ค้นหา
  
Search Engine Optimization Services (SEO)

บิ๊กแบง

บิกแบง (อังกฤษ: Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน

ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี ค.ศ. 1929 เอ็ดวิน ฮับเบิลค้นพบว่า ระยะห่างของดาราจักรมีสัดส่วนที่เปลี่ยนแปลงสัมพันธ์กับการเคลื่อนไปทางแดง การสังเกตการณ์นี้บ่งชี้ว่า ดาราจักรและกระจุกดาวอันห่างไกลกำลังเคลื่อนที่ออกจากจุดสังเกต ซึ่งหมายความว่าเอกภพกำลังขยายตัว ยิ่งตำแหน่งดาราจักรไกลยิ่งขึ้น ความเร็วปรากฏก็ยิ่งเพิ่มมากขึ้น หากเอกภพในปัจจุบันกำลังขยายตัว แสดงว่าก่อนหน้านี้ เอกภพย่อมมีขนาดเล็กกว่า หนาแน่นกว่า และร้อนกว่าที่เป็นอยู่ แนวคิดนี้มีการพิจารณาอย่างละเอียดย้อนไปจนถึงระดับความหนาแน่นและอุณหภูมิที่จุดสูงสุด และผลสรุปที่ได้ก็สอดคล้องอย่างยิ่งกับผลจากการสังเกตการณ์ ทว่าการเพิ่มของอัตราเร่งมีข้อจำกัดในการตรวจสอบสภาวะพลังงานที่สูงขนาดนั้น หากไม่มีข้อมูลอื่นที่ช่วยยืนยันสภาวะเริ่มต้นชั่วขณะก่อนการระเบิด ลำพังทฤษฎีบิกแบงก็ยังไม่สามารถใช้อธิบายสภาวะเริ่มต้นได้ มันเพียงอธิบายกระบวนการเปลี่ยนแปลงของเอกภพที่เกิดขึ้นหลังจากสภาวะเริ่มต้นเท่านั้น

คำว่า "บิกแบง" ที่จริงเป็นคำล้อเลียนซึ่งเกิดขึ้นเมื่อนักดาราศาสตร์ชื่อ เฟรด ฮอยล์ ตั้งใจดูหมิ่นและทำลายความน่าเชื่อถือของทฤษฎีที่เขาเห็นว่าไม่มีทางเป็นจริง ในการออกอากาศทางวิทยุครั้งหนึ่งเมื่อปี ค.ศ. 1949 ในเวลาต่อมา ฮอยล์ได้ช่วยศึกษาผลกระทบของนิวเคลียร์ในการก่อเกิดธาตุมวลหนักที่ได้จากธาตุซึ่งมีมวลน้อยกว่า อย่างไรก็ดี การค้นพบรังสีไมโครเวฟพื้นหลังของจักรวาลในปี ค.ศ. 1964 ยิ่งทำให้นักวิทยาศาสตร์ส่วนใหญ่ไม่สามารถปฏิเสธทฤษฎีบิกแบงได้

ทฤษฎีบิกแบงพัฒนาขึ้นมาจากการสังเกตการณ์โครงสร้างเอกภพร่วมกับการพิจารณาทฤษฎีต่างๆ ที่เป็นไปได้ ในปี ค.ศ. 1912 เวสโต สลิเฟอร์ วัดค่าการเคลื่อนของดอปเปลอร์ครั้งแรกของ "เนบิวลาชนิดก้นหอย" (เป็นชื่อเก่าที่เคยใช้เรียกดาราจักรชนิดก้นหอย) และต่อมาก็ค้นพบว่า เนบิวลาแทบทั้งหมดกำลังเคลื่อนที่ออกห่างจากโลก เขามิได้สรุปแนวคิดทางจักรวาลวิทยาจากข้อเท็จจริงนี้ อันที่จริงในช่วงยุคนั้นยังเป็นที่ถกเถียงกันอยู่มากว่า เนบิวลาเหล่านี้เป็น "เอกภพเกาะ" ที่อยู่ภายนอกดาราจักรทางช้างเผือกหรือไม่ สิบปีต่อมา อเล็กซานเดอร์ ฟรีดแมน นักจักรวาลวิทยาและนักคณิตศาสตร์ชาวรัสเซียได้พัฒนาสมการฟรีดแมนขึ้นจากทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ แสดงให้เห็นว่าเอกภพกำลังขยายตัวอยู่ ซึ่งขัดแย้งกับแบบจำลองเอกภพสถิตที่ไอน์สไตน์สนับสนุนอยู่ ปี ค.ศ. 1924 เอ็ดวิน ฮับเบิล ตรวจวัดระยะห่างของเนบิวลาชนิดก้นหอยที่ใกล้ที่สุด ผลการตรวจแสดงให้เห็นว่า ระบบดาวเหล่านั้นที่แท้เป็นดาราจักรอื่น เมื่อถึงปี ค.ศ. 1927 ฌอร์ฌ เลอแม็ทร์ พระคาทอลิกนักฟิสิกส์ชาวเบลเยียม ทำการพัฒนาสมการของฟรีดแมนโดยอิสระ ผลที่ได้ทำให้คาดการณ์ได้ว่าการถอยห่างของเนบิวลาเป็นผลเนื่องจากการขยายตัวของเอกภพ

ค.ศ. 1931 เลอแม็ทร์พัฒนางานของเขาคืบหน้าไปอีก และเสนอแนวคิดว่า การที่เอกภพมีการขยายตัวเมื่อเวลาเดินล่วงหน้าไป จะเป็นจริงได้ก็ต่อเมื่อเอกภพมีการหดตัวลงเมื่อเวลาเดินย้อนกลับ และจะเป็นเช่นนั้นไปเรื่อยๆ จนกว่าเอกภพจะหดตัวไม่ได้อีกต่อไป ทำให้มวลทั้งหมดของเอกภพอัดแน่นเป็นจุดๆ หนึ่ง คือ "อะตอมแรกเริ่ม" ณ จุดใดจุดหนึ่งของกาลเวลาก่อนที่เวลาและอวกาศจะถือกำเนิดขึ้น ณ จุดนั้นยังไม่มีโครงสร้างของเวลาและอวกาศใดๆ ทฤษฎีนี้สะท้อนความเชื่อเก่าแก่ก่อนหน้านี้เกี่ยวกับไข่จักรวาล (cosmic egg) ซึ่งเป็นจุดเริ่มต้นของเอกภพ

ทางด้านของฮับเบิลก็พยายามพัฒนาตัวชี้วัดระยะทางหลายรูปแบบนับแต่ ค.ศ. 1924 ซึ่งเป็นการเบิกทางของบันไดระยะห่างของจักรวาล เขาใช้กล้องโทรทรรศน์ฮุกเกอร์ ขนาด 100 นิ้ว (2,500 มม.) ที่หอดูดาวเมาท์วิลสัน ทำให้สามารถประเมินระยะห่างระหว่างดาราจักรได้จากผลการตรวจวัดการเคลื่อนไปทางแดง ซึ่งมีการวัดค่าไว้ก่อนหน้านี้แล้วโดยสลิเฟอร์ ฮับเบิลค้นพบความเกี่ยวพันระหว่างระยะทางกับความเร็วในการเคลื่อนถอยในปี ค.ศ. 1929 ปัจจุบันความสัมพันธ์ข้อนี้เป็นที่รู้จักในชื่อ กฎของฮับเบิล งานของเลอแม็ทร์สนับสนุนผลงานชิ้นนี้ และเขาได้สร้างหลักการพื้นฐานจักรวาลวิทยาขึ้น

ตลอดคริสต์ทศวรรษ 1930 มีทฤษฎีและแนวคิดต่างๆ เกิดขึ้นมากมายเพื่อพยายามอธิบายผลสังเกตการณ์ของฮับเบิล รวมถึงแบบจำลองของมิลเน (Milne Model) ทฤษฎีการแกว่งตัวของเอกภพ (เสนอโดยฟรีดแมน และได้รับการสนับสนุนจากไอน์สไตน์กับริชาร์ด โทลแมน) และข้อสมมติฐาน tired light ของฟริตซ์ ชวิกกี

หลังจากสงครามโลกครั้งที่สอง มีแนวคิดที่เป็นไปได้แตกต่างกันอยู่สองแนวทาง ทางหนึ่งเป็นแนวคิดเรื่องแบบจำลองสภาวะสมมูลของเฟรด ฮอยล์ ซึ่งเห็นว่าจะมีสสารใหม่เกิดขึ้นระหว่างที่เอกภพขยายตัว แนวคิดนี้เอกภพจะมีสภาวะแทบจะคงที่ ณ จุดใดๆ ของเวลา อีกแนวคิดหนึ่งเป็นทฤษฎีบิกแบงของเลอแม็ทร์ ซึ่งได้พัฒนาต่อมาโดยจอร์จ กาโมว์ ผู้เสนอทฤษฎีบิกแบงนิวคลีโอซินทีสิส และเป็นผู้ร่วมทีมกับราล์ฟ อัลเฟอร์ และโรเบิร์ต เฮอร์มัน ทำนายปรากฏการณ์ของการแผ่รังสีไมโครเวฟพื้นหลัง แต่จะว่าไปแล้ว ฮอยล์นั่นเองที่เป็นผู้นำวลีมาโยงกับทฤษฎีของเลอแม็ทร์ โดยเรียกทฤษฎีนี้ว่า "เจ้าแนวคิดแบบบิกแบงนี่" ระหว่างการออกอากาศทางสถานีวิทยุบีบีซีเมื่อเดือนมีนาคม ค.ศ. 1949 นักวิทยาศาสตร์ต่างแบ่งออกเป็นสองพวกสนับสนุนทฤษฎีทั้งสองทางนี้ ในเวลาต่อมาแนวคิดหลังเริ่มเป็นที่นิยมมากกว่า การค้นพบไมโครเวฟพื้นหลังในปี ค.ศ. 1964 ช่วยยืนยันว่าจุดกำเนิดและพัฒนาการของจักรวาลสอดคล้องกับแนวคิดแบบทฤษฎีบิกแบงมากกว่า

การศึกษาจักรวาลวิทยาตามแนวคิดบิกแบงมีการก้าวกระโดดครั้งใหญ่ในช่วงปลายคริสต์ทศวรรษ 1990 เนื่องมาจากความก้าวหน้าอย่างมากของเทคโนโลยีกล้องโทรทรรศน์ ตลอดจนผลการวิเคราะห์ข้อมูลจำนวนมากจากดาวเทียมต่างๆ เช่น จาก COBE จากกล้องโทรทรรศน์อวกาศฮับเบิล และจาก WMAP ปัจจุบันการศึกษาจักรวาลวิทยามีข้อมูลและเครื่องมือวัดที่แม่นยำมากมายที่ช่วยตรวจสอบปัจจัยต่างๆ ของแบบจำลองบิกแบง ทำให้เกิดการค้นพบอันไม่คาดฝันว่า เอกภพดูเหมือนจะกำลังขยายตัวอยู่ด้วยความเร็วที่เพิ่มขึ้น

เมื่อพิจารณาตรรกะจากการขยายตัวของเอกภพโดยใช้ทฤษฎีสัมพัทธภาพทั่วไป หากเวลาย้อนหลังไปจะทำให้ความหนาแน่นและอุณหภูมิมีค่าสูงขึ้นอย่างไม่จำกัดขณะที่เวลาในอดีตจำกัดอยู่ค่าหนึ่งภาวะเอกฐานเช่นนี้เป็นไปไม่ได้เพราะขัดแย้งกับทฤษฎีสัมพัทธภาพทั่วไป เป็นที่ถกเถียงกันอยู่มากกว่าเราสามารถประมาณภาวะเอกฐานได้ใกล้สักเพียงไหน (ซึ่งไม่มีทางประมาณไปได้มากเกินกว่ายุคของพลังค์) ภาวะเริ่มแรกที่มีความร้อนและความหนาแน่นสูงอย่างยิ่งนี้เองที่เรียกว่า "บิกแบง" และถือกันว่าเป็น "จุดกำเนิด" ของเอกภพของเรา จากผลการตรวจวัดการขยายตัวของซูเปอร์โนวาประเภท Ia การตรวจวัดความแปรเปลี่ยนของอุณหภูมิในไมโครเวฟพื้นหลัง และการตรวจวัดลำดับวิวัฒนาการของดาราจักร เชื่อว่าเอกภพมีอายุประมาณ 13.73 ? 0.12 พันล้านปี การที่ผลตรวจวัดทั้งสามวิธีให้ค่าออกมาใกล้เคียงกันเป็นการยืนยันสนับสนุนแบบจำลองแลมบ์ดา-ซีดีเอ็ม (?CDM) ที่อธิบายอย่างละเอียดถึงองค์ประกอบต่างๆ ในเอกภพ

มีการคาดเดาถึงสภาวะเริ่มแรกของบิกแบงไปต่างๆ นานา แต่แบบจำลองที่เป็นที่ยอมรับมากที่สุดคือ เอกภพทั้งหมดเป็นเนื้อเดียวกันและมีสมบัติเหมือนๆ กันในทุกทิศทางโดยมีความหนาแน่นของพลังงานที่สูงมาก มีอุณหภูมิและความดันสูงมาก ต่อมาจึงขยายตัวออกในทันทีทันใดและมีอุณหภูมิลดลง ประมาณว่าใน 10-35 วินาทีของการขยายตัวเป็นสภาวะการพองตัวของเอกภพซึ่งเติบโตขึ้นอย่างรวดเร็วแบบเอ็กโปเนนเชียล หลังจากสิ้นสุดสภาวะการพองตัว เอกภพประกอบด้วยพลาสมาควาร์ก-กลูออนและอนุภาคมูลฐานทั้งหมด อุณหภูมิยังคงสูงมากทำให้การเคลื่อนที่ของอนุภาคต่างๆ มีความเร็วสัมพัทธ์สูง คู่อนุภาคและปฏิยานุภาคทั้งหมดยังมีการเกิดใหม่และแตกดับลงไปในการปะทะ ต่อมาจึงเกิดปฏิกิริยาบางอย่างที่เรียกว่า แบริโอเจเนซิส ทำลายภาวะสมดุลในการรักษาจำนวนแบริออน เกิดเป็นควาร์กและเลปตอนขึ้นมาจำนวนหนึ่งที่มากกว่าแอนติควาร์กและแอนติเลปตอนประมาณ 1 ใน 30 ล้านส่วน ซึ่งเป็นต้นเหตุทำให้มีสสารมากกว่าปฏิสสารในเอกภพปัจจุบัน

เอกภพยังคงขยายตัวอย่างต่อเนื่องและมีอุณหภูมิลดลง ทำให้พลังงานโดยทั่วไปในแต่ละอนุภาคลดลงด้วย ยุคการทำลายสมดุล (Symmetry breaking) ทำให้แรงพื้นฐานทางฟิสิกส์และพารามิเตอร์ต่างๆ ของอนุภาคมูลฐานกลายมาอยู่ในรูปแบบดังเช่นปัจจุบัน หลังจากผ่านไป 10-11 วินาที ภาพการคาดเดาก็น้อยลง เพราะพลังงานของอนุภาคลดลงลงถึงระดับที่สามารถอธิบายได้ด้วยการทดลองฟิสิกส์อนุภาค ที่เวลา 10-6 วินาที ควาร์กและกลูออนรวมตัวกันกลายเป็นอนุภาคแบริออนจำนวนหนึ่งเช่น โปรตอน และนิวตรอน ปริมาณควาร์กที่มีมากกว่าแอนติควาร์กอยู่เล็กน้อยทำให้อนุภาคแบริออนมีมากกว่าแอนติแบริออนเช่นเดียวกัน ถึงเวลานี้อุณหภูมิของเอกภพก็ไม่สูงพอที่จะสร้างคู่โปรตอน-แอนติโปรตอนใหม่อีกแล้ว (ทำนองเดียวกันกับนิวตรอนและแอนตินิวตรอน) จึงเกิดการทำลายมวลครั้งใหญ่ เหลือเพียง 1 ใน 1010 ของโปรตอนและนิวตรอนในตอนเริ่มต้น และไม่มีปฏิยานุภาคของพวกมันเหลืออยู่เลย กระบวนการเดียวกันนี้เกิดขึ้นอีกในเวลาประมาณ 1 วินาทีสำหรับอิเล็กตรอนและโพสิตรอน หลังจากพ้นช่วงการทำลายมวล โปรตอน นิวตรอน และอิเล็กตรอนที่เหลือก็ไม่มีความเร็วสัมพัทธ์สูงยิ่งยวดอีกต่อไป แต่โฟตอนกลายเป็นองค์ประกอบสำคัญของความหนาแน่นพลังงานของเอกภพ (และบทบาทเล็กน้อยอีกส่วนหนึ่งโดยนิวตริโน)

ไม่กี่นาทีต่อมาเอกภพก็เริ่มการขยายตัว เมื่ออุณหภูมิมีค่าประมาณ 1 พันล้านเคลวิน และมีความหนาแน่นประมาณความหนาแน่นของอากาศ นิวตรอนรวมตัวเข้ากับโปรตอนกลายเป็นนิวเคลียสของดิวเทอเรียมและฮีเลียม ซึ่งเป็นกระบวนการที่เรียกว่า บิกแบงนิวคลีโอซินทีสิส โปรตอนส่วนใหญ่ยังคงไม่ได้รวมตัว ดังเช่นนิวเคลียสของไฮโดรเจน เมื่อเอกภพเย็นลง ความหนาแน่นพลังงานมวลของสสารที่เหลือก็เริ่มมีอิทธิพลเหนือการแผ่รังสีของโฟตอน หลังจากผ่านไป 379,000 ปี อิเล็กตรอนกับนิวเคลียสรวมตัวเข้าไปในอะตอม (ส่วนใหญ่เป็นไฮโดรเจน) ทำให้การแผ่รังสีแยกตัวจากสสารและแพร่ไปในห้วงอวกาศอย่างไร้เขตจำกัด การแผ่รังสีนี้มีผลหลงเหลืออยู่ดังที่ปัจจุบันรู้จักกันในชื่อ การแผ่รังสีคอสมิกไมโครเวฟพื้นหลัง

เวลาผ่านไปอีกเนิ่นนาน ย่านรอบนอกแกนกลางที่มีความหนาแน่นเจือจางกว่าเริ่มมีการจับตัวกับสสารใกล้เคียงและเพิ่มความหนาแน่นของตนมากขึ้น ก่อตัวเป็นกลุ่มเมฆแก๊ส ดาวฤกษ์ ดาราจักร และโครงสร้างอื่นๆ ทางดาราศาสตร์ที่เราสังเกตเห็นได้ในปัจจุบัน รายละเอียดของกระบวนการเหล่านี้ขึ้นกับปริมาณและประเภทของสสารที่มีอยู่ในเอกภพ สสารที่เป็นไปได้สามชนิดได้แก่ สสารมืดเย็น สสารมืดร้อน และสสารแบริออน จากเครื่องมือวัดดีที่สุดเท่าที่เรามีอยู่ (คือดาวเทียม WMAP) แสดงให้เห็นว่าส่วนประกอบสำคัญของสสารในเอกภพคือสสารมืดเย็น ส่วนสสารอีกสองชนิดมีอยู่เป็นจำนวนไม่ถึง 18% ของสสารทั้งหมดในเอกภพ

ปรากฏการณ์ที่เป็นอิสระจากกันของการเกิดซูเปอร์โนวาประเภท Ia กับไมโครเวฟพื้นหลังซึ่งสร้างเอกภพดังเช่นทุกวันนี้ ได้รับอิทธิพลจากพลังงานลึกลับชนิดหนึ่งซึ่งรู้จักในชื่อ พลังงานมืด ที่ดูจะแทรกซึมอยู่ทั่วไปในอวกาศ ผลการสังเกตการณ์บ่งชี้ว่า 72% ของความหนาแน่นพลังงานทั้งหมดของเอกภพในปัจจุบันเป็นพลังงานในรูปแบบดังกล่าวนี้ เมื่อครั้งที่เอกภพยังมีอายุน้อย พลังงานมืดอาจจะแทรกซึมเข้ามาบ้าง แต่เมื่อเวลาที่ทุกสิ่งทุกอย่างยังอยู่ใกล้กันมากและมีช่องว่างอยู่น้อย แรงโน้มถ่วงจึงมีอิทธิพลมากกว่า และพยายามจะชะลอการแผ่ขยายตัวของเอกภพอย่างช้าๆ อย่างไรก็ดีหลังจากการขยายตัวของเอกภพผ่านไปหลายพันล้านปี พลังงานมืดที่มีอยู่มากมายมหาศาลก็เริ่มทำให้การขยายตัวมีอัตราเร่งเพิ่มขึ้นทีละน้อย เราสามารถแปลงพลังงานมืดให้อยู่ในรูปแบบอย่างง่ายในค่าคงที่จักรวาลของสมการของไอน์สไตน์ตามทฤษฎีสัมพัทธภาพทั่วไป แต่องค์ประกอบและกลไกของพลังงานนี้ยังไม่เป็นที่เข้าใจ รายละเอียดของสมการสภาวะและความสัมพันธ์ของพลังงานนี้กับแบบจำลองมาตรฐานในวิชาฟิสิกส์อนุภาคยังคงอยู่ในระหว่างการค้นหาทั้งโดยเฝ้าสังเกตการณ์และโดยวิจัยทางทฤษฎี

วิวัฒนาการของจักรวาลทั้งหมดหลังจากยุคของการพองตัวสามารถอธิบายได้ด้วยแบบจำลองแลมบ์ดา-ซีดีเอ็มอันเป็นแบบจำลองจักรวาลวิทยา โดยใช้กรอบสังเกตการณ์อิสระของกลศาสตร์ควอนตัมกับทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ อย่างไรก็ดี ดังได้กล่าวไว้แล้วข้างต้นว่า แบบจำลองเท่าที่มีอยู่ยังไม่สามารถใช้อธิบายสิ่งที่เกิดขึ้นก่อนช่วงเวลา 10-15 วินาทีแรกได้ ทฤษฎีรวมแรงใหม่ๆ อย่างเช่นทฤษฎีโน้มถ่วงเชิงควอนตัมเป็นความพยายามที่จะข้ามพ้นข้อจำกัดนั้น ความเข้าใจในสภาวะแรกเริ่มในประวัติศาสตร์ของเอกภพเป็นหนึ่งในปัญหาที่ยิ่งใหญ่ที่สุดในทางฟิสิกส์ที่ยังไม่สามารถค้นหาคำตอบได้

สมมติฐานหลักของทฤษฎีบิกแบงมีอยู่ 2 ประการคือ ความเป็นเอกภาพของกฎทางฟิสิกส์ และหลักการพื้นฐานจักรวาลวิทยา แนวคิดของหลักการพื้นฐานจักรวาลวิทยาคือเอกภพในระดับมหภาคมีความเป็นเนื้อเดียวกันและเหมือนกันหมดในทุกทิศทาง

เดิมแนวคิดเหล่านี้ถือเป็นหลักพื้นฐานสำคัญ แต่ในปัจจุบันมีการพยายามทดสอบสมมติฐานเหล่านี้อยู่หลายครั้ง ตัวอย่างเช่น การทดสอบสมมติฐานแรกด้วยผลสังเกตการณ์ที่แสดงว่าค่าคงที่โครงสร้างละเอียดมีความผิดเพี้ยนที่เป็นไปได้อย่างมากถึงอันดับ 10-5 เมื่ออายุของเอกภพเพิ่มมากขึ้น หรือทฤษฎีสัมพัทธภาพทั่วไปที่ต้องผ่านการทดสอบอย่างเข้มข้นในกรณีของระบบสุริยะและระบบดาวคู่ เพื่อที่ข้อมูลในระดับจักรวาลจะต้องสอดคล้องกับผลสังเกตการณ์และการคาดการณ์ตามทฤษฎีบิกแบง

ถ้าเอกภพระดับใหญ่มีความเป็นหนึ่งเดียวกันในมุมมองจากโลก หลักการพื้นฐานจักรวาลวิทยาสามารถถอดความได้จากหลักการพื้นฐานโคเปอร์นิคัสที่ง่ายกว่า ซึ่งกล่าวว่าไม่มีผู้สังเกตหรือจุดสังเกตใดเป็นพิเศษ ดังนี้ หลักการพื้นฐานจักรวาลวิทยาจึงได้รับการรับรองในระดับ 10-5 ผ่านการสังเกตการณ์รังสีไมโครเวฟพื้นหลัง ผลตรวจวัดเอกภพแสดงถึงความเป็นเนื้อเดียวกันในสเกลใหญ่ที่สุดที่ระดับ 10%

ทฤษฎีสัมพัทธภาพทั่วไปอธิบายเรื่องของกาลอวกาศด้วย มาตรา tensor ซึ่งกล่าวถึงระยะห่างที่แบ่งจุดใกล้เคียง จุดเหล่านี้ซึ่งอาจเป็นได้ทั้งดาราจักร ดาวฤกษ์ หรือวัตถุอื่น จะถูกระบุตำแหน่งด้วยแผนภูมิพิกัดหรือ "กริด" (grid) ที่วางอยู่บนพื้นของกาลอวกาศทั้งหมด จากหลักการพื้นฐานจักรวาลวิทยากำหนดให้มาตรานี้จะต้องเป็นเนื้อเดียวกันและมีสมบัติเหมือนกันทุกทิศทาง จึงได้เป็นมาตรวัดฟรีดแมน-เลอแม็ทร์-โรเบิร์ตสัน-วอล์กเกอร์ หรือ มาตรวัด FLRW ประกอบด้วยตัวประกอบขนาด (scale factor) ที่บอกถึงขนาดเปลี่ยนแปลงของเอกภพตามเวลา ทำให้ได้เป็นระบบพิกัดแบบง่ายขึ้น เรียกว่าระบบพิกัด comoving ในระบบพิกัดนี้ กริดจะขยายตัวขึ้นตามเอกภพ และวัตถุที่อยู่นิ่งบนตำแหน่งกริดเดิมก็เคลื่อนที่ไปตามการขยายตัวของเอกภพ ขณะที่ระยะห่างพิกัด (comoving distance) เป็นค่าคงที่ ระยะห่างทางกายภาพระหว่างจุด comoving สองจุดจะเพิ่มขึ้นเป็นสัดส่วนตามตัวประกอบขนาดของเอกภพ

บิกแบงไม่ใช่การระเบิดของสสารที่เคลื่อนออกไปเพื่อเติมเต็มเอกภพอันว่างเปล่า ตัวอวกาศนั้นต่างหากที่ขยายตัวออกไปตามเวลาในทุกหนทุกแห่งและทำให้ระยะห่างทางกายภาพของจุด comoving สองจุดเพิ่มมากขึ้น แต่เนื่องจากมาตรวัด FLRW ถือว่าการกระจายตัวของมวลและพลังงานเป็นไปอย่างสม่ำเสมอ มันจึงใช้กับเอกภพเฉพาะในระดับขนาดใหญ่เท่านั้น ส่วนการรวมตัวของสสารในระดับท้องถิ่นเช่นดาราจักรจะมีแรงโน้มถ่วงดึงดูดผูกพันเอาไว้ จึงไม่ได้รับผลกระทบจากการขยายตัวตามตัวประกอบขนาดของอวกาศ

คุณสมบัติที่สำคัญของ กาลอวกาศ ในบิกแบง คือการมีอยู่ของขอบฟ้า ในเมื่อเอกภพมีอายุที่จำกัดแน่นอน และแสงก็เดินทางด้วยความเร็วที่จำกัดค่าหนึ่ง จึงอาจมีบางเหตุการณ์ในอดีตที่แสงไม่มีเวลาพอจะเดินทางมาถึงเราได้ ทำให้เกิดข้อจำกัดหรือ ขอบฟ้าอดีต บนวัตถุอันห่างไกลที่สุดเท่าที่สังเกตได้ ในทางกลับกัน ในเมื่ออวกาศกำลังขยายตัว วัตถุอันห่างไกลก็กำลังเคลื่อนห่างออกไปเร็วยิ่งขึ้น แสงที่ส่งจากตัวเราในวันนี้จึงไม่มีวันจะไล่ตามทันวัตถุไกลชิ้นนั้นได้ ทำให้เกิด ขอบฟ้าอนาคต ที่จำกัดขอบเขตของเหตุการณ์ในอนาคตที่เราอาจส่งอิทธิพลถึง การดำรงอยู่ของขอบฟ้าทั้งสองชนิดนี้ขึ้นอยู่กับรายละเอียดของแบบจำลอง FLRW ที่อธิบายถึงเอกภพของเรา ตามความเข้าใจเกี่ยวกับเอกภพของเราย้อนไปจนถึงยุคเริ่มแรกบ่งชี้ว่าน่าจะมีขอบฟ้าอดีตอยู่จริง แม้ว่าในทางปฏิบัติแล้วมุมมองของเราจะถูกจำกัดด้วยความทึบแสงของเอกภพในยุคแรกเริ่ม ดังนั้นหากเอกภพยังคงขยายตัวด้วยอัตราเร่ง ขอบฟ้าอนาคตก็น่าจะมีอยู่จริงเช่นเดียวกัน

ข้อมูลการสังเกตการณ์ชุดแรกสุดที่สอดคล้องกับทฤษฎีนี้ได้แก่ การสังเกตการณ์การขยายตัวแบบฮับเบิลที่พบในการเคลื่อนไปทางแดงของเหล่าดาราจักร การตรวจพบการแผ่รังสีของไมโครเวฟพื้นหลัง และปริมาณของอนุภาคแสงจำนวนมาก (ดูใน บิกแบงนิวคลีโอซินทีสิส) บางครั้งเรียกทั้งสามสิ่งนี้ว่าเป็นเสาหลักของทฤษฎีบิกแบง การสังเกตการณ์อื่นๆ ในยุคต่อมาต่างสนับสนุนให้เห็นภาพรวมชัดเจนยิ่งขึ้น โดยเฉพาะการค้นพบคุณลักษณะอันหลากหลายของโครงสร้างขนาดใหญ่ของจักรวาล ซึ่งตรงกับการคาดการณ์การขยายตัวของโครงสร้างเอกภพภายใต้แรงโน้มถ่วงตามทฤษฎีมาตรฐานของบิกแบง

ผลจากการสังเกตการณ์ดาราจักรและเควซาร์อันไกลโพ้นพบว่าวัตถุเหล่านั้นมีการเคลื่อนไปทางแดง กล่าวคือ แสงที่ส่งออกมาจากวัตถุเหล่านั้นมีความคลาดเคลื่อนของความยาวคลื่นที่ยาวมากขึ้น เราสามารถมองเห็นได้โดยตรวจสอบสเปคตรัมความถี่ของวัตถุเปรียบเทียบกับรูปแบบการเปลี่ยนแปลงในการกระจายหรือดูดกลืนแถบคลื่นความถี่ที่สอดคล้องกับปฏิกิริยาระหว่างอนุภาคทางเคมีกับแสง ปรากฏการณ์การเคลื่อนไปทางแดงที่พบล้วนสอดคล้องเป็นอันหนึ่งอันเดียวกันแม้จะทำการสังเกตการณ์วัตถุเหล่านั้นในทิศทางต่างๆ กัน หากอธิบายการเคลื่อนไปทางแดงด้วยปรากฏการณ์ดอปเปลอร์ เราจะสามารถคำนวณความเร็วของวัตถุที่เหลื่อมช้าลงได้ สำหรับดาราจักรบางแห่ง มีความเป็นไปได้มากที่จะประมาณระยะห่างด้วยบันไดระยะห่างของจักรวาล เมื่อนำความเร็วที่เหลื่อมลงมาเปรียบเทียบกับระยะห่างที่คำนวณได้ เราจะได้สมการความสัมพันธ์เชิงเส้นซึ่งรู้จักกันในชื่อกฎของฮับเบิล ดังนี้

กฎของฮับเบิลสามารถอธิบายความเป็นไปได้อยู่สองทาง ทางหนึ่งคือเราอยู่ที่ศูนย์กลางของการระเบิดของดาราจักร ซึ่งขัดแย้งกับหลักการพื้นฐานโคเปอร์นิคัสอย่างหลีกเลี่ยงไม่ได้ อีกทางหนึ่งคือเอกภพมีการขยายตัวอย่างสม่ำเสมอกันในทุกๆ แห่ง การขยายตัวอย่างเป็นเอกภาพนี้เคยมีการทำนายได้ก่อนหน้านี้แล้วจากสมการสัมพัทธภาพทั่วไปของอเล็กซานเดอร์ ฟรีดแมน ที่คำนวณไว้ในปี ค.ศ. 1922 และจากงานของฌอร์ฌ เลอแม็ทร์ ในปี ค.ศ. 1927 ก่อนหน้าที่ฮับเบิลจะทำการสังเกตการณ์และวิเคราะห์ออกมาในปี ค.ศ. 1929 และมันยังเป็นหลักการสำคัญของทฤษฎีบิกแบงที่พัฒนาขึ้นโดยฟรีดแมน เลอแม็ทร์ โรเบิร์ตสัน และวอล์คเกอร์

ทฤษฎีนี้มีเงื่อนไขอยู่ว่า ความสัมพันธ์ จะต้องดำรงอยู่ตลอดเวลา เมื่อ D เป็นระยะห่างที่แท้จริง และ , , ล้วนแต่เปลี่ยนแปลงค่าไปเมื่อเอกภพขยายตัว (เหตุนี้เราจึงต้องเขียนว่า เพื่อระบุ "ค่าคงที่" ของฮับเบิล ณ วันปัจจุบัน) เนื่องจากระยะห่างที่สังเกตมีค่าน้อยกว่าขนาดของเอกภพในสังเกตการณ์อย่างมาก ปรากฏการณ์เคลื่อนไปทางแดงของฮับเบิลจึงสามารถพิจารณาโดยใช้หลักการเดียวกันกับปรากฏการณ์ดอปเปลอร์ได้ อย่างไรก็ดี พึงตระหนักว่าการเคลื่อนไปทางแดงไม่ใช่การคลาดเคลื่อนแบบเดียวกับดอปเปลอร์ เป็นแต่เพียงผลจากการขยายตัวของเอกภพระหว่างช่วงเวลาหนึ่ง และแสงมีการเปล่งออกมาระหว่างช่วงเวลาที่สังเกตอยู่

ห้วงอวกาศที่อยู่ภายใต้มาตรวัดการขยายตัวแสดงออกมาให้เห็นได้จากการสังเกตการณ์โดยตรงของหลักการพื้นฐานจักรวาลวิทยาและหลักการพื้นฐานโคเปอร์นิคัส ซึ่งเมื่อพิจารณาร่วมกับกฎของฮับเบิลแล้วก็ไม่มีคำอธิบายอื่นใดอีก การเคลื่อนไปทางแดงในทางดาราศาสตร์ถือเป็นปรากฏการณ์เฉพาะตัวที่เป็นหนึ่งเดียว มันช่วยสนับสนุนแนวคิดหลักการพื้นฐานจักรวาลวิทยาว่า เอกภพมีหน้าตาเหมือนกันหมดไม่ว่าจะมองจากทิศทางใด รวมถึงข้อมูลสังเกตการณ์อื่นๆ อีกมาก ถ้าการเคลื่อนไปทางแดงนี้เป็นผลจากการระเบิดตัวออกจากจุดศูนย์กลางแห่งอื่นซึ่งไม่ใช่ตำแหน่งของเรา มันไม่ควรให้ภาพที่คล้ายคลึงกันจากการมองในมุมต่างกันได้

การตรวจพบผลการแผ่รังสีคอสมิกจากไมโครเวฟพื้นหลังจากการเคลื่อนไหวของระบบฟิสิกส์ดาราศาสตร์อันห่างไกลแห่งหนึ่งเมื่อปี ค.ศ. 2000 ช่วยพิสูจน์หลักการพื้นฐานของโคเปอร์นิคัส ที่ว่าโลกไม่ได้อยู่ที่ตำแหน่งศูนย์กลางแม้แต่ในระดับของจักรวาล การแผ่รังสีจากบิกแบงเห็นได้ชัดว่าเอกภพในช่วงต้นจะอบอุ่นกว่าในทุกหนทุกแห่ง การเย็นลงอย่างทั่วถึงกันของไมโครเวฟพื้นหลังตลอดช่วงหลายพันล้านปีที่ผ่านมาเป็นการอธิบายอย่างชัดเจนว่า เอกภพเคยแต่ขยายตัวออกเท่านั้น ทั้งนี้ไม่นับความเป็นไปได้ที่ว่าเราอยู่ใกล้จุดศูนย์กลางของการระเบิดในคราวนั้น

ในช่วงเวลาไม่กี่วันแรกของเอกภพ เอกภพอยู่ในสภาวะสมดุลความร้อนอย่างสมบูรณ์ โฟตอนยังคงเปล่งแสงและดูดกลืนแสงอย่างสม่ำเสมอ การแผ่รังสีจึงวัดได้เหมือนสเปคตรัมของวัตถุดำ เมื่อเอกภพขยายตัวขึ้น อุณหภูมิก็เย็นลงจนกระทั่งโฟตอนไม่อาจเกิดขึ้นใหม่และไม่อาจถูกทำลายลง แม้อุณหภูมิจะยังคงสูงมากพอที่อิเล็กตรอนและนิวเคลียสจะยังแยกกันอยู่ แต่โฟตอนอยู่ในภาวะ "สะท้อน" อย่างคงที่ต่ออิเล็กตรอนอิสระเหล่านี้ เป็นกระบวนการที่เรียกว่า การกระจายของทอมสัน (Thomson scattering) ผลจากการกระจายที่ซ้ำไปซ้ำมานี้ ทำให้เอกภพในยุคแรกเป็นสิ่งทึบแสง

เมื่ออุณหภูมิของเอกภพลดลงเหลือไม่กี่พันเคลวิน อิเล็กตรอนและนิวเคลียสเริ่มรวมตัวกันกลายเป็นอะตอม เป็นกระบวนการที่เรียกว่า การรวมตัว (recombination) เมื่อโฟตอนกระจายตัวอย่างไม่สม่ำเสมอจากอะตอมที่เป็นกลาง การแผ่รังสีก็แยกตัวจากสสารในเวลาที่อิเล็กตรอนได้รวมตัวกันไปจนเกือบหมด นั่นคือยุคของการกระจายขั้นสุดท้าย คือ 379,000 ปีหลังจากบิกแบง โฟตอนเหล่านี้เป็นต้นกำเนิดของไมโครเวฟพื้นหลังดังที่เราสังเกตพบในปัจจุบัน รูปแบบการแกว่งตัวของไมโครเวฟพื้นหลังเป็นภาพโดยตรงของเอกภพในยุคแรกเริ่มนี้ พลังงานของโฟตอนมีการคลาดเคลื่อนไปในเวลาต่อมาตามการขยายตัวของเอกภพ แม้จะดำรงสภาวะวัตถุดำอยู่แต่ก็ได้ทำให้อุณหภูมิลดน้อยลง ซึ่งหมายความว่าโฟตอนเหล่านั้นได้ลดระดับพลังงานลงมาอยู่ในย่านไมโครเวฟของสเปกตรัมคลื่นแม่เหล็กไฟฟ้า เชื่อว่าการแผ่รังสีนี้สามารถสังเกตพบได้ในทุกตำแหน่งในเอกภพ และมาจากทุกทิศทุกทางด้วยระดับความเข้มที่ (เกือบจะ) เท่ากันทั้งหมด

ปี ค.ศ. 1964 อาร์โน เพนซิอัส และ โรเบิร์ต วิลสัน ค้นพบการแผ่รังสีพื้นหลังจักรวาลโดยบังเอิญขณะทำการตรวจวิเคราะห์โดยใช้อุปกรณ์ตรวจจับคลื่นไมโครเวฟตัวใหม่ของห้องทดลองเบลล์ การค้นพบของพวกเขาให้ข้อมูลมากพอที่จะทำนายไมโครเวฟพื้นหลังได้ การแผ่รังสีมีลักษณะเป็นเอกภาพและสอดคล้องกับสเปคตรัมวัตถุดำ การค้นพบนี้ยังช่วยส่งเสริมแนวคิดฝ่ายของทฤษฎีบิกแบง ขณะที่เวลานั้นแนวคิดต่างๆ ยังไม่อาจเอาชนะคัดง้างกันได้ เพนซิอัสกับวิลสันได้รับรางวัลโนเบลสำหรับการค้นพบครั้งนี้

ปี ค.ศ. 1989 นาซาส่งดาวเทียมสำรวจพื้นหลังจักรวาล (Cosmic Background Explorer; COBE) ขึ้นสู่อวกาศ และการค้นพบอย่างแรกที่ปรากฏในปี ค.ศ. 1990 คือข้อสนับสนุนแนวคิดของบิกแบงเกี่ยวกับไมโครเวฟพื้นหลัง ดาวเทียม COBE พบอุณหภูมิที่เหลืออยู่ 2.726 K ต่อมาในปี ค.ศ. 1992 ก็สามารถตรวจพบสภาพการแกว่งตัวของไมโครเวฟพื้นหลังได้เป็นครั้งแรกจอห์น ซี. เมเทอร์ และจอร์จ สมูท ได้รับรางวัลโนเบลในฐานะผู้นำในการค้นพบคราวนี้ ตลอดทศวรรษต่อมาการศึกษาการแกว่งตัวของไมโครเวฟพื้นหลังก็ดำเนินการต่อโดยใช้บอลลูนตรวจการณ์และกิจกรรมภาคพื้นดินจำนวนมาก ระหว่างปี ค.ศ. 2000-2001 มีการทดลองต่างๆ มากมาย ที่โดดเด่นคือกลุ่มทดลอง โครงการบูมเมอแรง พวกเขาพบว่าเอกภพมีสภาพค่อนข้างแบนเมื่อตรวจเทียบกับขนาดเชิงมุมตามปกติของการแกว่งตัว (ดูเพิ่มใน รูปร่างของเอกภพ)

ช่วงต้นปี ค.ศ. 2003 ผลการตรวจสอบครั้งแรกของดาวเทียมสำรวจคลื่นไมโครเวฟวิลกินสัน (Wilkinson Microwave Anisotropy satellite; WMAP) ได้เปิดเผยค่าองค์ประกอบของจักรวาลบางส่วนที่แม่นยำอย่างยิ่งซึ่งปรากฏอยู่ในช่วงเวลานั้น ดาวเทียมดวงนี้ยังพิสูจน์ค้านแบบจำลองการพองตัวของจักรวาลหลายชุด แต่ผลตรวจวัดสอดคล้องกับทฤษฎีการพองตัวโดยทั่วๆ ไป มันยังช่วยยืนยันด้วยว่ามีคอสมิกนิวตริโนแผ่ซ่านอยู่ทั่วไปทุกหนแห่งในเอกภพ ข้อมูลนี้ชัดเจนว่า ดาวฤกษ์กลุ่มแรกๆ ต้องใช้เวลามากกว่าห้าร้อยล้านปีในการสร้างกลุ่มไอคอสมิก (cosmic fog) ขึ้น ดาวเทียมอีกดวงหนึ่งที่มีลักษณะคล้ายคลึงกันคือ "นักสำรวจพลังค์" (Planck Surveyor) จะถูกส่งขึ้นสู่อวกาศในอีกไม่กี่ปีข้างหน้านี้ ซึ่งจะมีอุปกรณ์ตรวจวัดค่าการแกว่งตัวของไมโครเวฟพื้นหลังที่ละเอียดแม่นยำมากยิ่งขึ้น

การแผ่รังสีพื้นหลังนี้ราบเรียบเป็นพิเศษ ทำให้สามารถอธิบายข้อปัญหาเกี่ยวกับการขยายตัวอย่างธรรมดาซึ่งน่าจะหมายความว่า โฟตอนที่เคลื่อนมาจากฝั่งตรงข้ามของท้องฟ้าน่าจะมาจากเขตแดนที่ไม่เคยติดต่อกับใครมาก่อน คำอธิบายที่เป็นไปได้สำหรับสภาวะสมดุลอันห่างไกลกันนี้คือ เอกภพมีช่วงเวลาการระเบิดและขยายตัวอย่างสูงเพียงเวลาสั้นๆ (เราอาจเรียกว่า การพองตัว) ผลก็คือย่านต่างๆ ในเอกภพถูกฉีกออกจากกันในสภาวะสมดุล เอกภพที่เราสังเกตการณ์อยู่จึงมาจากย่านที่สมดุลและมีทุกอย่างเหมือนๆ กัน

ด้วยแบบจำลองบิกแบง เราสามารถคำนวณความหนาแน่นของ ฮีเลียม-4 ฮีเลียม-3 ดิวเทอเรียม และลิเทียม-7 ในเอกภพออกมาได้ในสัดส่วนเทียบกับไฮโดรเจนปกติ อนุภาคส่วนเกินทั้งหมดขึ้นอยู่กับปัจจัยเพียงอย่างเดียว คือสัดส่วนของอนุภาคโฟตอนต่อแบริออน ซึ่งสามารถคำนวณอย่างอิสระได้จากโครงสร้างโดยละเอียดของการแกว่งตัวของไมโครเวฟพื้นหลัง คาดว่าสัดส่วนนี้ (เป็นสัดส่วนโดยมวล มิใช่โดยจำนวน) อยู่ที่ประมาณ 0.25 สำหรับ 4He/H, ประมาณ 10?3 สำหรับ ?H/H, ประมาณ 10?4 สำหรับ ?He/H และประมาณ 10?9 สำหรับ 7Li/H

อนุภาคส่วนเกินที่วัดได้ทั้งหมดมีค่าโดยประมาณอย่างน้อยเท่ากับค่าคาดการณ์จากสัดส่วนอนุภาคแบริออนต่อโฟตอน ค่านี้สอดคล้องอย่างยิ่งสำหรับดิวเทอเรียม ใกล้เคียงแต่ไม่เป็นที่ยอมรับสำหรับ 4He และผิดพลาดไปสองเท่าสำหรับ 7Li ในสองกรณีหลังนี้มีความไม่แน่นอนอย่างเป็นระบบชัดแจ้งอยู่ อย่างไรก็ดี ความสอดคล้องของอนุภาคส่วนเกินที่ทำนายโดยบิกแบงนิวคลีโอซินทีสิสเป็นหลักฐานสำคัญอย่างยิ่งต่อทฤษฎีบิกแบง เพราะมีแต่เพียงทฤษฎีนี้ที่จะอธิบายอนุภาคที่สัมพันธ์กับอนุภาคแสง นอกจากนี้ยังไม่มีทางที่จะ "ปรับแต่ง" ทฤษฎีบิกแบงให้สามารถสร้างฮีเลียมมากหรือน้อยกว่า 20-30% ได้ อันที่จริงแล้วยังไม่มีเหตุผลที่ชัดเจนอื่นใดนอกจากทฤษฎีบิกแบงจะอธิบายสภาวะดังตัวอย่างเช่น เอกภพที่อายุน้อย (ก่อนที่ดาวฤกษ์จะก่อตัวขึ้น) จะมีฮีเลียมมากกว่าดิวเทอเรียม หรือมีดิวเทอเรียมมากกว่า 3He หรือมีสัดส่วนที่คงที่ หรืออื่นๆ ได้

แม้ในปัจจุบันไม่ค่อยมีนักวิจัยคนใดตั้งข้อสงสัยอีกแล้วว่า บิกแบงเคยเกิดจริงหรือไม่ แต่ครั้งหนึ่งในชุมชนนักวิทยาศาสตร์เคยมีความคิดแตกออกเป็นสองฝ่าย คือฝ่ายสนับสนุนบิกแบงและฝ่ายสนับสนุนแบบจำลองจักรวาลวิทยาอื่นๆ ตลอดช่วงเวลาวิวัฒนาการของทฤษฎี ข้อสงสัยในทฤษฎีบิกแบงมักเป็นการโต้เถียงในทำนองว่า แบบจำลองดีพอที่จะอธิบายผลสังเกตการณ์จักรวาลได้ทั้งหมดหรือไม่ จนเมื่อชุมชนนักวิทยาศาสตร์มีความเห็นเป็นเอกฉันท์สนับสนุนทฤษฎีนี้แล้ว ประเด็นข้อสงสัยต่างๆ ก็ยังถูกบันทึกไว้เป็นประวัติศาสตร์ของความสนใจ การแก้ต่างข้อสงสัยเหล่านั้นเกิดขึ้นได้จากทั้งการดัดแปลงทฤษฎีให้ดีขึ้น หรือเมื่อได้รับผลสังเกตการณ์ที่ชัดเจนยิ่งขึ้น สำหรับประเด็นปัญหาบางข้อที่ยังตกค้างอยู่เช่น ปัญหา cuspy halo หรือปัญหาดาราจักรแคระเกี่ยวกับสสารมืดเย็น ยังไม่ถือว่าเป็นอุปสรรคต่อทฤษฎีโดยตรง เพราะยังสามารถอธิบายได้หากมีการพัฒนารายละเอียดของทฤษฎีให้ละเอียดรอบคอบมากขึ้น

แนวคิดหลักของทฤษฎีบิกแบงคือ การขยายตัวของเอกภพ ภาวะร้อนยิ่งยวดในช่วงต้น การก่อตัวของฮีเลียม และการก่อตัวของดาราจักร แนวคิดเหล่านี้พัฒนาขึ้นมาจากผลสังเกตการณ์อิสระมากมาย รวมถึงการพบอนุภาคส่วนเกินของแสงจำนวนมาก การพบไมโครเวฟพื้นหลัง การพบโครงสร้างขนาดใหญ่ของเอกภพ และซูเปอร์โนวาประเภท Ia ไม่เป็นที่สงสัยเลยว่าทฤษฎีนี้มีความสำคัญอย่างยิ่งและเป็นองค์ประกอบอันแท้จริงของเอกภพของเรา

แบบจำลองบิกแบงยุคใหม่ที่มีความแม่นยำมากขึ้นดูจะช่วยอธิบายปรากฏการณ์ทางฟิสิกส์ที่แปลกประหลาดหลายอย่างซึ่งไม่สามารถสังเกตการณ์ในห้องทดลองตามปกติ รวมถึงไม่เข้ากับแบบจำลองมาตรฐานของวิชาฟิสิกส์อนุภาค ในบรรดานี้ เรื่องที่ลึกลับที่สุดคือเรื่องของพลังงานมืดกับสสารมืด ส่วนการพองตัวกับปฏิกิริยาแบริโอเจเนซิสยังเป็นแค่เพียงการคาดเดา ทฤษฎีนี้ช่วยอธิบายปรากฏการณ์สำคัญในช่วงเริ่มต้นของเอกภพได้ อย่างไรก็ดีมันยังอาจถูกแทนที่โดยแนวคิดที่เป็นไปได้อื่นๆ โดยไม่มีผลกระทบต่อทฤษฎีส่วนที่เหลือ คำอธิบายสำหรับปรากฏการณ์เหล่านี้ยังคงอยู่เพียงระดับชายเขตแดนแห่งปริศนาของฟิสิกส์เท่านั้น

ปัญหาขอบฟ้าเป็นผลจากหลักการพื้นฐานที่ว่า ข้อมูลไม่สามารถเดินทางได้เร็วกว่าแสง ในเอกภพที่มีอายุแน่นอน หลักการนี้ทำให้เกิดข้อจำกัด เรียกว่า ขอบฟ้าของอนุภาค ซึ่งแยกส่วนอวกาศสองบริเวณที่อยู่ติดกันออกจากกัน ปัญหาที่เกิดคือไอโซโทรปีที่สังเกตจากไมโครเวฟพื้นหลัง หากเอกภพครอบคลุมไปด้วยรังสีหรือสสารต่างๆ ตลอดเวลานับแต่จุดเริ่มยุคแห่งการกระจายตัวครั้งสุดท้าย ขอบฟ้าของอนุภาคในเวลานั้นย่อมมีเพียง 2 มิติในห้วงอวกาศ เหตุนั้นจึงไม่มีกลไกใดจะทำให้ย่านเหล่านี้มีอุณหภูมิเดียวกันได้

ข้อสรุปสำหรับความไม่สอดคล้องดังกล่าวสามารถอธิบายได้ด้วยทฤษฎีการพองตัว โดยเสนอว่าในช่วงเริ่มต้นของเอกภพ (ก่อนแบริโอเจเนซิส) มีสนามพลังงานเพียงหนึ่งเดียวที่เป็นเนื้อเดียวกันและเหมือนกันในทุกทิศทางครอบคลุมอยู่ทั่วเอกภพ ระหว่างการพองตัว เอกภพมีการขยายตัวขึ้นแบบยกกำลัง ขอบฟ้าอนุภาคก็ขยายตัวขึ้นอย่างรวดเร็วยิ่งกว่าที่เคยคาดคิด จนกระทั่งย่านอวกาศที่เคยอยู่คนละฝั่งของเอกภพที่สังเกตได้กลับกลายมาอยู่ภายใต้ขอบฟ้าอนุภาคของกันและกัน ไอโซโทรปีที่สังเกตจากไมโครเวฟพื้นหลังจึงเกิดตามมาโดยข้อเท็จจริงว่าย่านอวกาศที่ใหญ่ขึ้นมีการเชื่อมต่อกันก่อนการเริ่มต้นของการพองตัว

หลักความไม่แน่นอนของไฮเซนเบิร์กทำนายว่า ระหว่างช่วงการพองตัว อาจมีความปั่นป่วนของอุณหภูมิควอนตัมทำให้ขยายผลกระทบในระดับจักรวาล ความปั่นป่วนนี้เป็นเหมือนจุดเริ่มต้นของโครงสร้างกระแสทั้งหมดในเอกภพ ทฤษฎีการพองตัวคาดการณ์ว่าความปั่นป่วนในช่วงเริ่มแรกมีลักษณะไม่เปลี่ยนแปรตามขนาด (scale invariance) และมีการกระจายตัวแบบปกติ (Gaussian distribution) ซึ่งสามารถตรวจสอบยืนยันได้ด้วยการตรวจวัดรังสีไมโครเวฟพื้นหลัง

ปัญหาเกี่ยวกับความแบน (หรือที่รู้จักกันว่า ปัญหาเกี่ยวกับความเก่าแก่) เป็นปัญหาจากผลการสังเกตการณ์เกี่ยวกับมาตรวัด FLRW เอกภพอาจจะมีค่าความโค้งของอวกาศที่เป็นบวก เป็นลบ หรือเป็นศูนย์ก็ได้ขึ้นอยู่กับความหนาแน่นของพลังงานรวมทั้งหมด ความโค้งของอวกาศจะเป็นลบถ้าความหนาแน่นน้อยกว่าค่าความหนาแน่นวิกฤต เป็นบวกถ้าความหนาแน่นมากกว่า และเป็นศูนย์ถ้าความหนาแน่นเท่ากับความหนาแน่นวิกฤตพอดี ซึ่งเป็นกรณีที่กล่าวได้ว่าอวกาศ "แบน" ปัญหาที่เกิดขึ้นคือ การแยกตัวเล็กๆ จากความหนาแน่นวิกฤตเพิ่มขึ้นตามเวลา เอกภพทุกวันนี้ยังคงใกล้เคียงสภาพแบนอย่างมาก สมมุติว่าเส้นเวลาธรรมชาติของการแยกตัวจากความแบนมีค่าเท่าเวลาของพลังค์ ก็ยังต้องหาคำอธิบายสำหรับข้อเท็จจริงที่ว่าเอกภพกำลังเข้าใกล้ภาวะ Heat Death หรือ Big Crunch หลังจากหลายพันปีผ่านไป กล่าวคือ แม้ในช่วงปลายของไม่กี่นาทีแรก (ในช่วงเวลานิวคลีโอซินทีสิส) เอกภพจะต้องมีค่า 1014 เท่าของความหนาแน่นวิกฤต มิฉะนั้นมันจะไม่สามารถมีสภาพดังที่เป็นอยู่ทุกวันนี้ได้

ปัญหานี้อาจอธิบายได้ด้วยทฤษฎีการพองตัวของเอกภพ ด้วยระหว่างช่วงเวลาของการพองตัว กาลอวกาศมีการขยายขอบเขตขึ้นอย่างมากจนความโค้งถูกปรับให้เรียบ เชื่อว่าการพองตัวผลักดันให้เอกภพมีสภาวะเข้าใกล้ความแบน ซึ่งเป็นสภาพใกล้เคียงกับความหนาแน่นวิกฤต

ปัญหาเรื่องแม่เหล็กขั้วเดียวถูกหยิบยกขึ้นมาในช่วงปลายคริสต์ทศวรรษ 1970 ทฤษฎีการรวมแรงครั้งใหญ่ ทำนายถึงข้อบกพร่องทางโทโพโลยีในอวกาศที่อาจแสดงออกมาในรูปของแม่เหล็กขั้วเดียว สิ่งนี้เกิดขึ้นได้อย่างดีในเอกภพยุคแรกเริ่มที่มีอุณหภูมิสูง ทำให้มีความหนาแน่นสูงกว่าอย่างมากเมื่อเทียบกับจุดสังเกต ปัญหานี้สามารถอธิบายได้ด้วยทฤษฎีการพองตัวของจักรวาลเช่นเดียวกัน เนื่องจากมันจะลบจุดบกพร่องทั้งหมดออกจากเอกภพที่สังเกตได้ในวิธีเดียวกันกับผลทางเรขาคณิตที่กระทำกับความแบน

คำอธิบายต่อปัญหาขอบฟ้า ความแบน และแม่เหล็กขั้วเดียว ส่วนที่เกี่ยวข้องกับการพองตัวของจักรวาล มีที่มาจากสมมติฐานความโค้งของเวย์ล (Weyl curvature hypothesis)

จนถึงปัจจุบันยังไม่อาจเข้าใจได้ว่าทำไมในเอกภพจึงมีสสารมากกว่าปฏิสสาร โดยมากสันนิษฐานกันว่า ขณะที่เอกภพยังมีอายุน้อยและร้อนมาก มันเคยอยู่ในสภาวะสมดุลทางปริมาณและมีแบริออนกับปฏิแบริออนจำนวนเท่าๆ กัน อย่างไรก็ตามผลสังเกตการณ์บ่งชี้ว่า เอกภพทั้งมวลตลอดถึงบริเวณที่ไกลแสนไกลล้วนประกอบขึ้นด้วยสสารเกือบทั้งนั้น กระบวนการบางอย่างที่เรียกชื่อว่า "แบริโอเจเนซิส" เป็นต้นเหตุให้เกิดความไม่สมมาตรขึ้น การจะเกิดกระบวนการแบริโอเจเนซิส จะต้องบรรลุสภาวะของเงื่อนไขชาคารอฟเสียก่อน นั่นคือจำนวนแบริออนจะไม่ถูกเก็บรักษาไว้ มีการทำลายสมมาตร C และสมมาตร CP ทำให้เอกภพพ้นจากภาวะสมดุลทางอุณหพลศาสตร์ เงื่อนไขต่างๆ ทั้งหมดนี้ปรากฏอยู่ในแบบจำลองมาตรฐาน แต่ผลลัพธ์ที่ได้ยังไม่แน่นหนามากพอจะอธิบายปรากฏการณ์อสมมาตรของแบริออนได้

ราวกลางคริสต์ทศวรรษ 1990 ผลที่ได้จากการสังเกตการณ์กระจุกดาวทรงกลมดูจะไม่สอดคล้องกับทฤษฎีบิกแบง แบบจำลองคอมพิวเตอร์ที่สร้างจากผลสังเกตการณ์ประชากรดาวฤกษ์ในกระจุกดาวทรงกลมบ่งชี้ว่า มันมีอายุประมาณ 15,000 ล้านปี ซึ่งขัดแย้งกับอายุของเอกภพที่ประมาณไว้ที่ 13,700 ล้านปี ข้อขัดแย้งนี้ได้รับการปรับแก้ต่อมาในช่วงปลายคริสต์ทศวรรษ 1990 เมื่อทำแบบจำลองคอมพิวเตอร์ใหม่ ซึ่งได้รวมผลกระทบของมวลที่สูญหายไปจากผลของลมดาวฤกษ์ ทำให้ได้อายุของกระจุกดาวทรงกลมที่ลดลง จึงยังคงมีปัญหาอยู่เพียงว่าจะสามารถวัดอายุของกระจุกดาวได้แม่นยำเพียงใด แต่กระจุกดาวทรงกลมก็นับได้ว่าเป็นวัตถุหนึ่งที่มีอายุเก่าแก่ที่สุดในเอกภพ

ระหว่างคริสต์ทศวรรษ 1970 ถึง 1980 ผลสังเกตการณ์มากมายแสดงให้เห็นว่า สสารที่มองเห็นได้ในเอกภพมีปริมาณไม่มากพอจะทำให้เกิดความเข้มของแรงโน้มถ่วงดังที่ปรากฏอยู่ภายในและระหว่างดาราจักร นำไปสู่แนวคิดที่ว่า สสารกว่า 90% ในเอกภพอาจจะเป็นสสารมืดที่ไม่เปล่งแสงหรือมีปฏิกิริยากับสสารแบริออนทั่วไป นอกจากนั้นสมมติฐานที่เอกภพส่วนใหญ่ประกอบด้วยสสารปกติทำให้การคาดการณ์ต่างๆ ไม่สอดคล้องกับผลสังเกตการณ์เลย กล่าวคือเอกภพจะเป็นกลุ่มก้อนมากเกินไปและมีดิวเทอเรียมน้อยเกินกว่าที่เป็นหากไม่มีสสารมืด แม้เมื่อแรกแนวคิดเรื่องสสารมืดจะเป็นที่โต้เถียงกันมาก แต่ปัจจุบันได้รับการยืนยันจากข้อมูลสังเกตการณ์มากมาย เช่น แอนไอโซโทรปีในไมโครเวฟพื้นหลัง ความเร็วในการกระจายตัวของกระจุกดาราจักร การกระจายของโครงสร้างขนาดใหญ่ในจักรวาล การศึกษาเลนส์ความโน้มถ่วง และการตรวจวัดรังสีเอ็กซ์ในกระจุกดาราจักร เป็นต้น

หลักฐานการมีอยู่ของสสารมืดได้แก่อิทธิพลแรงโน้มถ่วงที่มีต่อวัตถุอื่น โดยยังไม่สามารถสังเกตการณ์อนุภาคสสารมืดใดๆ ในห้องทดลองได้ มีการนำเสนอความเป็นไปได้ทางฟิสิกส์อนุภาคมากมาย และมีโครงการที่คอยตรวจจับค้นหาสสารมืดอยู่ในระหว่างดำเนินการอีกมาก

การตรวจวัดความสัมพันธ์ระหว่างการเคลื่อนไปทางแดงกับความสว่างของซูเปอร์โนวาประเภท Ia เปิดเผยให้เห็นถึงการขยายตัวของเอกภพในอัตราเร่งนับแต่เอกภพมีอายุประมาณครึ่งหนึ่งของปัจจุบัน เพื่ออธิบายอัตราเร่งการขยายตัว ต้องอาศัยทฤษฎีสัมพัทธภาพทั่วไปที่กล่าวว่า พลังงานส่วนมากในเอกภพประกอบด้วยส่วนประกอบที่มีแรงดันติดลบอย่างมาก เรียกว่า "พลังงานมืด" มีหลักฐานอยู่หลายชิ้นที่บ่งชี้ถึงการมีอยู่ของพลังงานมืด การตรวจวัดรังสีไมโครเวฟพื้นหลังของจักรวาลชี้ว่าเอกภพมีรูปร่างเกือบจะแบน ตามทฤษฎีสัมพัทธภาพทั่วไปแสดงว่าเอกภพจะต้องมีความหนาแน่นของมวลและพลังงานใกล้เคียงกับค่าความหนาแน่นวิกฤตมาก แต่เราสามารถตรวจวัดความหนาแน่นของมวลเอกภพได้จากการตรวจวัดความโน้มถ่วงแยกส่วน ซึ่งมีค่าความหนาแน่นประมาณ 30% ของค่าความหนาแน่นวิกฤต แต่เราไม่สามารถแยกส่วนการตรวจวัดพลังงานมืดด้วยวิธีปกติ มันจึงสามารถอธิบายได้ดีที่สุดเพียงว่าเป็นความหนาแน่นพลังงานที่ "หายไป" การตรวจวัดความโค้งโดยรวมของเอกภพสองวิธียังจำเป็นต้องใช้พลังงานมืด วิธีหนึ่งคือการวัดความถี่ของเลนส์ความโน้มถ่วง ส่วนอีกวิธีคือการพิจารณารูปแบบเฉพาะของโครงสร้างขนาดใหญ่ในฐานะไม้บรรทัดจักรวาล

แรงดันติดลบเป็นคุณสมบัติอย่างหนึ่งของพลังงานสุญญากาศ (vacuum energy) แต่ธรรมชาติที่แท้จริงของพลังงานมืดยังคงเป็นหนึ่งในความลึกลับอันยิ่งใหญ่ของบิกแบง นอกเหนือจากค่าคงที่จักรวาลและควินเทสเซนส์ (quintessence) ข้อมูลที่ได้จากทีมโครงการ WMAP เมื่อ ค.ศ. 2008 ที่รวมเอาข้อมูลจากรังสีไมโครเวฟพื้นหลังและแหล่งข้อมูลอื่น แสดงให้เห็นว่าเอกภพปัจจุบันประกอบด้วยพลังงานมืด 72% สสารมืด 23% สสารทั่วไป 4.6% และมีนิวตริโนอยู่เล็กน้อยที่ต่ำกว่า 1% ความหนาแน่นพลังงานในสสารลดต่ำลงเมื่อเอกภพขยายตัวมากขึ้น แต่ความหนาแน่นของพลังงานมืดยังคงมีค่าเท่าเดิม (หรือใกล้เดิมมาก) แม้เอกภพจะขยายตัวออกไป แม้สสารจะเคยเป็นสัดส่วนใหญ่ของพลังงานรวมของเอกภพในอดีตมากกว่าที่เป็นอยู่ในปัจจุบัน แต่ในอนาคตสัดส่วนของมันจะลดลงเรื่อยๆ และพลังงานมืดจะกลายเป็นสัดส่วนใหญ่แทนที่

ตามแบบจำลอง ?CDM ซึ่งเป็นแบบจำลองสำหรับบิกแบงที่ดีที่สุดในปัจจุบัน ได้อธิบายพลังงานมืดว่าเป็นการแสดงออกถึงค่าคงที่จักรวาลในทฤษฎีสัมพัทธภาพทั่วไป ทว่าขนาดของค่าคงที่ที่สามารถอธิบายพลังงานมืดได้กลับมีค่าน้อยมากอย่างไม่น่าเชื่อเมื่อเทียบกับการประเมินคร่าวๆ ตามแนวคิดทฤษฎีโน้มถ่วงเชิงควอนตัม ความพยายามแยกแยะค่าคงที่จักรวาลกับคำอธิบายอื่นเกี่ยวกับพลังงานมืดยังคงเป็นหัวข้อวิจัยที่ดำเนินการอยู่ในปัจจุบัน

ก่อนจะสังเกตพบพลังงานมืด นักจักรวาลวิทยาคาดการณ์สภาวะอนาคตของเอกภพที่เป็นไปได้อยู่ 2 แบบ ถ้าความหนาแน่นมวลของเอกภพมีค่ามากกว่าความหนาแน่นวิกฤต เอกภพจะถึงจุดที่มีขนาดสูงสุดและเริ่มแตกสลาย จากนั้นจะเริ่มหนาแน่นขึ้นและร้อนขึ้นอีก และจบลงด้วยสภาวะที่ใกล้เคียงกับสภาวะเริ่มต้น เรียกว่า "บิกครันช์" (Big Crunch) หรืออีกแบบหนึ่ง ถ้าความหนาแน่นของเอกภพเท่ากับหรือต่ำกว่าความหนาแน่นวิกฤต การขยายตัวจะช้าลง แต่ไม่ได้หยุด ไม่มีการก่อตัวของดาวฤกษ์ใหม่อีกเพราะแก๊สระหว่างดวงดาวถูกใช้ไปจนหมดแล้ว ดาวฤกษ์จะเผาผลาญตัวเองจนเหลือแต่ดาวแคระขาว ดาวนิวตรอน และหลุมดำ การปะทะระหว่างวัตถุเหล่านี้จะค่อยๆ ทำให้มวลรวมตัวกันเป็นหลุมดำที่ใหญ่ขึ้นและใหญ่ขึ้น อุณหภูมิเฉลี่ยของเอกภพจะลดลงเรื่อยๆ จนเข้าใกล้ศูนย์องศาสัมบูรณ์ เป็นสภาวะ "บิกฟรีซ" (Big Freeze) ยิ่งกว่านั้น หากโปรตอนไม่เสถียร สสารแบริออนจะหายไป เหลือแต่รังสีและหลุมดำ ผลต่อเนื่องคือหลุมดำจะระเหยไปด้วยการเปล่งรังสีฮอว์กิง เอนโทรปีของเอกภพจะเพิ่มขึ้นจนถึงจุดที่ไม่มีพลังงานรูปแบบใดสามารถแยกตัวออกมาได้ สภาวการณ์นี้เรียกว่า "ฮีทเดธ" (Heat Death)

การสังเกตการณ์การขยายตัวด้วยอัตราเร่งในยุคใหม่ทำให้ทราบว่าเอกภพที่เรามองเห็นในปัจจุบันจะผ่านพ้นขอบฟ้าเหตุการณ์ของเราไปเรื่อยๆ โดยไม่สามารถติดต่อกับเราได้ ผลลัพธ์จะเป็นเช่นไรไม่อาจรู้ แบบจำลอง ?CDM ของเอกภพพิจารณาพลังงานมืดในฐานะหนึ่งของค่าคงที่จักรวาล ทฤษฎีนี้ชี้ว่ามีเพียงระบบที่ยึดเหนี่ยวกันไว้ด้วยแรงโน้มถ่วง เช่นระบบดาราจักรต่างๆ จึงจะสามารถดำรงอยู่ด้วยกันได้ แต่สุดท้ายระบบเหล่านั้นก็มุ่งไปสู่สภาวะฮีทเดธเช่นเดียวกันเมื่อเอกภพขยายตัวและเย็นลงจนถึงที่สุด ทฤษฎีอื่นเกี่ยวกับพลังงานมืดที่เรียกว่า ทฤษฎีพลังงานซ่อนเร้น (phantom energy theories) ชี้ว่ากระจุกดาราจักร ดาวฤกษ์ ดาวเคราะห์ อะตอม นิวเคลียส และสสารทั้งมวลสุดท้ายจะถูกฉีกออกจากกันเมื่อการขยายตัวของเอกภพไปถึงที่สุด เรียกว่าสภาวะ "บิกริพ" (Big Rip)

ขณะที่แบบจำลองบิกแบงเป็นที่ยอมรับอย่างกว้างขวางในการศึกษาจักรวาลวิทยา ทฤษฎีนี้ก็ยังจำเป็นต้องได้รับการปรับแต่งต่อไปในอนาคตอีก สิ่งที่เกิดขึ้นในช่วงแรกสุดของการกำเนิดเอกภพนั้นยังไม่เป็นที่เข้าใจกันนัก ทฤษฎีซิงกูลาริตี้ของเพนโรส-ฮอว์กิงจำเป็นต้องอาศัยการมีอยู่ของซิงกูลาริตี้ ณ จุดเริ่มต้นเวลาของจักรวาล ทั้งนี้ทฤษฎีตั้งอยู่บนพื้นฐานที่ว่า ทฤษฎีสัมพัทธภาพทั่วไปเป็นทฤษฎีที่ถูกต้อง แต่สัมพัทธภาพทั่วไปนั้นใช้การไม่ได้ในสภาวะเอกภพก่อนถึงระดับอุณหภูมิของพลังค์ นอกจากนี้แนวคิดของแรงโน้มถ่วงควอนตัมก็อาจทำให้ไม่มีทางเกิดซิงกูลาริตี้ขึ้นได้

สองแนวคิดสุดท้ายนี้มองว่าบิกแบงเป็นเพียงปรากฏการณ์หนึ่งที่เกิดขึ้นในเอกภพที่ใหญ่กว่าและเก่าแก่กว่า มิได้เป็นจุดเริ่มต้นที่แท้จริง แต่เป็นส่วนหนึ่งของพหุภพ (multiverse)

บิกแบงเป็นทฤษฎีทางวิทยาศาสตร์ทฤษฎีหนึ่งซึ่งยังต้องอาศัยการรับรองที่สอดคล้องกับผลสังเกตการณ์ แต่ในฐานะทฤษฎีที่กล่าวถึงต้นกำเนิดของความเป็นจริง มันจึงมีความเกี่ยวพันกับการตีความทางเทววิทยาและปรัชญาด้วย ในช่วงคริสต์ทศวรรษ 1920-1930 นักจักรวาลวิทยากระแสหลักส่วนมากเห็นชอบกับความคิดว่า เอกภพนั้นดำรงคงอยู่ในสถานะนี้มาชั่วนิรันดร์ บางคนก็กล่าวหาว่า แนวคิดเรื่องจุดกำเนิดของเวลาในทฤษฎีบิกแบงนั้นเป็นการเอาแนวคิดทางศาสนามาใช้กับฟิสิกส์ ซึ่งเป็นประเด็นที่ถูกยกขึ้นมาโต้แย้งโดยฝ่ายผู้สนับสนุนทฤษฎีเอกภพคงที่ ทว่าแนวคิดเรื่องจุดกำเนิดนี้ก็แพร่ขยายขึ้นด้วยว่าผู้ให้กำเนิดแนวคิดทฤษฎีบิกแบง คือหลวงพ่อฌอร์ฌ เลอแม็ทร์ นั้นเป็นนักบวชในนิกายโรมันคาทอลิก

เมื่อมีการยอมรับทฤษฎีบิกแบงเป็นแนวคิดหลักในการศึกษาจักรวาลวิทยาเชิงกายภาพแล้ว ยังมีปฏิกิริยาตอบโต้หลายประการจากกลุ่มศาสนาต่างๆ ในแง่การตีความที่เกี่ยวข้องกับจักรวาลในเชิงศาสนาซึ่งพวกเขาเคารพนับถือ บางกลุ่มยอมรับหลักฐานทางวิทยาศาสตร์ตามข้อเท็จจริง บางกลุ่มพยายามกลมกลืนทฤษฎีบิกแบงให้เข้ากับหลักคำสอนในศาสนาของเขา และมีบางกลุ่มที่ปฏิเสธหลักฐานเกี่ยวกับบิกแบงโดยสิ้นเชิง


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301