ค้นหา
  
Search Engine Optimization Services (SEO)

ปฏิกิริยานิวเคลียร์ฟิวชั่น

นิวเคลียร์ฟิวชั่น (อังกฤษ: Nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน

การฟิวชั่นของสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การฟิวชั่นของนิวเคลียสที่หนักกว่าเหล็กจะ"ดูดซับ"พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "นิวเคลียร์ฟิชชัน" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถทำฟิวชั่น เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถทำฟิชชันได้ เช่นยูเรเนียมและพลูโตเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่??ช่วงเวลาสั้น ๆ ของการฟิวชั่นด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis สร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่าซูเปอร์โนวา

หลังการค้นพบ'อุโมงค์ควอนตัม' โดยนักฟิสิกส์ นายฟรีดริช Hund ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำฟิวชันนิวเคลียสขนาดเล็ก การฟิวชั่นในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของนิวเคลียร์ฟิวชันในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในฟิวชั่นเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนฮัตตัน การฟิวชั่นก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ'รายการเรือนกระจก' นิวเคลียร์ฟิวชันในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการคั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมค์ (Ivy Mike)

การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้ บทความปัจจุบันเป็นเรื่องที่เกี่ยวกับทฤษฎีของฟิวชั่น สำหรับรายละเอียดของการแสวงหาสำหรับฟิวชั่นที่ควบคุมได้และประวัติศาสตร์ของมัน โปรดดูบทความ พลังงานฟิวชั่น

ต้นกำเนิดของพลังงานที่ปล่อยออกมาในการหลอมรวม (อังกฤษ: fusion) ขององค์ประกอบเบาจะเกิดจากการมีปฏิสัมพันธ์ของสองแรงที่ตรงข้ามกัน แรงหนึ่งคือแรงนิวเคลียสซึ่งรวมแรงจากโปรตอนและนิวตรอนเข้าด้วยกัน อีกแรงหนึ่งคือแรงคูลอมบ์ซึ่งเป็นสาเหตุให้โปรตอนทั้งหลายผลักกันเอง โปรตอนจะมีประจุบวกและผลักกันเอง แต่พวกมันก็ยังคงอยู่ติดกัน แสดงให้เห็นถึงการดำรงอยู่ของอีกแรงหนึ่งที่เรียกว่าแรงดึงดูดของนิวเคลียส แรงนี้ถูกเรียกว่าแรงนิวเคลียร์ที่แข็งแกร่ง มันเอาชนะแรงผลักไฟฟ้าในระยะที่ใกล้กันมาก ผลของแรงนี้จะไม่สังเกตได้นอกนิวเคลียส นั่นคือความแรงจะขึ้นอยู่กับระยะทาง ทำให้มันเป็นแรงวิสัยใกล้ แรงเดียวกันยังดึงนิวคลีออน (นิวตรอนและโปรตอน) ให้อยู่ด้วยกัน เนื่องจากว่าแรงนิวเคลียสจะแข็งแกร่งกว่าแรงคูลอมบ์สำหรับนิวเคลียสของอะตอมที่มีขนาดเล็กกว่าธาตุเหล็กและนิกเกิล การสร้างนิวเคลียสเหล่านี้ขึ้นจากนิวเคลียสที่เบากว่าโดยฟิวชั่น จะปลดปล่อยพลังงานมากขึ้นจากแรงดึงดูดสุทธิของอนุภาคเหล่านี้ อย่างไรก็ตาม สำหรับนิวเคลียสที่มีขนาดใหญ่กว่า จะไม่มีพลังงานถูกปล่อยออกมา เนื่องจากแรงนิวเคลียสเป็นแรงพิสัยใกล้และไม่สามารถกระทำต่อเนื่องกับนิวเคลียสขนาดใหญ่ที่อยู่นิ่งๆได้ ดังนั้นพลังงานจะไม่ถูกปล่อยออกมาอีกต่อไปเมื่อนิวเคลียสดังกล่าวถูกทำขึ้นโดยฟิวชั่น; แต่พลังงานจะถูกดูดซึมในกระบวนการดังกล่าวแทน

ปฏิกิริยาฟิวชั่นของธาตุเบาเป็นผู้ให้พลังงานกับดวงดาวและเป็นผู้ผลิตแทบทุกธาตุในกระบวนการที่เรียกว่าการสังเคราะห์นิวเคลียส การฟิวชั่นของธาตุที่เบากว่าในดวงดาวจะปลดปล่อยพลังงานออกมา(และมวลที่มักจะออกมาพร้อมกับมัน) ยกตัวอย่างเช่นในการฟิวชั่นของสองนิวเคลียสไฮโดรเจนให้เป็นฮีเลียม, 0.7% ของมวลจะหลุดออกไปจากระบบในรูปแบบของพลังงานจลน์หรือรูปแบบอื่น ๆ ของพลังงาน (เช่นรังสีแม่เหล็กไฟฟ้า)

ในการวิจัยเพื่อการควบคุมฟิวชั่น โดยมีวัตถุประสงค์เพื่อผลิตพลังงานฟิวชั่นสำหรับการผลิตไฟฟ้า มีการดำเนินการมานานกว่า 60 ปี มันพบกับความยุ่งยากทางวิทยาศาสตร์และเทคโนโลยีอย่างมาก แต่ก็มีผลคืบหน้า ในปัจจุบันปฏิกิริยาฟิวชั่นที่ควบคุมได้ไม่สามารถที่จะผลิตปฏิกิริยาฟิวชั่น(ด้วยตนเองอย่างยั่งยืน)ที่คุ้มค่าการลงทุนได้ การออกแบบที่ใช้การได้สำหรับเครื่องปฏิกรณ์ที่ในทางทฤษฎีแล้วจะส่งพลังงานฟิวชั่นเป็นสิบเท่าของจำนวนพลังงานที่จำเป็นเพื่อสร้างความร้อนให้กับพลาสม่าจนถึงอุณหภูมิที่ต้องการอยู่ในระหว่างการพัฒนา (ดู ITER) สิ่งอำนวยความสะดวกใน ITER คาดว่าจะเสร็จสิ้นขั้นตอนการก่อสร้างในปี 2019 มันก็จะเริ่มติดตั้งเครื่องปฏิกรณ์ในปีเดียวกันและเริ่มต้นการทดลองพลาสม่าในปี 2020 แต่ไม่คาดว่ามันจะเริ่มการฟิวชั่นดิวเทอเรียม-ไอโซโทปเต็มรูปแบบจนกว่าจะถึงปี 2027

มันต้องใช้พลังงานอย่างมากในการที่จะบังคับให้นิวเคลียสหลอมละลาย แม้แต่ธาตุที่มีน้ำหนักเบาที่สุดเช่นไฮโดรเจน เป็นเพราะว่านิวเคลียสทุกตัวมีประจุบวกอันเนื่องมาจากโปรตอนในตัวมัน และเป็นอย่างเช่นกกแรงผลักของประจุ นิวเคลียสจะต่อต้านอย่างแรงถ้าถูกวางอยู่ใกล้กัน เมื่อถูกเร่งให้มีความเร็วสูง พวกมันสามารถเอาชนะแรงผลักไฟฟ้าสถิตนี้และจะถูกบังคับให้อยู่ใกล้พอสำหรับแรงดึงดูดนิวเคลียร์จนมีความแข็งแรงพอที่จะบรรลุการฟิวชั่น การฟิวชั่นของนิวเคลียสที่เบากว่า ซึ่งจะสร้างนิวเคลียสที่หนักขึ้นและมักจะเป็นนิวตรอนอิสระหรือโปรตอน โดยทั่วไปจะปลดปล่อยพลังงานมากขึ้นกว่าที่มันได้รับเพื่อบังคับให้นิวเคลียสทั้งหลายอยู่ด้วยกัน นี้เป็นกระบวนการคายความร้อนแบบหนึ่งที่สามารถผลิตปฏิกิริยาด้วยตนเองอย่างยั่งยืน สถานีจุดระเบิดแห่งชาติของสหรัฐ ซึ่งใช้การฟิวชั่นในภาชนะปิดที่เฉื่อยแบบขับเคลื่อนด้วยเลเซอร์ (อังกฤษ: laser-driven inertial confinement fusion) ได้รับการคาดการณ์ว่าจะสามารถสร้างปฏิกริยาฟิวชั่นที่คุ้มทุนได้

การทดลองเป้าหมายเลเซอร์ขนาดใหญ่ได้ดำเนินการเป็นครั้งแรกในเดือนมิถุนายนปี 2009 และการทดลองการจุดระเบิดเริ่มต้นขึ้นในช่วงต้นปี 2011

พลังงานที่ถูกปล่อยออกมาในปฏิกิริยานิวเคลียร์ส่วนใหญ่จะมีขนาดใหญ่กว่าในปฏิกิริยาเคมีอย่างมาก เพราะพลังงานยึดเหนี่ยวที่ยึดนิวเคลียสเอาไว้จะมีขนาดใหญ่กว่าพลังงานที่ยึดอิเล็กตรอนไว้กับนิวเคลียส ยกตัวอย่างเช่นพลังงานจากการแตกตัวเป็นไอออน (อังกฤษ: ionization energy) ที่ได้รับโดยเพิ่มอิเล็กตรอนหนึ่งตัวกับนิวเคลียสไฮโดรเจนหนึ่งตัวเป็น 13.6 eV -น้อยกว่าหนึ่งในล้านของ 17.6 MeV ที่ถูกปล่อยออกมาในปฏิกิริยาดิวเทอเรียม-ไอโซโทป (D-T) ที่ได้แสดงในแผนภาพทางขวา (หนึ่งกรัมของสารจะปล่อย 339 GJ ของพลังงาน) ปฏิกิริยาฟิวชั่นมีความหนาแน่นของพลังงานมากกว่าปฏิกิริยานิวเคลียร์ฟิชชันหลายเท่า; ปฏิกิริยาฟิวชั่นจะผลิตพลังงานต่อหน่วยของมวลมากกว่าอย่างมากแม้ว่าปฏิกิริยาฟิชชันแต่ละครั้งโดยทั่วไปจะมีพลังมากกว่าปฏิกิริยาฟิวชั่นแต่ละครั้ง และปฏิกิริยาทั้งสองแบบยังมีพลังมากกว่าปฏิกิริยาทางเคมีหลายล้านเท่า มีแต่การแปลงโดยตรงของมวลไปเป็นพลังงานเท่านั้นที่มีพลังต่อหน่วยของมวลมากกว่านิวเคลียร์ฟิวชัน เช่นที่เกิดจากการชนกันแบบทำลายล้างของสสารและปฏิสสาร

กระบวนการฟิวชั่นที่สำคัญที่สุดในธรรมชาติเป็นสิ่งที่ให้พลังงานกับดวงดาว ในศตวรรษที่ 20 มีการตระหนักว่าพลังงานที่ปล่อยออกมาจากปฏิกิริยานิวเคลียร์ฟิวชั่นเป็นตัวกำหนดอายุขัยของดวงอาทิตย์และดาวอื่น ๆ โดยเป็นแหล่งที่มาของความร้อนและแสงสว่าง การฟิวชั่นของนิวเคลียสทั้งหลายในดาวดวงหนึ่งเริ่มต้นจากความอุดมสมบูรณ์ของไฮโดรเจนและฮีเลียมในช่วงแรก เกิดเป็นพลังงานและการสังเคราะห์นิวเคลียสขึ้นใหม่เป็นผลพลอยได้จากกระบวนการฟิวชั่นนั้น ผู้ผลิตพลังงานหลักในดวงอาทิตย์เป็นฟิวชั่นของไฮโดรเจนก่อตัวเป็นก๊าซฮีเลียมซึ่งเกิดขึ้นที่อุณหภูมิแกนกลางของดวงอาทิตย์ที่ 14 ล้านเคลวิน ผลสุทธิคือการหลอมรวมของสี่โปรตอนกลายเป็นหนึ่งอนุภาคแอลฟาพร้อมกับการปลดปล่อยโพสิตรอนสองตัวและนิวตริโนสองตัว (ซึ่งเปลี่ยนสองโปรตอนไปเป็นนิวตรอน) และพลังงาน ห่วงโซ่ปฏิกิริยาที่แตกต่างกันเข้ามามีส่วนร่วม ขึ้นอยู่กับมวลของดาว สำหรับดาวขนาดดวงอาทิตย์หรือเล็กกว่าห่วงโซ่โปรตอน-โปรตอนจะเป็นปฏิกิริยาหลัก ในดาวที่หนักกว่า วัฏจักร CNO (อังกฤษ: Carbon Nitrogen Oxigen Cycle) มีความสำคัญมากกว่า

เมื่อดาวใช้ขึ้นส่วนที่สำคัญของไฮโดรเจนของมันหมดไปเรื่อย ๆ มันก็เริ่มที่จะสังเคราะห์ธาตุที่หนักกว่าโดยเป็นส่วนหนึ่งของการสังเคราะห์นิวเคลียสแบบดารา (อังกฤษ: stellar nucleosynthesis) อย่างไรก็ตามธาตุที่หนักที่สุดจะมีการสังเคราะห์โดยฟิวชั่นที่เกิดขึ้นเมื่อดาวที่มีมวลขนาดใหญ่มากกว่าผ่านการซูเปอร์โนวาที่มีความรุนแรงในตอนท้ายของชีวิตของมัน กระบวนการนี้เรียกว่าการสังเคราะห์นิวเคลียสแบบซูเปอร์โนวา (อังกฤษ: supernova nucleosynthesis)


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301