ปฏิกิริยานิวเคลียร์ (อังกฤษ: Nuclear reaction) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ หมายถึงกระบวนการที่นิวเคลียส 2 ตัวของอะตอมเดียวกัน หรือนิวเคลียสของอะตอมหนึ่งและอนุภาคย่อย ของอีกอะตอมหนึ่งจากภายนอกอะตอมนั้น ชนกัน ทำให้เกิดนิวเคลียสใหม่หนึ่งตัวหรือมากกว่าหนึ่งตัวที่มีจำนวนอนุภาคย่อยแตกต่างจากนิวเคลียสที่เริ่มต้นกระบวนการ ดังนั้นปฏิกิริยานิวเคลียร์จะต้องทำให้เกิดการเปลี่ยนแปลงของอย่างน้อยหนึ่งนิวไคลด์ ไปเป็นอย่างอื่น หากนิวเคลียสหนึ่งมีปฏิกิริยากับอีกนิวเคลียสหนึ่งหรืออนุภาคอื่นและพวกมันก็แยกออกจากกันโดยไม่มีการเปลี่ยนแปลงลักษณะของนิวไคลด์ใด ๆ กระบวนการนี้เป็นแต่เพียงประเภทหนึ่งของการกระเจิงของนิวเคลียสเท่านั้น ไม่ใช่ปฏิกิริยานิวเคลียร์
ในหลักการ ปฏิกิริยาสามารถเกิดขึ้นจากการชนกันของอนุภาคมากกว่าสองอนุภาค แต่เป็นไปได้น้อยมากที่นิวเคลียสมากกว่าสองตัวจะมาชนกันในเวลาเดียวกันและสถานที่เดียวกัน เหตุการณ์ดังกล่าวจึงเป็นของหายากเป็นพิเศษ (ดูกระบวนการสามอัลฟา ซึ่งเป็นตัวอย่างหนึ่งที่ใกล้เคียงกับการเกิดปฏิกิริยานิวเคลียร์สามเส้า) "ปฏิกิริยานิวเคลียร์" เป็นคำที่หมายความถึงการเปลี่ยนแปลงที่"ถูกเหนี่ยวนำให้เกิด"ในนิวไคลด์ ดังนั้นมันจึงไม่สามารถนำไปใช้กับการสลายกัมมันตรังสีชนิดใด ๆ ได้ (เพราะโดยคำจำกัดความแล้ว การสลายกัมมันตรังสีเป็นกระบวนการที่เกิดขึ้นเอง)
ปฏิกิริยานิวเคลียร์ในธรรมชาติจะเกิดขึ้นจากการปฏิสัมพันธ์ระหว่างรังสีคอสมิกและสสาร และปฏิกิริยานิวเคลียร์สามารถถูกประดิษฐ์ขึ้นเพื่อให้ได้พลังงานนิวเคลียร์ในอัตราที่ปรับได้ตามความต้องการ บางทีปฏิกิริยานิวเคลียร์ที่โดดเด่นมากที่สุดจะเป็นปฏิกิริยาลูกโซ่นิวเคลียร์ในวัสดุที่แตกตัวได้ (อังกฤษ: fissionable material) เพื่อเหนี่ยวนำให้เกิดปฏิกิริยานิวเคลียร์ฟิชชั่นและปฏิกิริยานิวเคลียร์ฟิวชันต่างๆขององค์ประกอบเบาที่ผลิตพลังงานให้กับดวงอาทิตย์และดวงดาวทั้งหลาย ทั้งสองประเภทในการเกิดปฏิกิริยานี้ถูกใช้ในการผลิตอาวุธนิวเคลียร์
ปฏิกิริยานิวเคลียร์อาจจะแสดงในรูปแบบที่คล้ายกับสมการเคมี ซึ่งมวลนิ่งจะต้องสมดุลกันสำหรับแต่ละด้านของสมการ และการแปลงของอนุภาคจะต้องเป็นไปตามกฎของการอนุรักษ์ที่แน่นอน เช่นการอนุรักษ์ของประจุและจำนวนแบริออน (จำนวนมวลอะตอมรวม) ตัวอย่างของสัญญลักษณ์หนึ่งจะเป็นดังต่อไปนี้:
เพื่อความสมดุลของสมการข้างต้นสำหรับมวล ประจุและเลขมวล นิวเคลียสตัวที่สองด้านขวาจะต้องมีเลขอะตอมเป็น 2 และเลขมวลเป็น 4; ดังนั้น มันจึงยังคงเป็นฮีเลียม-4 ดังนั้นสมการที่สมบูรณ์จึงเป็น:
แทนที่จะใช้สมการเต็มรูปแบบดังกล่าวข้างต้น ในหลาย ๆ สถานการณ์ สัญญลักษณ์ที่มีขนาดกะทัดรัดจะถูกใช้เพื่ออธิบายปฏิกิริยานิวเคลียร์ต่างๆ รูปแบบของแบบฟอร์มนี้คือ A(b,c)D เทียบเท่ากับ A + b ได้ c + D. อนุภาคเบาทั่วไปมักจะถูกย่อให้สั้นแบบนี้ โดย p สำหรับโปรตอน n สำหรับนิวตรอน d สำหรับ ดิวเทอเรียม, ? แทนอนุภาคแอลฟา หรือฮีเลียม-4, ? สำหรับอนุภาคบีตาหรืออิเล็กตรอน, ? สำหรับรังสีแกมมา ฯลฯ ปฏิกิริยาดังกล่าวข้างต้นจะถูกเขียนเป็น Li-6(d,?)?
ในปี 1917, เออร์เนสต์ รัทเทอร์ฟอร์ดก็สามารถประสบความสำเร็จในการแปลงร่างของไนโตรเจนให้เป็นก๊าซออกซิเจนที่มหาวิทยาลัยแห่งแมนเชสเตอร์ โดยใช้อนุภาคแอลฟายิงไปที่ไนโตรเจน 14N + ? 17O + p นี่เป็นการสังเกตครั้งแรกของปฏิกิริยานิวเคลียร์ที่ถูกเหนี่ยวนำให้เกิดขึ้น, นั่นคือ, ปฏิกิริยาที่อนุภาคจากการสลายตัวหนึ่งถูกใช้ในการแปลงให้เป็นอีกนิวเคลียสหนึ่ง ในที่สุดในปี 1932 ที่มหาวิทยาลัยเคมบริดจ์, ปฏิกิริยานิวเคลียร์และการแปลงพันธ์ทางนิวเคลียร์ที่ถูกประดิษฐ์ขึ้นอย่างสมบูรณ์ถูกทำได้สำเร็จโดยเพื่อนร่วมงานของรัทเธอร์ฟอร์ด นายจอห์น Cockcroft และนายเออร์เนส วอลตัน พวกเขาใช้โปรตอนที่ถูกเร่งความเร็วแบบประดิษฐ์ยิงเข้าใส่ลิเธียม-7 เพื่อแยกนิวเคลียสออกเป็นสองอนุภาคแอลฟา การทดลองนี้เป็นที่รู้จักกันแพร่หลายว่าเป็น "การแยกอะตอม" แม้ว่ามันจะไม่ใช่ปฏิกิริยานิวเคลียร์ฟิชชั่นแบบทันสมัยที่มีการค้นพบภายหลังในปี 1938 ในองค์ประกอบหนักโดยนักวิทยาศาสตร์ชาวเยอรมัน นายอ็อตโต ฮาห์นและนายฟริตซ์ Stra?mann
พลังงานจลน์อาจถูกปล่อยออกมาในระหว่างการเกิดปฏิกิริยา (หรือปฏิกิริยาคายความร้อน (อังกฤษ: exothermic reaction)) หรือพลังงานจลน์อาจจะต้องมีการใส่เข้าไปเพื่อให้เกิดปฏิกิริยา (หรือปฏิกิริยาดูดความร้อน (อังกฤษ: endothermic reaction)) ซึ่งสามารถคำนวณได้โดยอ้างอิงไปยังตารางของ'มวลนิ่งของอนุภาค' (อังกฤษ: particle rest mass) ที่แม่นยำมากต่อไปนี้ ตามตารางที่อ้างอิงถึง นิวเคลียสของ 6
3Li มีมวลอะตอมสัมพันธ์ที่ 6.015 หน่วยมวลอะตอม (ตัวย่อ u), ดิวเทอเรียมมี 2.014 u และนิวเคลียสของฮีเลียม-4 มี 4.0026 u ดังนั้น:
ในปฏิกิริยานิวเคลียร์หนึ่ง พลังงานสัมพันธ์ (อังกฤษ: relativistic energy) รวมจะถูกอนุรักษ์ เพราะฉะนั้น มวลนิ่ง "ที่ขาดหายไป" จึงต้องเกิดขึ้นอีกครั้งในรูปของพลังงานจลน์ที่ถูกปล่อยออกไปในระหว่างปฏิกิริยา; แหล่งที่มาของมันคือพลังงานยึดเหนี่ยวนิวเคลียส (อังกฤษ: nuclear binding energy) (พลังงานยึดเหนี่ยว, พลังงานยึดเหนี่ยวของโปรตอนและนิวตรอนในนิวเคลียส มีค่าเท่ากับพลังงานที่น้อยที่สุดสำหรับการแยกนิวเคลียสออกเป็นโปรตอนและนิวตรอน นอกจากนี้ยังหมายถึง พลังงานยึดเหนี่ยวของอิเล็กตรอนด้วย ซึ่งมีค่าเท่ากับพลังงานที่ต้องใช้เพื่อแยกอิเล็กตรอนออกมาจากอะตอมหรือโมเลกุล [นิวเคลียร์]) เมื่อใช้สูตรสมดุลมวล-พลังงาน E = mc? ของ Einstein ปริมาณของพลังงานที่ปล่อยออกมาก็จะสามารถกำหนดได้ ก่อนอื่นเราต้องรู้พลังงานเทียบเท่าของหนึ่งหน่วยมวลอะตอม:
นี้เป็นจำนวนที่มากของพลังงานสำหรับปฏิกิริยานิวเคลียร์หนึ่ง จำนวนที่สูงมากนี้เป็นเพราะพลังงานยึดเหนี่ยวต่อ'นิวคลีออน'ของนิวเคลียสของฮีเลียม-4 ที่สูงผิดปกติ เพราะนิวเคลียสของ He-4 เป็น "วิเศษสองเท่า" (นิวเคลียสของ He-4 จะเสถียรแบบที่ไม่ปกติและถูกผูกมัดกันไว้อย่างแน่นหนาด้วยเหตุผลเดียวกันกับที่อะตอมของฮีเลียมเป็นก๊าซเฉื่อย นั่นคือ แต่ละคู่ของโปรตอนและนิวตรอนใน He-4 ครอบครองวงโคจรนิวเคลียร์เต็ม 1s ในลักษณะเดียวกับที่คู่ของอิเล็กตรอนในอะตอมของฮีเลียมครอบครองวงโคจรอิเล็กตรอนเต็ม 1s) ด้วยเหตุนี้อนุภาคแอลฟาจะปรากฏขึ้นบ่อยครั้งทางด้านขวามือของปฏิกิริยานิวเคลียร์
เมื่อนิวเคลียสของผลิตภัณฑ์อยู่ในสภาวะ metastable สถานะสามารถบ่งชี้ได้โดยวางเครื่องหมายดอกจัน ("*") ถัดจากหมายเลขอะตอมของมัน พลังงานนี้จะถูกปล่อยออกในที่สุดผ่านการสลายตัวของนิวเคลียร์ (อังกฤษ: nuclear decay) ซึ่งเป็นการสลายให้กัมมันตรังสี
นอกจากนี้จำนวนเล็กน้อยของพลังงานยังอาจเกิดขึ้นในรูปแบบของรังสีเอกซ์ โดยทั่วไปนิวเคลียสของผลิตภัณฑ์ที่มีเลขอะตอมที่แตกต่างกัน และทำให้รูปแบบของเปลือกของอิเล็กตรอนผิดไป ในขณะที่อิเล็กตรอนจัดเรียงตัวมันเองและลดระดับพลังงานลง รังสีเอกซ์ที่มีการเปลี่ยนแปลงภายใน (รังสีเอกซ์ที่มีเส้นการแผ่ (อังกฤษ: emission line) ที่ถูกกำหนดไว้อย่างชัดเจน) อาจจะถูกปลดปล่อยออกมา
ในการเขียนสมการการเกิดปฏิกิริยา คล้ายกับสมการทางเคมี สารหนึ่งอาจบวกเข้าไปและให้พลังงานจากปฏิกิริยาทางด้านขวา เช่น:
พลังงานปฏิกิริยา ("ค่า Q") จะเป็นบวกสำหรับปฏิกิริยา exothermal และเป็นลบสำหรับปฏิกิริยา endothermal ในทางตรงกันข้าม มันมีความแตกต่างระหว่างผลรวมของพลังงานจลน์ในด้านสุดท้ายกับในด้านเริ่มต้น แต่ในทางกลับกัน มันก็ยังมีความแตกต่างเช่นกันระหว่างมวลนิ่งนิวเคลียร์ในด้านเริ่มต้นกับในด้านสุดท้าย (เราได้คำนวณค่า Q ข้างต้นในวิธีนี้)
ถ้าสมการของการเกิดปฏิกิริยามีความสมดุล มันไม่ได้หมายความว่าปฏิกิริยาได้เกิดขึ้นจริง อัตราการเกิดปฏิกิริยาขึ้นอยู่กับพลังงานของอนุภาคและฟลักซ์ของอนุภาคและภาคตัดขวางของปฏิกิริยา ตัวอย่างหนึ่งของพื้นที่เก็บขนาดใหญ่ของอัตราการเกิดปฏิกิริยาคือฐานข้อมูล REACLIB ที่ได้รับการดูแลรักษาโดยสถาบันร่วมสำหรับดาราศาสตร์ฟิสิกส์นิวเคลียร์
ในการกระทบกันครั้งแรกซึ่งจะเริ่มปฏิกิริยา อนุภาคต้องวิ่งเข้าหากันอย่างใกล้ชิดพอเพื่อให้แรงช่วงสั้นสามารถจะส่งผลต่อกัน เนื่องจากอนุภาคนิวเคลียร์ที่พบมากที่สุดจะมีประจุเป็นบวก ซึ่งหมายความว่าพวกมันจะต้องเอาชนะแรงผลักไฟฟ้าสถิตแรงสูงก่อนที่ปฏิกิริยาจะสามารถเริ่มต้นขึ้น แม้ว่านิวเคลียสเป้าหมายเป็นส่วนหนึ่งของอะตอมที่เป็นกลาง อนุภาคอื่น ๆ จะต้องเจาะลึกไปไกลกว่าเมฆอิเล็กตรอนและเข้าไปใกล้กับนิวเคลียสซึ่งมีประจุบวก ดังนั้นอนุภาคดังกล่าวจะต้องถูกเร่งความเร็วตั้งแต่แรกให้มีพลังงานที่สูง ตัวอย่างเช่น โดย:
นอกจากนี้ เนื่องจากแรงผลักเป็นสัดส่วนกับผลผลิตของทั้งสองประจุ ปฏิกิริยาระหว่างนิวเคลียสที่หนักด้วยกันจะหาได้ยากกว่าปฏิกิริยาระหว่างนิวเคลียสหนักและนิวเคลียสเบา และจำเป็นต้องมีระดับพลังงานเริ่มต้นที่สูงกว่าอีกด้วย ในขณะที่ปฏิกิริยาระหว่างสองนิวเคลียสเบาเป็นสิ่งที่พบมากที่สุด
นิวตรอน ในทางตรงกันข้าม ไม่มีประจุไฟฟ้าที่จะทำให้เกิดแรงผลัก และสามารถที่จะเริ่มต้นปฏิกิริยานิวเคลียร์ที่พลังงานต่ำมาก ในความเป็นจริง ที่พลังงานอนุภาคที่ต่ำอย่างมาก (ที่สอดคล้องกับการสมดุลความร้อนที่อุณหภูมิห้อง) ความยาวคลื่นแบบ de Broglie ของนิวตรอนจะเพิ่มขึ้นอย่างมาก อาจจะเพิ่มภาคตัดขวางการดักจับของมันให้สูงขี้นอย่างมาก ที่ระดับพลังงานใกล้กับค่า resonances ของนิวเคลียสที่เกี่ยวข้อง ดังนั้นนิวตรอนพลังงานต่ำอาจจะทำให้เกิดปฏิกิริยามากกว่านิวตรอนพลังงานสูงด้วยซ้ำ
ในขณะที่ปฏิกิริยานิวเคลียร์สามารถเกิดขึ้นได้หลายวิธี มีหลายชนิดที่พบบ่อย หรือโดดเด่นไปเลย ตัวอย่างได้แก่ :
การยิงด้วยพลังงานปานกลางจะถ่ายเทพลังงานหรือได้รับนิวคลีออนหรือสูญเสียนิวคลีออนให้กับนิวเคลียสในการกระทบกันอย่างรวดเร็วเพียงครั้งเดียว (10?21 วินาที) การถ่ายเทพลังงานและโมเมนตัมมีขนาดค่อนข้างเล็ก แต่ก็เป็นประโยชน์อย่างยิ่งในการทดลองฟิสิกส์นิวเคลียร์ เพราะกลไกการเกิดปฏิกิริยามักจะง่ายพอที่จะคำนวณด้วยความถูกต้องเพียงพอที่จะตรวจสอบโครงสร้างของนิวเคลียสเป้าหมาย
ปกติที่พลังงานต่ำปานกลาง นิวคลีออนหนึ่งตัวหรือมากกว่าจะถูกถ่ายโอนระหว่างกระสุนและเป้าหมาย สิ่งเหล่านี้มีประโยชน์ในการศึกษาโครงสร้างเปลือกนอกของนิวเคลียส
ปฏิกิริยาทั้งหลายที่เกิดกับนิวตรอนต่างๆมีความสำคัญในเครื่องปฏิกรณ์นิวเคลียร์และอาวุธนิวเคลียร์ ในขณะที่ปฏิกิริยานิวตรอนที่รู้จักกันดีคือการกระเจิงของนิวตรอน (อังกฤษ: neutron scattering), การจับยึดนิวตรอนและนิวเคลียร์ฟิชชั่น สำหรับบางนิวเคลียสเบา (โดยเฉพาะ'นิวเคลียสแปลกแปลก') ปฏิกิริยากับนิวตรอนความร้อนส่วนใหญ่จะเป็นปฏิกิริยาแบบถ่ายโอน ดังนี้:
การถ่ายโอนพลังงานไปให้กับนิวเคลียสสามารถเกิดขึ้นได้โดยยิงด้วยกระสุนพลังงานต่ำหรือด้วยอนุภาคพลังงานสูง ทำให้เกิดพลังงานบนนิวเคลียสจำนวนมากเกินไปที่จะผูกพันอนุภาคภายในนิวเคลียสนั้นให้สามารถเกาะกลุ่มร่วมกันได้อย่างเต็มที่ ในระดับเวลาประมาณ 10?19 วินาที อนุภาค มักจะเป็นนิวตรอน จะถูก "ต้ม" จนแตกออก นั่นคือมันจะยังคงเกาะติดอยู่ด้วยกันจนกระทั่งพลังงานที่มากพอปรากฏขึ้นบนนิวตรอนจนมีความเข้มข้นพอที่นิวตรอนนั้นจะหลุดออกจากแรงดึงดูดที่มีร่วมกัน อนุภาคที่มีประจุไฟฟ้าจะยากที่จะถูกต้มจนแตกออกอันเนื่องมาจากเครื่องกั้นของคูลอมบ์ (อังกฤษ: coulomb barrier) นิวเคลียสกึ่งผูกพันที่ถูกกระตุ้นจะถูกเรียกว่า นิวเคลียสผสม (อังกฤษ: compound nucleus)
(e, e' xn), (?, xn) ที่มีพลังงานต่ำ (xn หมายถึงนิวตรอนหนึ่งหรือมากกว่า) เมื่อรังสีแกมมาหรือ'พลังงานรังสีแกมมาเสมือน' อยู่ใกล้กับ giant dipole resonance พลังงานหรือรังสีเหล่านี้จะเพิ่มความจำเป็นสำหรับ'การป้องกันรังสี'รอบ'เครื่องเร่งอนุภาคอิเล็กตรอน'