครั้งหนึ่งมาก่อน เชื่อกันว่าไอน้ำได้หนีออกสู่ห้วงอวกาศ ดาวพระศุกรถูกแสงอาทิตย์ทำให้ร้อนได้มากพอที่จะทำให้ไอน้ำเกิดในปริมาณมากจนแตกตัวเป็นไฮโดรเจนและออกซิเจน โดยแสงอุลตราไวโอเลต และไฮโดรเจนได้หนีหายไปในอวกาศและออกซิเจนรวมตัวกันใหม่ คาร์บอนไดออกไซด์ซึ่งเป็นก๊าซส่วนใหญ่ในบรรยากาศดาวพระศุกรในปัจจุบันเกิดจากการรวมตัวขนาดใหญ่ที่มีภาวะวัฏจักรของคาร์บอนไดออกไซด์ไม่เพียงพอเมื่อเทียบกับวัฏจักรดังกล่าวบนโลก ซึ่งคาร์บอนไดออกไซด์ที่ปล่อยออกมาเป็นจำนวนมากจากภูเขาไฟถูกเก็บไว้โดยแผ่นทวีปของโลกตามกาลเวลาทางธรณีวิทยาที่ผ่านมา

การผลิต CO2 จากกิจกรรมทางอุตสาหกรรม (ที่เผาผลาญเชื้อเพลิงฟอสซิล) เพิ่มขึ้นรวมทั้งกิจกรรมของมนุษย์ในการผลิตซิเมนต์และการทำลายป่า ได้ทำให้ CO2 มีปริมาณความเข้มเพิ่มขึ้น การวัด คาร์บอนไดออกไซด์ที่หอดูดาวโมนาลัวแสดงให้เห็นว่า CO2 ได้เพิ่มจาก 313 ppm (ส่วนต่อล้านส่วน) ใน พ.ศ. 2503 มาเป็น 375 ppm ใน พ.ศ. 2548 การสังเกตปริมาณของ CO2 ในปัจจุบัน พบว่ามีปริมาณเกินจากตัวเลขที่ได้บันทึก CO2 สูงสุด (~300 ppm) ที่ได้จากข้อมูลแกนน้ำแข็ง เนื่องจากมันเป็นก๊าซเรือนกระจก การเพิ่มระดับของ CO2 ย่อมจะต้องเพิ่มอุณหภูมิเฉลี่ยของโลก โดยอาศัยการศึกษาจากเอกสารทางวิทยาศาสตร์จำนวนมากที่มีอยู่ องค์คณะระหว่างรัฐบาลว่าด้วยการเปลี่ยนแปลงภูมิอากาศ ได้สรุปว่า “การเพิ่มอุณหภูมิเฉลี่ยของโลกที่เห็นได้ชัดนับแต่ช่วงประมาณกลางคริสต์ศตวรรษที่ 20 (ประมาณ พ.ศ. 1950) ว่าเกิดจากการเพิ่มก๊าซเรือนกระจกโดยกิจกรรมของมนุษย์”

นานกว่าเมื่อ 800,000 ปีที่ผ่านมาข้อมูลแกนน้ำแข็ง ได้แสดงให้เห็นโดยไม่คลุมเครือได้ว่าคาร์บอนไดออกไซด์ได้ผันแปรจากค่าที่ต่ำถึง 180 ppm มาที่ 270 ppm ในยุคก่อนอุตสาหกรรมนักภูมิอากาศดึกดำบรรพ์ ( paleoclimatologists) บางคนให้ความเห็นว่าการแปรผันของคาร์บอนไดออกไซด์เป็นปัจจัยหลักในการควบคุมการเปลี่ยนแปลงภูมิอากาศในช่วงเวลาที่ผ่านมา

คำว่า “ปรากฏการณ์เรือนกระจก” มีต้นตอมาจากเรือนกระจกที่ใช้ปลูกต้นไม้หรือทำสวนในเขตหนาว แต่ก็เป็นชื่อที่ผิดเพราะการทำงานของเรือนกระจกมีความแตกต่างกับปรากฏการณ์เรือนกระจก เรือนกระจกทำด้วยกระจก การร้อนขึ้นเกิดจากการอุ่นขึ้นของพื้นภายในเรือนซึ่งเป็นตัวทำให้อากาศในเรือนอุ่นขึ้น อากาศค่อยๆ ร้อนขึ้นเพราะมันถูกกักไว้ในเรือนกระจก ต่างกับสภาพนอกเรือนกระจกที่อากาศอุ่นใกล้ผิวพื้นลอยตัวขึ้นไปผสมกับอากาศเย็นตอนบน ซึ่งทดลองได้โดยลองเปิดช่องเล็กๆ ตอนบนสุดของเรือนกระจก อุณหภูมิอากาศภายในจะเย็นลงทันที ซึ่งเคยมีการทดลองมาแล้ว (Wood, 1909) โดยสร้างเรือนกระจกด้วยเกลือหิน (ซึ่งโปร่งแสงอินฟราเรด) และทำให้อุ่นได้เหมือนกับที่สร้างด้วยกระจก ดังนั้นการอุ่นขึ้นของอากาศจึงเกิดจากการป้องกันไม่ให้เกิด “การพาความร้อน” แต่ปรากฏการณ์เรือนกระจกของบรรยากาศกลับลด “การสูญเสียการแผ่รังสี” ไม่ใช่การพาความร้อน ดังนั้นจึงอาจพบแหล่งข้อมูลเกี่ยวกับการอุปมาเรือนกระจกที่ผิดๆ ได้มาก ถึงแม้ว่ากลไกขั้นต้นของการร้อนขึ้นของเรือนกระจกคือการป้องกันไม่ให้เกิดการผสมกับอากาศอิสระของบรรยากาศภายนอกก็ตาม คุณสมบัติการกระจายรังสีของกระจกก็ยังมีความสำคัญเกษตรกรผู้ปลูกต้นไม้เชิงพาณิชญ์อยู่ ด้วยการพัฒนาสมัยใหม่ของพลาสติกและกระจกที่ใช้กับเรือนกระจกทำให้ผู้ใช้สามารถเลือกชนิดการปลดปล่อยรังสีดวงอาทิตย์ได้ตามชนิดของพืชที่ต้องการแสงในสิ่งแวดล้อมที่แตกต่างกัน


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เป็นต่อ ขั้นเทพ เป็นข่าว ซีรีส์ คณะนิเทศศาสตร์ ซิทคอม ยีนเด่น (ละครโทรทัศน์) เฮง เฮง เฮง เป็นต่อ นักเขียนบท เจ้าชายฌัก รัชทายาทแห่งโมนาโก กาญจน์เกล้า ด้วยเศียรเกล้า วอลเลย์บอลชายทีมชาติไทย ปิยะรัฐ ตุ้นทัพไทย อรรถพร ธีมากร ไมเคิล คลาร์ก ดันแคน เจ้าพงศ์แก้ว ณ ลำพูน ระบบทศนิยมดิวอี้ ตึกนิวยอร์กเวิลด์ เทพมารสะท้านภพ ไทเก็ก หมัดทะลุฟ้า สุภาพบุรุษตระกูลหยาง ตำนานเดชนางพญางูขาว เจิ้ง เจียอิ่ง อู๋ จัวซี กู่ เทียนเล่อ มังกรคู่สู้สิบทิศ แม่พระปฏิสนธินิรมล เจมส์ ฟิกก์ ธัญยกันต์ ธนกิตติ์ธนานนท์ โกะโร อินะงะกิ ฉัตรชัย ดุริยประณีต ธงไชย แมคอินไตย์ คิม เบซิงเงอร์ จิม มอร์ริสัน เดวิด คาร์ราดีน บ๊อบ อารัม สมเด็จพระราชินีนาถคริสตินาแห่งสวีเดน พรรคประชาชนบรูไน แอมโบรสแห่งมิลาน รังสี ทัศนพยัคฆ์ คิเคโร เจ้าหญิงคาทารีนา-อะมาเลีย เจ้าหญิงแห่งออเรนจ์ บุษกร ตันติภนา จอห์น เทอร์รี เฟอร์นันโด วาร์กัส ช่วง มูลพินิจ พิศมัย วิไลศักดิ์ พระมเหสีจองซอง การโจมตีท่าเรือเพิร์ล กองทัพเรือจักรวรรดิญี่ปุ่น Grammy Awards Allmusic ซิงเกิล นักธุรกิจ แร็ปเปอร์ เลสลี นีลเซน มะสึโอะ บะโช นันทนัช โล่ห์สุวรรณ ผู้รักษาประตู สจวร์ต เทย์เลอร์ แดเนียล เฮนนีย์ แอนนา นิโคล สมิธ หลวงพ่อเกษม เขมโก ลี กวน ยู คริส โจนนาว ซิลเวอร์แชร์ เค.แมกซ์ ซินบี แตวุง เค-วัน นักมวยไทย อักษรฮันกุล นักบุญเดนิส ออสการ์ ชินด์เลอร์ เช เกบารา สมเด็จพระสันตะปาปาปิอุสที่ 12 สมเด็จพระเจ้าอเล็กซานเดอร์ที่ 1 แห่งยูโกสลาเวีย หทัยภัทร สมรรถวิทยาเวช พชร ธรรมมล คนึงพิมพ์ พรมกร แบรนดอน เราธ์ แผ่นดินถล่ม สิ่งก่อสร้างที่สูงที่สุดในโลก อนุสาวรีย์วอชิงตัน อำเภอเมืองสุพรรณบุรี ปริ๊นซ์ ออฟ เทนนิส แม่พระแห่งลูกประคำ เลย์ เซบัสเตียน โกอาเตส ตะวัน จารุจินดา แอรอน แอชมอร์ ชอว์น แอชมอร์ ชิลเบร์ตู ซิลวา ภาคภูมิ แจ้งโพธิ์นาค ซามี ฮูเปีย โทนี แบรกซ์ตัน ไซมอน โคเวลล์ วลาดิมีร์ ปูติน พระเจ้าเฟรเดอริกที่ 1 แห่งเดนมาร์ก อาคารรัฐสภาไทย สาธารณรัฐอินโดนีเซีย

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23406