ค้นหา
  
Search Engine Optimization Services (SEO)

นิเวศวิทยา

นิเวศวิทยา (อังกฤษ: ecology) (มาจากภาษากรีก: ????? "บ้าน"; -?????, "การศึกษาของ" [A]) คือ การวิเคราะห์และการศึกษาทาง[[วิทยาศาสตร์]ของปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตและสิ่งแวดล้อมของสิ่งมีชีวิต ได้แก่ ปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตที่มีต่อกันและกัน และปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตที่มีกับสิ่งแวดล้อมแบบ'อชีวนะ' (อังกฤษ: abiotic) ของสิ่งมีชีวิตนั้น หัวข้อนักนิเวศวิทยามักสนใจจะรวมถึงความหลากหลายทางนิเวศวิทยา การกระจาย ปริมาณ (ชีวมวล) จำนวน (ประชากร) ของสิ่งมีชีวิต เช่นเดียวกับการแข่งขันระหว่างพวกมันภายในและระหว่างระบบนิเวศ ปฏิสัมพันธ์ที่เป็นองค์ประกอบของระบบนิเวศมีลักษณะเป็นไดนามิค ซึ่งประกอบไปด้วย สิ่งมีชีวิตที่อาศัยอยู่ในระบบนิเวศ ชุมชนของสิ่งมีชีวิตที่พวกมันสร้างขึ้น และองค์ประกอบที่ไม่มีชีวิตของสภาพแวดล้อมของสิ่งมีชีวิต กระบวนการในระบบนิเวศ (อังกฤษ: ecosystem process) เช่น การผลิตโดยผู้ผลิต (เช่น พืช สาหร่าย) การเกิดขึ้นของดิน (อังกฤษ: pedogenesis) วัฏจักรสารอาหาร และกิจกรรมการสร้างสภาวะที่เหมาะสม (อังกฤษ: niche construction) จะเป็นตัวกำหนดการไหลของพลังงานและสสารจากสถานะหนึ่งไปยังอีกสถานะหนึ่งในระบบนิเวศ กระบวนการเหล่านี้จะทำงานอย่างเป็นปกติโดยสิ่งมีชีวิตที่มีบทบาทที่เฉพาะเจาะจงและความหลากหลายของสิ่งมีชีวิตในระบบนิเวศนั้น โดยความหลากหลายทางชีวภาพ (อังกฤษ: biodiversity) ที่หมายถึงความหลากหลายของสายพันธุ์ ของยีน และของระบบนิเวศ จะช่วยเพิ่มการบริการในระบบนิเวศ (อังกฤษ: ecosystem services)

นิเวศวิทยาเป็นสาขาการศึกษาแบบสหวิทยาการที่รวมชีววิทยาและวิทยาศาสตร์โลก โดยคำว่า "ระบบนิเวศ" ("?kologie") เกิดขึ้นในปี 1866 โดยนักวิทยาศาสตร์ชาวเยอรมัน แอรนส์ แฮกเกล (Ernst Haeckel) (1834-1919) ความคิดเกี่ยวกับนิเวศวิทยาเป็นผลลัพธ์ที่เกิดจากความคิดในเชิงปรัชญา โดยเฉพาะอย่างยิ่งจากจริยธรรมและการเมือง นักปรัชญากรีกโบราณเช่น Hippocrates และ อริสโตเติล ได้วางรากฐานของนิเวศวิทยาในการศึกษาเรื่อง 'ประวัติศาสตร์ธรรมชาติ' (อังกฤษ: natural history) ของพวกเขา นิเวศวิทยาสมัยใหม่ถูกแปลงให้เป็น 'วิทยาศาสตร์ธรรมชาติ' ที่เข้มงวดมากขึ้นในช่วงปลายศตวรรษที่ 19 แนวคิดวิวัฒนาการในการปรับตัวของสิ่งมีชีวิตและ 'การคัดเลือกโดยธรรมชาติ' กลายเป็นเสาหลักของ 'ทฤษฎีทางนิเวศวิทยาสมัยใหม่' คำว่านิเวศวิทยาเป็นเรื่องที่เกี่ยวข้องอย่างใกล้ชิดกับ 'ชีววิทยาวิวัฒนาการ' พันธุศาสตร์ และ พฤฒิกรรมของสัตว์ที่อาศัยอยู่ในธรรมชาติ (อังกฤษ: ethology) ความเข้าใจถึงกระบวนการที่ความหลากหลายทางชีวภาพจะสามารถส่งผลกระทบทำงานของระบบนิเวศเป็นหัวข้อที่สำคัญในการศึกษาระบบนิเวศ โดยนักนิเวศวิทยาพยายามที่จะอธิบายดังต่อไปนี้:

นิเวศวิทยาเป็นวิทยาศาสตร์ที่เกี่ยวข้องกับมนุษย์เช่นเดียวกัน มีการนำนิเวศวิทยาไปประยุกต์ใช้ในทางปฏิบัติจำนวนมากด้านชีววิทยาอนุรักษ์ การจัดการพื้นที่ชุ่มน้ำ การจัดการทรัพยากรธรรมชาติ (เช่น นิเวศเกษตร (อังกฤษ: agroecology) เกษตรกรรม ป่าไม้ วนเกษตร ประมง) ผังเมือง (นิเวศวิทยาชุมชนเมือง), สุขภาพชุมชน เศรษฐศาสตร์ วิทยาศาสตร์พื้นฐานและวิทยาศาสตร์ประยุกต์ (อังกฤษ: applied science) และการปฏิสัมพันธ์ทางสังคมของมนุษย์ (นิเวศวิทยาของมนุษย์) ตัวอย่างเช่น วิธีการที่เรียกว่า "วงกลมของความยั่งยืน" (อังกฤษ: Circles of Sustainability) ซึ่งจะมีการใส่ใจถึงนิเวศวิทยามากกว่าแค่เป็นสิ่งแวดล้อมรอบๆ ตัว สิ่งมีชีวิต (รวมทั้งมนุษย์) และทรัพยากร ประกอบขึ้นเป็นระบบนิเวศซึ่งเป็นผลให้มีการรักษาระดับกลไกการฟีดแบ็คทางชีวฟิสิกส์ที่ควบคุมกระบวนการที่กระทำต่อองค์ประกอบของโลกที่เป็นชีวภาพ (อังกฤษ: biotic) และกายภาพ (อังกฤษ: abiotic) ระบบนิเวศมีความสำคัญอยู่รอดของสิ่งมีชีวิตอย่างยั่งยืนและสร้างทุนทางธรรมชาติ เช่น การผลิตชีวมวล (อาหาร เชื้อเพลิง เส้นใยและยา) ควบคุมสภาพภูมิอากาศ วัฏจักรของชีวธรณีเคมี (อังกฤษ: biogeochemical) ของโลก การกรองน้ำ การก่อตัวของดิน การควบคุมการชะล้างพังทลาย การป้องกันน้ำท่วมและลักษณะทางธรรมชาติอื่นๆ ที่มีมูลค่าทางวิทยาศาสตร์ ประวัติศาสตร์ เศรษฐศาสตร์ หรือมูลค่าภายในตัวมันเอง

นิเวศวิทยามีต้นกำเนิดที่ซับซ้อนเนื่องจากเป็นส่วนที่ใหญ่ของธรรมชาติของสหวิทยาการของมัน นักปรัชญากรีกโบราณเช่นฮิปโปเครติสและอริสโตเติลเป็นผู้ที่อยู่ในกลุ่มแรก ๆ ที่ได้บันทึกข้อสังเกตทั้งหลายเกี่ยวกับประวัติศาสตร์ทางธรรมชาติ อย่างไรก็ตามพวกเขามองชีวิตในแง่ของ essentialism (ความเชื่อที่ว่าทุกสิ่งทุกอย่างมีสมบัติพื้นฐานที่สามารถค้นพบได้ด้วยเหตุผล (ปรัชญา) หรือเป็นทฤษฎีที่ส่งเสริมการสอนวิชาและความชำนาญขั้นพื้นฐานเฉพาะอย่างให้กับผู้เรียนทุกคน (การศึกษา)) ที่สายพันธ์ต่าง ๆ เป็นแนวความคิดของสิ่งที่ไม่มีการเปลี่ยนแปลงอย่างคงที่ในขณะที่ความหลากหลายถูกมองว่าเป็นความผิดปรกติของชนิดที่เป็นนามธรรม (อังกฤษ: idealized type) ซึ่งแตกต่างกับความเข้าใจที่ทันสมัยของทฤษฎีทางนิเวศที่ซึ่งความหลากหลายถูกมองว่าเป็นปรากฏการณ์จริงที่น่าสนใจและมีบทบาทในการกำเนิดของการปรับตัวโดยใช้วิธีการคัดเลือกโดยธรรมชาติ แนวความคิดในช่วงเริ่มต้นของระบบนิเวศเช่นความสมดุลและกฎระเบียบในธรรมชาติสามารถโยงไปถึง Herodotus (เสียชีวิตประมาณ 425 BC) ผู้ที่อธิบายหนึ่งในบัญชีแรกๆของทฤษฎี mutualism (การพึ่งพาอาศัยกัน) ในการสังเกตของเขาเกี่ยวกับ "ทันตกรรมธรรมชาติ" เขาตั้งข้อสังเกตว่าจระเข้แม่น้ำไนล์ที่กำลังอาบแดดจะเปิดปากของพวกมันเพื่อให้ตัว Sandpipers (นกชายฝั่งทะเลมีขาและปากยาว) สามารถเข้าปากได้อย่างปลอดภัยเพื่อเด็ดปลิงออก เป็นการให้คุณค่าทางโภชนาการแก่ตัว Sandpiper และให้สุขอนามัยในช่องปากที่ดีสำหรับจระเข้ อริสโตเติลมีอิทธิพลในช่วงต้นของการพัฒนาด้านปรัชญาของนิเวศวิทยา เขาและนักเรียนของเขา Theophrastus ตั้งข้อสังเกตอย่างกว้างขวางเกี่ยวกับพืชและการอพยพของสัตว์ ชีวภูมิศาสตร์ สรีรวิทยา และพฤติกรรมของพวกมัน เป็นการให้สิ่งที่คล้ายกันในช่วงต้นกับแนวคิดสมัยใหม่ของ niche ทางนิเวศวิทยา

แนวคิดเชิงนิเวศเช่นห่วงโซ่อาหาร การควบคุมประชากร และผลผลิตถูกพัฒนาขึ้นครั้งแรกในปี 1700 ผ่านการตีพิมพ์ผลงานของนักส่งกล้องจุลทัศน์ Antoni van Leeuwenhoek (1632-1723) และนักพฤกษศาสตร์ Richard Bradley (1688? -1732)นักชีวภูมิศาสตร์ Alexander von Humboldt (1769-1859) เป็นผู้บุกเบิกช่วงแรกในการคิดเชิงนิเวศและเป็นหนึ่งในคนแรกๆที่ตระหนักถึงการไล่ระดับทางนิเวศที่สายพันธุ์ต่าง ๆ จะถูกแทนที่หรือถูกเปลี่ยนแปลงในรูปแบบไปตามการไล่ระดับด้านสิ่งแวดล้อมเช่น cline ((ไคลน) n. การเปลี่ยนแปลงของลักษณะที่ค่อย ๆ เป็นไป) ที่ขึ้นรูปตามการเพิ่มขึ้นในระดับความสูง Humboldt ดึงแรงบันดาลใจจาก Isaac Newton ในขณะที่เขาได้พัฒนารูปแบบของ "ฟิสิกส์ทางบก" ในรูปแบบของนิวตันเขาได้นำความถูกต้องทางวิทยาศาสตร์สำหรับการวัดไปสู่ประวัติศาสตร์ธรรมชาติและแม้กระทั่งการพูดพาดพิงถึงแนวคิดที่เป็นรากฐานของกฎทางนิเวศที่ทันสมัยในความสัมพันธ์แบบสายพันธุ์กับพื้นที่ นักประวัติศาสตร์ธรรมชาติเช่น Humboldt, James Hutton และ Jean-Baptiste Lamarck (และคนอื่นๆ) ได้วางรากฐานของวิทยาศาสตร์ทางนิเวศที่ทันสมัย คำว่า "นิเวศวิทยา"(เยอรมัน: Oekologie, ?kologie) กำเนิดขึ้นเมื่อเร็ว ๆ นี้และได้รับการประกาศเกียรติคุณเป็นครั้งแรกโดยนักชีววิทยาชาวเยอรมัน Ernst Haeckel ในหนังสือของเขาชื่อ Generelle Morphologie der Organismen (1866) Haeckel เป็นนักสัตววิทยา ศิลปิน นักเขียน และต่อมาในชีวิตเป็นศาสตราจารย์ทางกายวิภาคศาสตร์เชิงเปรียบเทียบ

โดยนิเวศวิทยาเราหมายถึงวิทยาศาสตร์ทั้งมวลของความสัมพันธ์ของสิ่งมีชีวิตกับสิ่งแวดล้อมที่รวมไปถึง(ในความหมายที่กว้าง) "สภาวะของการมีอยู่" ทั้งหมด ... ดังนั้นทฤษฎีวิวัฒนาการจะอธิบายความสัมพันธ์แบบเก็บกวาดบ้านของสิ่งมีชีวิตที่ตามกลไกแล้วเป็นผลที่ตามมาตามความจำเป็นจากสาเหตุที่มีผลบังคับใช้ซึ่งจะก่อต้วเป็นรูปแบบรากฐานเอกนิยม (อังกฤษ: monism) (มุมมองด้านปรัชญาที่ว่าสิ่งที่มีอยู่หลากหลายสามารถได้รับการอธิบายในแง่ของความเป็นจริงหรือแก่นสารเพียงอย่างเดียว คำนิยามกว้างๆกล่าวว่าสิ่งที่มีอยู่ทั้งหมดจะกลับไปสู่ต้นกำเนิดเดิมซึ่งแตกต่างจากพวกมัน)ของนิเวศวิทยา

มีหลายความเห็นที่แตกต่างกันว่าใครเป็นผู้ก่อตั้งทฤษฎีทางนิเวศที่ทันสมัย บางคนทำเครื่องหมายว่านิยามของ Haeckel เป็นจุดเริ่มต้น คนอื่นๆบอกว่า Eugenius Warming เป็นผู้เริ่มด้วยงานเขียนของ Oecology of Plants เรื่อง ความรู้เบื้องต้นเกี่ยวกับการศึกษาของสังคมพืช (1895) หรือหลักการแบบ Carl Linnaeus เกี่ยวกับเศรษฐศาสตร์ของธรรมชาติที่โตเต็มที่ในช่วงต้นศตวรรษที่ 18 Linnaeus ได้ก่อตั้งสาขาแรกของนิเวศวิทยที่เขาเรียกว่าเศรษฐศาสตร์ของธรรมชาติ หลายผลงานของเขาได้มีอิทธิพลต่อ ชาร์ลส์ ดาร์วิน ผู้ที่ได้พัฒนาวลีของ Linnaeus ว่า "เศรษฐศาสตร์หรือการเมืองของธรรมชาติ" ในหนังสือ "ต้นกำเนิดของสายพันธุ์" (อังกฤษ: The Origin of Species) Linnaeus เป็นคนแรกที่ได้วางกรอบของ'ความสมดุลของธรรมชาติ' ว่าเป็นสมมติฐานที่ทดสอบได้อย่างหนึ่ง Haeckel ได้ชื่นชมงานของดาร์วิน และได้นิยามนิเวศวิทยาในการอ้างอิงถึงเศรษฐศาสตร์ของธรรมชาติซึ่งได้นำให้บางคนตั้งคำถามที่ว่านิเวศวิทยาและเศรษฐศาสตร์ของธรรมชาติมีความหมายเหมือนกันหรือไม่

จากอริสโตเติลจนถึงดาร์วิน, โลกในธรรมชาติได้รับการพิจารณาว่าส่วนใหญ่คงที่และไม่มีการเปลี่ยนแปลง ก่อน "ต้นกำเนิดของสายพันธุ์" มีความพึงพอใจหรือความเข้าใจเล็กๆน้อยๆในความสัมพันธ์แบบไดนามิกและแบบซึ่งกันและกันระหว่างสิ่งมีชีวิตด้วยกัน การปรับตัวของพวกมันและสภาพแวดล้อม มีข้อยกเว้นอย่างหนึ่งก็คือสิ่งพิมพ์ในปี 1789 เรื่อง "ประวัติศาสตร์ธรรมชาติของ Selborne" โดย Gilbert White (1720-1793) โดยที่บางคนได้พิจารณาว่าจะเป็นหนึ่งในตำราที่เก่าแก่ที่สุดในนิเวศวิทยา ในขณะที่ชาร์ลส์ดาร์วินได้ถูกตั้งข้อสังเกตเป็นส่วนใหญ่สำหรับบทความของเขาเกี่ยวกับวิวัฒนาการ เขาเป็นหนึ่งในผู้ก่อตั้ง 'นิเวศวิทยาดิน' และเขาได้บันทึกการทดลองทางนิเวศครั้งแรกใน "ต้นกำเนิดของสายพันธุ์" ทฤษฎีวิวัฒนาการได้เปลี่ยนแปลงวิธีการที่นักวิจัยจะเข้าหาวิทยาศาสตร์ทางนิเวศวิทยา

ไม่มีที่ไหนที่ใครคนใดคนหนึ่งจะสามารถเห็นได้ชัดเจนมากขึ้นในสิ่งที่จะแสดงให้เห็นถึงสิ่งที่อาจจะเรียกได้ว่าเป็นความรู้สึกของการซับซ้อนทางอินทรีย์เช่นนั้น - ถูกแสดงออกมาโดยความจริงที่ว่าอะไรก็ตามที่ส่งผลกระทบต่อสายพันธุ์ใดๆจะเป็นของมัน ต้องใช้อิทธิพลบางอย่างของมันอย่างรวดเร็วบนกลุ่มของมวลทั้งหมด ดังนั้นเขาจึงถูกทำให้เห็นความเป็นไปไม่ได้ของการศึกษารูปแบบใดๆได้อย่างสมบูรณ์ ออกจากความสัมพันธ์กับรูปแบบอื่นๆ, - ความจำเป็นสำหรับการทำการสำรวจอย่างครอบคลุมของมวลทั้งหมดเพื่อให้เป็นเงื่อนไขไปสู่ความเข้าใจที่น่าพอใจของส่วนใดส่วนหนึ่ง

นิเวศวิทยาสมัยใหม่เป็นวิทยาศาสตร์วัยหนุ่มที่ดึงดูดความสนใจทางวิทยาศาสตร์เป็นครั้งแรกอย่างมีนัยสำคัญในช่วงปลายศตวรรษที่ 19 (ประมาณเวลาเดียวกันกับที่การศึกษาด้านวิวัฒนาการก็กำลังได้รับความสนใจทางวิทยาศาสตร์) นักวิทยาศาสตร์ที่โดดเด่น Ellen Swallow Richards อาจได้แนะนำเป็นครั้งแรกของคำว่า "oekology" (ซึ่งในที่สุดก็ได้ปรับเปลี่ยนไปเป็นเศรษศาสตร์ในครัวเรือน (อังกฤษ: home economics)) ในสหรัฐอเมริกาเมื่อช่วงต้นปี 1892

ในช่วงต้นศตวรรษที่ 20 นิเวศวิทยาเปลี่ยนผ่านจากรูปแบบเชิงอธิบายเพิ่มเติมของประวัติศาสตร์ธรรมชาติให้เป็นรูปแบบการวิเคราะห์มากขึ้นของประวัติศาสตร์ธรรมชาติเชิงวิทยาศาสตร์ Frederic Clements ได้ตีพิมพ์หนังสือทางนิเวศวิทยาของอเมริกาเล่มแรกในปี 1905 นำเสนอแนวคิดของ ชุมชนพืชในฐานะที่เป็นซุปเปอร์สิ่งมีชีวิต (อังกฤษ: superorganism) เอกสารฉบับนี้รณรงค์ให้มีการอภิปรายระหว่างทฤษฎีองค๋รวมทางนิเวศ (อังกฤษ: ecological holism) กับทฤษฎีเฉพาะตัวตน (อังกฤษ: individualism) ที่ดำเนินไปจนถึงปี 1970s หลักการซุปเปอร์สิ่งมีชีวิตของเคลเมนท์ได้เสนอว่าระบบนิเวศจะคืบหน้าผ่านขั้นตอนปกติและความมุ่งมั่นของการพัฒนาในช่วงกลาง (อังกฤษ: seral development) ที่อุปมาแล้วเหมือนกับขั้นตอนการพัฒนาของสิ่งมีชีวิตหนึ่งๆ กระบวนทัศน์แบบ Clements ได้ถูกท้าทายโดย Henry Gleason ผู้ที่ระบุว่าชุมชนทางนิเวศจะพัฒนาจากสมาคมที่มีลักษณะเฉพาะและบังเอิญของสิ่งมีชีวิตแต่ละตัวตน การเปลี่ยนแปลงการรับรู้แบบนี้ได้วางจุดโฟกัสกลับไปยังประวัติศาสตร์ชีวิตของสิ่งมีชีวิตแต่ละตัวตนและวิธีที่สิ่งนี้จะเกี่ยวข้องกับการพัฒนาของสมาคมชุมชนได้อย่างไร

ทฤษฎีซุปเปอร์สิ่งมีชีวิตของ Clements เป็นแอพลิเคชันที่ขยายจนเกินเหตุของรูปแบบในอุดมคติของทฤษฎีองค์รวม คำว่า "ทฤษฎีองค์รวม" ได้รับการประกาศเกียรติคุณในปี 1926 โดย Jan Christiaan Smuts คนสำคัญทางประวัติศาสตร์แบบโพลาไรเซชั่นและแบบทั่วไปชาวแอฟริกาใต้ผู้ได้รับแรงบันดาลใจจากแนวคิดด้านซุปเปอร์สิ่งมีชีวิตของ Clements[C] ประมาณช่วงเวลาเดียวกัน Charles Elton ได้บุกเบิกแนวคิดของห่วงโซ่อาหารในหนังสือคลาสสิกของเขา "นิเวศวิทยาสัตว์" เอลตัน ได้กำหนดความสัมพันธ์ด้านนิเวศโดยใช้แนวคิดของห่วงโซ่อาหาร วัฏจักรอาหาร และขนาดอาหาร และได้อธิบายความสัมพันธ์ด้านตัวเลขระหว่างหลายๆกลุ่มการทำงานที่แตกต่างกันและความอุดมสมบูรณ์ที่เกี่ยวข้องของพวกมัน 'วัฏจักรอาหาร' ของเอลตันถูกแทนที่ด้วย 'เครือข่ายอาหาร' ในข้อความด้านนิเวศที่ตามมา Alfred J. Lotka ได้นำมาซึ่งแนวคิดทางทฤษฎีจำนวนมากที่นำหลักการทางอุณหพลศาสตร์ไปใช้กับนิเวศวิทยา

ในปี 1942 Raymond Lindeman เขียนเรื่องไดนามิกโภชนาการของนิเวศวิทยาที่ตีพิมพ์หลังจากที่ตอนแรกถูกปฏิเสธเพราะการเน้นในทฤษฎีของมัน ไดนามิกโภชนาการได้กลายเป็นรากฐานสำหรับงานจำนวนมากที่จะปฏิบัติตามการใช้พลังงานและการไหลของวัสดุผ่านระบบนิเวศ Robert E. MacArthur ได้ขยายทฤษฎีทางคณิตศาสตร์ขั้นสูง การคาดการณ์และการทดสอบในระบบนิเวศในปี 1950 ซึ่งสร้างแรงบันดาลใจโรงเรียนเพื่อการฟื้นคืนแห่งหนึ่งของนักนิเวศวิทยาทางคณิตศาสตร์เชิงทฤษฎี นิเวศวิทยายังได้พัฒนาผ่านการมีส่วนร่วมจากประเทศอื่นๆรวมทั้ง Vladimir Vernadsky ของรัสเซียและการจัดตั้งแนวคิดด้านชีวมณฑลของเขาในปี 1920s และ Kinji Imanishi ของญี่ปุ่นและแนวความคิดของเขาด้านความกลมกลืนในธรรมชาติและการแบ่งแยกที่อยู่อาศัยในปี 1950s การรับรู้ทางวิทยาศาสตร์ของการมีส่วนร่วมกับนิเวศวิทยาจากวัฒนธรรมที่ไม่พูดภาษาอังกฤษถูกขัดขวางโดยภาษาและอุปสรรคในการแปล

จากนั้น ห่วงโซ่ทั้งหมดนี้ของการเป็นพิษดูเหมือนว่าจะวางอยู่บนฐานของพืชขนาดเล็กซึ่งจะต้องเคยเป็นตัวศูนย์กลางการรวบรวมดั้งเดิม แต่อะไรล่ะที่เป็นอีกฟากหนึ่งของห่วงโซ่อาหาร-มนุษย์ผู้ซึ่ง(ในความเพิกเฉยที่น่าจะเป็นของทุกลำดับของเหตุการณ์นี้)ได้กว้านสายระยางเรือประมงของเขา เข้าจับปลาจากน่านน้ำของเคลียร์เลคและพาพวกมันกลับบ้านไปทอดเป็นอาหารมื้อเย็นของเขาใช่ใหม?

นิเวศวิทยาได้พุ่งขึ้นสู่ความสนใจทางวิทยาศาสตร์และเป็นที่นิยมในช่วงการเคลื่อนไหวด้านสิ่งแวดล้อมระหว่างปี 1960-1970s มีความผูกพันทางประวัติศาสตร์และวิทยาศาสตร์ที่แข็งแกร่งระหว่างนิเวศวิทยา การจัดการสิ่งแวดล้อม และการป้องกัน การเน้นย้ำทางประวัติศาสตร์และงานเขียนบทกวีธรรมชาติสำหรับการป้องกันมีอยู่ในถิ่นห่างไกล จากนักนิเวศวิทยาที่โดดเด่นในประวัติศาสตร์ของชีววิทยาเพื่อการอนุรักษ์เช่น Aldo Leopold และ Arthur Tansley ถูกถอดออกให้ห่างไกลจากย่านใจกลางเมืองที่มีความเข้มข้นของมลพิษและความเสื่อมโทรมของสิ่งแวดล้อมตั้งอยู่ Palamar (2008 บันทึกการบดบังโดยนักสิ่งแวดล้อมที่สำคัญของสตรีนักบุกเบิกในช่วงต้นทศวรรษ 1900 ผู้ที่ต่อสู้เพื่อระบบนิเวศของสุขภาพเมือง (จึงถูกเรียกว่า euthenics) และได้นำมาซึ่งการเปลี่ยนแปลงในกฎหมายสิ่งแวดล้อม ผู้หญิงเช่น Ellen Swallow Richards และ Julia Lathrop และอื่นๆ เป็นแถวหน้าในการเคลื่อนไหวด้านสิ่งแวดล้อมที่เป็นที่นิยมมากขึ้นหลังจากปี 1950s

ในปี 1962 หนังสือของนักชีววิทยาทางทะเลและนักนิเวศวิทยา Rachel Carson เรื่อง Silent Spring ได้ช่วยระดมเคลื่อนไหวด้านสิ่งแวดล้อมโดยแจ้งเตือนประชาชนเกี่ยวกับสารกำจัดศัตรูพืชที่เป็นพิษเช่นดีดีทีที่สะสมในสิ่งแวดล้อม คาร์สันได้ใช้วิทยาศาสตร์เชิงนิเวศเพื่อเชื่อมโยงการปลดปล่อยสารพิษในสิ่งแวดล้อมที่เป็นอันตรายต่อสุขภาพของมนุษย์และระบบนิเวศ ตั้งแต่นั้นมานักนิเวศวิทยาได้ทำงานเพื่อสร้างสะพานเชื่อมความเข้าใจของพวกเขาด้านการย่อยสลายของระบบนิเวศของโลกกับการเมือง กฎหมาย การฟื้นฟูด้านสิ่งแวดล้อมและการจัดการทรัพยากรธรรมชาติ

ขอบเขตของนิเวศวิทยาประกอบด้วยแถวที่กว้างขวางของระดับของปฏิสัมพันธ์ขององค์กรซึ่งครอบคลุมปรากฏการณ์ระดับจุลภาค (เช่นเซลล์) จนถึงขนาดของดาวเคราะห์ (เช่นชีวมณฑล (อังกฤษ: biosphere)) ยกตัวอย่าง ระบบนิเวศหลายระบบประกอบด้วยทรัพยากรแบบอชีวนะและรูปแบบของชีวิตที่มีปฏิสัมพันธ์ (เช่นสิ่งที่มีชีวิตเดี่ยวรวมตัวกันเป็นประชากรที่จะรวมเป็นในชุมชนทางนิเวศวิทยาที่แตกต่างกัน) ระบบนิเวศเป็นแบบไดนามิก พวกมันไม่ค่อยเดินตามเส้นทางต่อเนื่องที่เป็นเชิงเส้น แต่พวกมันมีการเปลี่ยนแปลงเสมอ บางครั้งก็รวดเร็วและบางครั้งก็ช้ามากซะจนกระทั่งอาจใช้เวลานับพันๆปีสำหรับกระบวนการทางนิเวศวิทยาที่จะนำมาซึ่งขั้นตอนต่อเนื่องบางอย่างของป่าป่าหนึ่ง พื้นที่ของระบบนิเวศอาจแตกต่างกันอย่างมาก ตั้งแต่ขนาดเล็กๆไปจนถึงขนาดใหญ่ ต้นไม้ต้นเดียวมีผลเพียงเล็กน้อยในการจัดหมวดหมู่ของระบบนิเวศป่าไม้ แต่เกี่ยวข้องเป็นอย่างยิ่งกับสิ่งมีชีวิตที่อาศัยอยู่ในนั้น หลายรุ่นลูกหลานของประชากรเพลี้ยสามารถอยู่ในช่วงอายุเดียวของใบไม้หนึ่งใบ แต่ละตัวของเพลี้ยเหล่านั้นในอีกทางหนึ่งจะสนับสนุนชุมชนแบคทีเรียที่หลากหลาย ธรรมชาติของการเชื่อมโยงกันในชุมชนนิเวศวิทยาไม่สามารถอธิบายโดยรู้รายละเอียดของแต่ละสายพันธุ์แบบแยกจากกัน เพราะรูปแบบฉุกเฉินจะไม่มีการเปิดเผยหรือไม่สามารถคาดการได้จนกว่าระบบนิเวศจะได้มีการศึกษาทั้งหมดแบบบูรณาการ อย่างไรก็ตาม บางหลักการทางนิเวศวิทยามีการแสดงจริงของคุณสมบัติแบบสะสมที่ผลรวมขององค์ประกอบทั้งหลายได้อธิบายคุณสมบัติของทั้งหมด เช่นอัตราการเกิดของประชากรที่เท่ากับผลรวมของการเกิดของแต่ละคน(หรือสัตว์หรือพืช)ในช่วงกรอบเวลาที่กำหนด

พฤติกรรมของระบบก่อนอื่นจะต้องถูกเรียงให้เป็นระดับๆที่แตกต่างกันขององค์กร พฤติกรรมที่สอดคล้องกับระดับที่สูงกว่าเกิดขึ้นในอัตราที่ช้า ตรงกันข้าม ระดับองค์กรที่ต่ำกว่าแสดงอัตราที่เร็ว ตัวอย่างเช่นใบของต้นไม้แต่ละใบตอบสนองอย่างรวดเร็วเปลี่ยนแปลงชั่วขณะในความเข้มของแสง ความเข้มข้นของ CO2 และอะไรที่คล้ายกัน การเจริญเติบโตของต้นไม้จะตอบสนองช้ากว่าและจะบูรณาการการเปลี่ยนแปลงระยะสั้นเหล่านี้

ขนาดของการเปลี่ยนแปลงของหลายระบบนิเวศสามารถทำงานเหมือนระบบปิด เช่นการโยกย้ายของเพลี้ยบนต้นไม้ต้นเดียว ในขณะที่ในเวลาเดียวกันระบบยังคงเปิดอันเนื่องมาจากอิทธิพลของขนาดที่กว้างกว่าเช่นบรรยากาศหรือสภาพภูมิอากาศ ดังนั้น นักนิเวศวิทยาจะจำแนกระบบนิเวศตามลำดับชั้นโดยวิเคราะห์ข้อมูลที่รวบรวมได้จากหลายหน่วยงานขนาดปลีกย่อย เช่นสมาคมพืช สภาพภูมิอากาศ และชนิดของดิน และบูรณาการข้อมูลนี้เพื่อระบุรูปแบบฉุกเฉินต่าง ๆ ขององค์กรและกระบวนการที่ชัดเจนที่ทำงานในท้องถิ่นจนถึงขนาดระดับภูมิภาค ภูมิทัศน์ และลำดับเหตุการณ์

เพื่อจัดโครงสร้างของการศึกษาด้านนิเวศวิทยาให้อยู่ในกรอบแนวคิดที่จัดการได้ โลกชีวภาพจะถูกจัดวางให้เป็นลำดับชั้นที่ซ้อนกันตั้งแต่ในระดับยีนไปยังเซลล์ไปยังเนื้อเยื่อไปยังอวัยวะไปยังสิ่งมีชีวิตไปยังสายพันธุ์ไปยังประชากรไปยังชุมชนไปยังระบบนิเวศไปยังชีวนิเวศ (อังกฤษ: biomes) และไปจนถึงระดับชีวมณฑล กรอบงานแบบนี้ก่อตัวเป็นรูปแบบการปกครองแบบหนึ่งที่ครอบคลุมการปกครองอื่นๆ (อังกฤษ: Panarchy) และได้แสดงออกเป็นพฤติกรรมแบบไม่เชิงเส้น หมายความว่า "ผลและสาเหตุไม่เป็นสัดส่วนกัน เพื่อที่ว่าการเปลี่ยนแปลงเล็กๆที่เกิดกับตัวแปรที่วิกฤตเช่นจำนวนไนโตรเจนที่คงที่สามารถนำไปสู่หลายการเปลี่ยนแปลงที่ไม่เป็นสัดส่วนกัน หรืออาจเป็นสิ่งที่ไม่สามารถเปลี่ยนกลับคืนได้ในคุณสมบัติของระบบ":14

ความหลากหลายทางชีวภาพหมายถึงความหลากหลายของชีวิตและกระบวนการของมัน ซึ่งจะรวมถึงความหลากหลายของสิ่งมีชีวิต ความแตกต่างทางพันธุกรรมในหมู่พวกมัน ชุมชนและระบบนิเวศที่พวกมันเกิดขึ้น และกระบวนการทางนิเวศวิทยาและวิวัฒนาการที่ทำให้พวกมันยังทำหน้าที่อยู่ได้ แต่ก็ยังมีการเปลี่ยนแปลงและมีการปรับตัว

ความหลากหลายทางชีวภาพใช้อธิบายความหลากหลายของสิ่งมีชีวิตตั้งแต่ยีนจนถึงระบบนิเวศและครอบคลุมทุกระดับขององค์กรทางชีวภาพ คำนี้มีการตีความไปหลายอย่างและมีหลายวิธีที่จะชี้ ใช้วัด ใช้บอกลักษณะ และใช้แทนความหมายขององค์กรที่ซับซ้อนของมัน ความหลากหลายทางชีวภาพจะรวมถึงความหลากหลายของสายพันธุ์ ความหลากหลายของระบบนิเวศ และความหลากหลายทางพันธุกรรมและนักวิทยาศาสตร์มีความสนใจในวิธีการที่ความหลากหลายนี้ส่งผลกระทบต่อกระบวนการทางนิเวศวิทยาที่ซับซ้อนในการดำเนินงานในระดับที่เกี่ยวข้องเหล่านี้ได้อย่างไร ความหลากหลายทางชีวภาพมีบทบาทสำคัญใน'การบริการของระบบนิเวศ' ซึ่งโดยความหมายแล้วหมายถึงการรักษาระดับและการปรับปรุงคุณภาพของชีวิต การป้องกันการสูญพันธุ์ของสายพันธุ์เป็นวิธีหนึ่งที่จะรักษาความหลากหลายทางชีวภาพและเป้าหมายนั้นวางอยู่บนหลายเทคนิคที่รักษาความหลากหลายทางพันธุกรรม ที่อยู่อาศัย และความสามารถในสายพันธุ์ที่จะโยกย้ายถิ่น[ต้องการอ้างอิง] ลำดับความสำคัญและเทคนิคการจัดการของการอนุรักษ์จำเป็นต้องใช้วิธีการและการพิจารณาที่แตกต่างกันเพื่อแสดงถึงขอบเขตของระบบนิเวศอย่างเต็มที่ของความหลากหลายทางชีวภาพ 'ทุนธรรมชาติ'ที่รองรับประชากรมีความสำคัญในการรักษาระดับของ'การบริการแบบระบบนิเวศ' และการย้ายถิ่นของหลายๆสายพันธุ์ (เช่นการวิ่งของปลาแม่น้ำและการควบคุมแมลงนก) ได้รับการระบุว่าเป็นหนึ่งในกลไกที่การเสียหายจากการให้บริการพวกนั้นได้ประสบมา ความเข้าใจในความหลากหลายทางชีวภาพมีการใช้งานในทางปฏิบัติสำหรับสายพันธุ์และการวางแผนการอนุรักษ์ในระดับระบบนิเวศเมื่อพวกเขาให้คำแนะนำการจัดการแก่บริษัทที่ปรึกษา รัฐบาล และอุตสาหกรรม

ที่อยู่อาศัยของสายพันธุ์หนึ่งสามารถอธิบายสภาพแวดล้อมที่สายพันธุ์นั้นเกิดและชนิดของชุมชนที่จะเกิดเป็นผลตามมา เพื่อให้เฉพาะเจาะจงมากยิ่งขึ้น "ที่อยู่อาศัยที่สามารถกำหนดได้ว่าเป็นภูมิภาคในพื้นที่สิ่งแวดล้อมที่จะประกอบด้วยหลายมิติซ้อนกัน แต่ละมิติเป็นตัวแทนของตัวแปรสิ่งแวดล้อมแบบชีวนะหรืออชีวนะ นั่นคือ องค์ประกอบหรือลักษณะของสภาพแวดล้อมใดๆที่เกี่ยวข้องโดยตรง (เช่นอาหารสัตว์ ชีวมวลและคุณภาพ) หรือโดยอ้อม (เช่นระดับความสูง) กับการใช้สถานที่โดยสัตว์":745 ยกตัวอย่างเช่นที่อยู่อาศัยอาจจะเป็นสภาวะแวดล้อมที่อยู่ในน้ำหรือบนบกที่สามารถแบ่งประเภทต่อไปว่าเป็นระบบนิเวศแบบภูเขาหรือภูมิอากาศแบบอัลไพน์ การเปลี่ยนแปลงที่อยู่อาศัยจะให้หลักฐานที่สำคัญของการแข่งขันในธรรมชาติที่ประชากรหนึ่งจะมีการเปลี่ยนแปลงที่สัมพันธ์กับแหล่งที่อยู่อาศัยที่สมาชิกส่วนใหญ่ของสายพันธุ์อื่นครอบครองอยู่ ตัวอย่างเช่น ประชากรของสายพันธุ์หนึ่งของสัตว์เลื้อยคลานเขตร้อน (Tropidurus hispidus) มีลำตัวแบนเมื่อเทียบกับประชากรหลักที่อาศัยอยู่ในทุ่งหญ้าเปิด ประชากรนี้อาศัยอยู่ในหินโผล่แยกต่างหากที่ซ่อนอยู่ในหุบเขาที่ร่างกายแบนของมันทำให้มันมีความได้เปรียบในการคัดเลือก การเปลี่ยนแปลงที่อยู่อาศัยยังเกิดขึ้นในประวัติศาสตร์การพัฒนาชีวิตของสัตว์ครึ่งบกครึ่งน้ำและในแมลงที่เปลี่ยนจากสัตว์ที่มีที่อยู่อาศัยในน้ำมาเป็นสัตว์ที่อยู่บนบก คำว่าเขตชีวชาติ (อังกฤษ: biotope) และเขตที่อยู่อาศัยบางครั้งใช้แทนกันได้ แต่เขตชีวชาติหมายถึงสภาพแวดล้อมของชุมชน ในขณะที่เขตที่อยู่อาศัยหมายถึงสภาพแวดล้อมของสายพันธุ์

นอกจากนี้ สายพันธ์ุบางชนิดเป็น 'วิศวกรระบบนิเวศ' ทำการเปลี่ยนแปลงสภาพแวดล้อมภายในภูมิภาคท้องถิ่น เช่น ตัวบีเวอร์จัดการระดับน้ำโดยสร้างเขื่อนซึ่งช่วยปรับปรุงที่อยู่อาศัยของพวกมันในภูมิทัศน์

นิยามของคำว่า niche ย้อนกลับไปในปี 1917 แต่ G. Evelyn Hutchinson ทำให้แนวคิดนี้แพร่หลายในปี 1957 โดยแนะนำนิยามที่ถูกนำมาใช้กันอย่างแพร่หลายว่าหมายถึง "ชุดของสภาพแวดล้อมแบบชีวภาพและกายภาพในที่ซึ่งสายพันธุ์หนึ่งสามารถที่จะยังคงมีอยู่และรักษาขนาดประชากรไว้อย่างคงที่":519 สภาวะทางนิเวศวิทยาเป็นแนวคิดกลางในนิเวศวิทยาของสิ่งมีชีวิตและถูกแบ่งย่อยออกเป็นสภาวะ"พื้นฐาน"และสภาวะ"ตระหนัก" สภาวะพื้นฐานคือชุดของสภาวะสิ่งแวดล้อมที่สายพันธุ์หนึ่งสามารถที่จะยังคงมีอยู่ได้ สภาวะตระหนักคือชุดของสภาวะสิ่งแวดล้อมบวกกับสภาวะทางนิเวศวิทยาที่สายพันธุ์หนึ่งจะยังคงมีอยู่ สถาวะแบบของ Hutchinson ถูกขยายนิยามในทางเทคนิคให้มากขึ้นเป็น "ไฮเปอร์สเปซของยุคลิด (อังกฤษ: Euclidean hyperspace) ที่ "มิติ" ของมันถูกกำหนดเป็นตัวแปรด้านสิ่งแวดล้อมและ "ขนาด" ของมันถูกกำหนดเป็นฟังก์ชันของตัวเลขของค่าที่คุณค่าของสิ่งแวดล้อมที่อาจสันนิษฐานว่าสิ่งที่มีชีวิตหนึ่งมี "ความเหมาะสมเชิงบวก"":71

รูปแบบทางชีวภูมิศาสตร์และการกระจายของสายพันธ์มีการอธิบายหรือทำนายผ่านความรู้ของลักษณะของสายพันธุ์และความต้องการด้านสภาวะที่เหมาะสม หลายสายพันธ์มีลักษณะ(ทางกรรมพันธ์) (อังกฤษ: traits) ของฟังชั่นทางพันธุกรรมที่ถูกปรับเปลี่ยนที่ไม่เหมือนใครให้เข้ากับสภาวะทางนิเวศวิทยา ลักษณะทางพันธุกรรมหนึ่ง ๆ จะเป็นสมบัติ (อังกฤษ: property) หรือลักษณะทางพันธุกรรมที่ปรากฏให้เห็นเช่นส่วนสูงหรือสีผิว (อังกฤษ: phenotype) ที่วัดได้ของสิ่งมีชีวิตที่อาจมีอิทธิพลอยู่รอดของมัน ยีนมีบทบาทสำคัญในการมีปฏิสัมพันธ์ของการพัฒนาและการแสดงออกด้านสิ่งแวดล้อมของลักษณะทางพันธุกรรม สายพันธุ์ประจำถิ่นจะวิวัฒนาการลักษณะทางพันธุกรรมที่เหมาะสมกับแรงกดดันตัวเลือกของสภาพแวดล้อมในท้องถิ่นของพวกมัน ซึ่งมีแนวโน้มยอมรับข้อได้เปรียบในการแข่งขันและกีดกันสายพันธ์ที่ถูกดัดแปลงมาคล้ายกันจากการกระจายทางภูมิศาสตร์ที่ทับซ้อนกัน 'หลักการกีดกันด้านการแข่งขัน' ระบุว่าสองสายพันธ์ุไม่สามารถอยู่ร่วมกันไปเรื่อย ๆ โดยอาศัยอยู่ในทรัพยากรที่จำกัดเดียวกัน; สายพันธ์หนึ่งมักจะเก่งกว่าอีกสายพันธ์หนึ่ง เมื่อสายพันธ์ที่ถูกดัดแปลงมาคล้ายกันมีถิ่นที่อยู่ทับซ้อนกันทางภูมิศาสตร์ การตรวจสอบอย่างใกล้ชิดเปิดเผยให้เห็นถึงความแตกต่างของระบบนิเวศที่ลึกซึ้งในที่อยู่อาศัยหรือความต้องการอาหารของพวกมัน อย่างไรก็ตาม การศึกษาบางโมเดลและเชิงประจักษ์แนะนำว่าการปั่นป่วน (อังกฤษ: disturbance) สามารถปรับปรุงวิวัฒนาการร่วมและสภาวะการเข้าอยู่อาศัยที่เหมาะสม (อังกฤษ: niche) ที่ใช้ร่วมกันของสายพันธุ์ที่คล้ายกันที่เข้าพักอาศัยอยู่ในชุมชนหลากสายพันธ์ุที่อุดมสมบูรณ์ ถิ่นที่อยู่อาศัยรวมกับสภาวะที่เหมาะสมเรียกว่า ecotope ซึ่งถูกกำหนดให้เป็นตัวแปรเต็มรูปแบบด้านสิ่งแวดล้อมและด้านชีวภาพที่มีผลกับทั้งสายพันธุ์

สิ่งมีชีวิตอยู่ภายใต้แรงกดดันด้านสิ่งแวดล้อม แต่พวกมันยังปรับเปลี่ยนที่อยู่อาศัยของพวกมันอีกด้วย ข้อเสนอแนะด้านกฎระเบียบระหว่างสิ่งมีชีวิตและสิ่งแวดล้อมของพวกมันสามารถส่งผลกระทบต่อสภาพทั้งหลายตั้งแต่ระดับท้องถิ่น (เช่นบ่อตัวบีเวอร์) จนถึงระดับโลก ตลอดช่วงเวลาและแม้หลังจากการตาย เช่นท่อนไม้หรือแหล่งสะสมโครงกระดูกซิลิกาที่เริ่มเน่าจากสิ่งมีชีวิตในทะเล กระบวนการและแนวคิดของวิศวกรรมระบบนิเวศที่มีความเกี่ยวข้องกับการก่อสร้างสภาวะที่เหมาะสม แต่วิศวกรรมระบบนิเวศเกี่ยวข้องเท่านั้นกับการปรับเปลี่ยนทางกายภาพของที่อยู่อาศัยในขณะที่การก่อสร้างสภาวะที่เหมาะสมยังพิจารณาผลกระทบด้านวิวัฒนาการของการเปลี่ยนแปลงทางกายภาพกับสภาพแวดล้อมและฟีดแบ็คสาเหตุในกระบวนการของการคัดเลือกโดยธรรมชาติ วิศวกรระบบนิเวศจะถูกกำหนดเป็น "สิ่งมีชีวิตที่โดยทางตรงหรือทางอ้อมเป็นตัวกลางในการปรับความพร้อมของทรัพยากรให้กับสายพันธุ์อื่นๆ โดยทำให้เกิดการเปลี่ยนแปลงสภาวะทางกายภาพในวัสดุแบบชีวนะหรืออชีวนะ ทำอย่างนั้น พวกมันปรับเปลี่ยน ดูแลรักษาและสร้างที่อยู่อาศัย":373

แนวคิดด้านวิศวกรรมระบบนิเวศได้กระตุ้นความชื่นชมใหม่สำหรับอิทธิพลที่สิ่งมีชีวิตมีในระบบนิเวศและในกระบวนการวิวัฒนาการ คำว่า "การก่อสร้างสภาวะที่เหมาะสม" มักจะถูกนำมาใช้ในการอ้างอิงกับกลไกการฟีดแบ็คที่มีการชื่นชมต่ำเกินไปของการคัดเลือกโดยธรรมชาติที่สื่อให้เห็นถึงแรงบนสภาวะที่เหมาะสมแบบอชีวนะ ตัวอย่างหนึ่งของการคัดเลือกโดยธรรมชาติผ่านทางวิศวกรรมระบบนิเวศเกิดขึ้นในรังของแมลงสังคม เช่นมด ผึ้ง ตัวต่อ และปลวก มีภาวะธำรงดุล (อังกฤษ: homeostasis) (โฮมีโอสเตซิส, การที่ร่างกายสามารถรักษาภาวะในร่างกายให้คงที่ เช่น อุณหภูมิ ความดันเลือด ความสมดุลของน้ำและเกลือแร่ เป็นต้น โดยไม่ให้เปลี่ยนแปลงไปตามสภาวะแวดล้อม เช่น ควบคุมอุณหภูมิของร่างกาย ควบคุมสมดุลของน้ำและเกลือแร่ ความเป็นกรดเป็นด่าง ความเข้มข้นของสารต่าง ๆ ภายในเ [พจนานุกรมศัพท์ สสวท.]) หรือ ภาวะไม่ธำรงดุล (อังกฤษ: homeorhesis) ฉุกเฉินในโครงสร้างของรังที่ควบคุม เก็บรักษาและปกป้องสรีรวิทยาของอาณานิคมทั้งหมด ตัวอย่างเช่นปลวกจะปั้นมูลดินเพื่อรักษาอุณหภูมิภายในให้คงที่ผ่านการออกแบบปล่องไฟปรับอากาศ โครงสร้างของตัวรังเองอาจอยู่ภายใต้แรงของการคัดเลือกโดยธรรมชาติ นอกจากนี้รังยังสามารถอยู่รอดได้หลาย ๆ รุ่นต่อมาเพื่อให้ลูกหลานได้สืบทอดทั้งวัสดุทางพันธุกรรมและสภาวะที่เหมาะสมเดิมที่ถูกสร้างขึ้นก่อนเวลาของพวกมัน

ชีวนิเวศ (อังกฤษ: biomes) เป็นหน่วยขนาดใหญ่กว่าขององค์กรที่เป็นหมวดหมู่ของภูมิภาคของระบบนิเวศของโลก ส่วนใหญ่เป็นไปตามโครงสร้างและองค์ประกอบของพืช มีหลายวิธีการที่แตกต่างกันในการกำหนดขอบเขตของทวีปของชีวนิเวศที่ครอบงำโดยประเภทการทำงานที่แตกต่างกันของชุมชนพืชที่ถูกจำกัดในการกระจายโดยสภาพภูมิอากาศ ฝน หิมะ ลูกเห็บ อากาศและตัวแปรด้านสิ่งแวดล้อมอื่นๆ ชีวนิเวศประกอบด้วย ป่าฝนเขตร้อน ป่าใบกว้างพอสมควรและป่าเบญจพรรณ ป่าผลัดใบ ป่าเขตหนาว ทุนดรา ทะเลทรายเขตร้อน และทะเลทรายขั้วโลก นักวิจัยอื่นๆเมื่อเร็วๆนี้ได้จำแนกชีวนิเวศอื่นๆ เช่นมนุษย์และจุลชีวนิเวศมหาสมุทร กับจุลินทรีย์ ร่างกายมนุษย์เป็นที่อยู่อาศัยและภูมิทัศน์ จุลชีวนิเวศถูกค้นพบส่วนใหญ่ผ่านความก้าวหน้าในอณูพันธุศาสตร์ซึ่งได้เปิดเผยความสมบูรณ์ที่ซ่อนอยู่ในความหลากหลายของจุลินทรีย์ในโลก ชีวนิเวศมหาสมุทรมีบทบาทสำคัญในชีวธรณีเคมีในนิเวศวิทยาของมหาสมุทรของโลก

ขนาดที่ใหญ่ที่สุดขององค์กรในเชิงนิเวศคือชีวมณฑล ซึ่งเป็นผลรวมของระบบนิเวศในโลก ความสัมพันธ์เชิงนิเวศน์จะควบคุมการไหลของพลังงาน สารอาหาร และสภาพภูมิอากาศตลอดทางขึ้นไปจนถึงขนาดของโลก ตัวอย่างเช่น ประวัติศาสตร์แบบไดนามิกของ CO2 ในบรรยากาศของโลกและองค์ประกอบ O2 ได้รับผลกระทบจากการไหลแบบ biogenic ของก๊าซที่มาจากการหายใจและการสังเคราะห์แสง ที่มีระดับของก๊าซที่ผันผวนอยู่ตลอดเวลาเมื่อเทียบกับนิเวศวิทยาและวิวัฒนาการของพืชและสัตว์ ทฤษฎีทางนิเวศวิทยายังถูกนำมาใช้เพื่ออธิบายปรากฏการณ์การกำกับดูแลที่เกิดขึ้นด้วยตัวเองในระดับของโลก ตัวอย่างเช่นสมมติฐานของ Gaia เป็นตัวอย่างของความเป็นองค์รวมที่ถูกนำไปใช้ในทางทฤษฎีนิเวศวิทยา สมมติฐานของ Gaia ระบุว่ามีฟีดแบ็คลูปเกิดขึ้นจากการเผาผลาญอาหารของสิ่งมีชีวิตที่ช่วยรักษาอุณหภูมิแกนของโลกและสภาพบรรยากาศภายในช่วงแคบ ๆ ของความอดทนที่ควบคุมด้วยตัวเอง

นิเวศวิทยาประชากรจะศึกษาเกี่ยวกับการเปลี่ยนแปลงของประชากรของสายพันธุ์และวิธีการที่ประชากรเหล่านี้มีปฏิสัมพันธ์กับสภาพแวดล้อมที่กว้างขึ้น ประชากรจะประกอบด้วยหลายตัวตนชนิดเดียวกันที่มีชีวิตอยู่ มีปฏิสัมพันธ์กัน และอพยพสู่สภาวะที่เหมาะสมและที่อยู่อาศัยเดียวกัน

กฎหลักของนิเวศวิทยาประชากรเป็น'รูปแบบการเจริญเติบโตของมัลธัส' ซึ่งระบุว่า "ประชากรหนึ่งจะเติบโต (หรือลดลง) อย่างฮวบฮาบตราบเท่าที่สภาพแวดล้อมที่ทุกคนในประชากรนั้นประสบอยู่คงที่":18 โมเดลอย่างง่ายของประชากรมักจะเริ่มต้นด้วยสี่ตัวแปร: การตาย การเกิด การอพยพเข้าและการผู้อพยพออก

ตัวอย่างหนึ่งของโมเดลประชากรเบื้องต้นจะอธิบายถึงประชากรแบบปิด เช่นบนเกาะเกาะหนึ่งที่การอพยพเข้าและการอพยพออกไม่ได้เกิดขึ้น สมมติฐานมีการประเมินโดยอ้างอิงถึงสมมติฐานเปล่าที่ระบุว่ากระบวนการแบบสุ่มจะสร้างข้อมูลแบบสังเกต ในโมเดลเกาะเหล่านี้อัตราการเปลี่ยนแปลงของประชากรได้รับการอธิบายว่าเป็น:

โดยที่ "N" เป็นจำนวนของตัวตนในประชากร "B" คือจำนวนการเกิด "D" เป็นจำนวนการตาย "b" และ "d" เป็นอัตราต่อหัวของการเกิดและการตายตามลำดับ และ "r" เป็นอัตราต่อหัวของการเปลี่ยนแปลงประชากร สูตรนี้ระบุว่าอัตราการเปลี่ยนแปลงในขนาดประชากร (dN/dT) จะเท่ากับ การเกิดลบด้วยการตาย (B – D)

โดยใช้เทคนิคการสร้างแบบจำลองเหล่านี้ หลักการของการเติบโตของประชากรของ Malthus ต่อมาก็ถูกแปลงให้อยู่ในรูปแบบที่เรียกว่า'สมการโลจิสติก':

โดยที่ "N" คือจำนวนของตัวตนที่วัดโดยความหนาแน่นมวลชีวภาพ a เป็นอัตราสูงสุดต่อหัวของการเปลี่ยนแปลง และ "K" เป็นปริมาณสูงสุดของประชากรที่จะมีได้ (อังกฤษ: carrying capacity) สูตรนี้ระบุว่าอัตราการเปลี่ยนแปลงในขนาดประชากร (dN/dT) จะเท่ากับการเจริญเติบโต (aN) ที่ถูกจำกัด ด้วยปริมาณสูงสุดของประชากรที่จะมีได้ (1 – N/K)

นิเวศวิทยาประชากรสร้างอยู่บนแบบจำลองเบื้องต้นเหล่านี้เพื่อทำความเข้าใจมากขึ้นในกระบวนการทางด้านประชากรศาสตร์ในการศึกษาเกี่ยวกับประชากรที่แท้จริง ประเภทที่ใช้กันทั่วไปของข้อมูลจะรวมถึงประวัติชีวิต, ความสามารถมีบุตร และการรอดชืวิค เหล่านี้จะได้รับการวิเคราะห์โดยใช้เทคนิคทางคณิตศาสตร์เช่นพีชคณิตเมทริกซ์ ข้อมูลจะถูกใช้สำหรับการจัดการประชากรสัตว์ป่าและการจัดทำโควต้าการเก็บเกี่ยว ในหลายกรณีที่โมเดลพื้นฐานมีไม่เพียงพอ นักนิเวศวิทยาอาจนำหลายวิธีการทางสถิติที่แตกต่างกันมาใช้เช่น'เกณฑ์ข้อมูลแบบ Akaike' หรือใช้โมเดลที่สามารถกลายเป็นความซับซ้อนทางคณิตศาสตร์เนื่องจาก "สมมติฐานการแข่งขันหลายอย่างมีการเผชิญหน้าพร้อมกับข้อมูล"

แนวคิดของ metapopulations ถูกกำหนดในปี 1969 ว่าเป็น "ประชากรย่อยของประชากรใหญ่ซึ่งสูญพันธุ์ไปในระดับท้องถิ่นและกลับมาตั้งชุมชนใหม่":105 นิเวศวิทยาแบบ Metapopulation เป็นอีกหนึ่งวิธีการทางสถิติอีกวิธีการหนึ่งที่มักจะถูกใช้ในการวิจัยเพื่อการอนุรักษ์ โมเดลแบบ Metapopulation ช่วยทำความซับซ้อนของภูมิทัศน์ให้ง่ายขึ้นโดยทำให้เป็นตัวเชื่อม (อังกฤษ: patch) ของระดับของคุณภาพที่แตกต่างกัน และหลาย metapopulations จะมีการเชื่อมโยงเข้าหากันโดยพฤติกรรมการอพยพย้ายถิ่นของสิ่งมีชีวิต การย้ายถิ่นของสัตว์มีความหมายแตกต่างจากการเคลื่อนย้ายชนิดอื่นๆเพราะมันเกี่ยวข้องกับการจากไปตามฤดูกาลจากที่อยู่อาศัยและการกลับมาของแต่ละตัวตน การย้ายถิ่นยังเป็นปรากฏการณ์ระดับประชากรอย่างหนึ่งเช่นเดียวกับเส้นทางการอพยพที่ตามด้วยพืชอย่างที่พวกมันครอบครองสภาพแวดล้อมหลังยุคน้ำแข็งทางภาคเหนือ นักนิเวศวิทยาพืชใช้บันทึกละอองเกสรดอกไม้ที่สะสมและแบ่งเป็นชั้นๆในพื้นที่ชุ่มน้ำเพื่อสร้างขึนใหม่ของระยะเวลาของการโยกย้ายและการกระจายของพืชที่สัมพันธ์กับภูมิอากาศทางประวัติศาสตร์ร่วมสมัย เส้นทางการอพยพเหล่านี้เกี่ยวข้องกับการขยายตัวของการกระจายของประชากร (อังกฤษ: range) เมื่อประชากรพืชขยายจากพื้นที่หนึ่งไปยังอีกพื้นที่หนึ่ง มีการจัดแบ่งสิ่งมีชีวิตออกเป็นกลุ่มต่างๆขนาดใหญ่กว่าของการเคลื่อนย้าย เช่นการเดินทาง, การจับเหยื่อ พฤติกรรมเชิงดินแดน การชะงักงันและการกระจายของประชากร การกระจายมักจะแตกต่างจากการย้ายถิ่นเพราะมันเกี่ยวข้องกับการเคลื่อนย้ายในทางเดียวอย่างถาวรของแต่ละตัวตนจากประชากรถิ่นกำเนิดของพวกมันเข้าไปในอีกประชากรหนึ่ง

ในความหมายของ metapopulation ผู้อพยพถูกจัดว่าเป็นผู้อพยพออก (เมื่อพวกมันออกจากภูมิภาค) หรือผู้อพยพเข้า (เมื่อพวกมันเข้าสู่ภูมิภาค) และสถานที่ถูกจัดว่าแหล่งออก (อังกฤษ: source) หรือแหล่งเข้า (อังกฤษ: sink) สถานที่ (อังกฤษ: site) เป็นคำทั่วไปที่หมายถึงสถานที่ที่นักนิเวศวิทยาทำการสุ่มประชากร ตัวอย่างเช่นบ่อน้ำหรือกำหนดพื้นที่การสุ่มอยู่ในป่า ตัวเชื่อมแหล่งออก (อังกฤษ: source patch) เป็นสถานที่ผลิตที่สร้างอุปทานตามฤดูกาลของหนุ่มสาวที่จะอพยพไปยังสถานที่เชื่อมต่ออื่นๆ ตัวเชื่อมแหล่งเข้า (อังกฤษ: sinkpatch) เป็นสถานที่ที่ไม่ก่อให้เกิดผลผลิตเพียงแต่รับผู้อพยพเข้าเท่านั้น นั่นก็คิอประชากรในสถานที่นั้นจะหายไปเว้นแต่ว่ามีความช่วยเหลือตัวเชื่อมแหล่งจ่ายที่อยู่ติดกันหรือสภาพแวดล้อมที่กลายเป็นที่พอใจมากขึ้น โมเดลของ Metapopulation ตรวจสอบไดนามิคส์ของการเชื่อมโยงตลอดเวลาเพื่อตอบคำถามที่อาจมีเกี่ยวกับนิเวศวิทยาเชิงพื้นที่และเชิงประชากร นิเวศวิทยาของ metapopulations เป็นกระบวนการแบบไดนามิกอย่างหนึ่งของการสูญพันธ์และการล่าอาณานิคม ตัวเชื่อมขนาดเล็กที่มีคุณภาพต่ำ (เช่นแหล่งรับ) จะมีการบำรุงรักษาหรือการช่วยเหลือจากการไหลเข้าของผู้อพยพใหม่ตามฤดูกาล โครงสร้าง metapopulation แบบไดนามิกมีการวิวัฒนาการปีต่อปีที่บางตัวเชื่อมเป็นแหล่งเข้าในปีที่แห้งแล้งและเป็นแหล่งออกที่เมื่อเงื่อนไขเป็นที่พอใจมากขึ้น นักนิเวศวิทยาใช้แบบจำลองคอมพิวเตอร์ผสมกับการศึกษาภาคสนามเพื่ออธิบายโครงสร้างของ metapopulation

นิเวศวิทยาชุมชนตรวจสอบความสัมพันธ์ระหว่างสายพันธ์หนึ่งกับสายพันธ์อื่นๆและสภาพแวดล้อมของพวกมันที่ส่งผลกระทบต่อความอุดมสมบูรณ์ การกระจายและความหลากหลายของสายพันธุ์เหล่านั้นภายในชุมชน

นิเวศวิทยาชุมชนเป็นการศึกษาของการมีปฏิสัมพันธ์ในหมู่สายพันธุ์ที่อาศัยอยู่ในพื้นที่ทางภูมิศาสตร์เดียวกัน การวิจัยในระบบนิเวศของชุมชนอาจจะวัดการผลิตหลักในพื้นที่ชุ่มน้ำที่สัมพันธ์กับอัตราการสลายตัวและการบริโภค เหล่านี้ต้องใช้ความเข้าใจด้านการเชื่อมต่อของชุมชนระหว่างพืชด้วยกัน (เช่นตัวผลิตหลัก) และตัวย่อยสลาย (เช่นเชื้อราและแบคทีเรีย) หรือการวิเคราะห์ไดนามิคระหว่างผู้ล่าและเหยื่อที่มีผลกับชีวมวลครึ่งบกครึ่งน้ำ เครือข่ายอาหารและระดับโภชนาการเป็นโมเดลที่เป็นแนวคิดสองอย่างที่ถูกนำมาใช้กันอย่างแพร่หลายในการอธิบายความเชื่อมโยงท่ามกลางหลากสายพันธุ์

ระบบนิเวศเหล่านี้อาจมีมากที่สุด พวกมันก่อตัวเป็นประเภทเดียวของระบบทางกายภาพหลากหลายของจักรวาลซึ่งมีช่วงตั้งแต่จักรวาลโดยรวมลงไปถึงระดับอะตอม

ระบบนิเวศที่เป็นที่อยู่อาศัยภายในชีวนิเวศ (อังกฤษ: biomes) ที่ก่อตัวเป็นระบบการตอบสนองแบบบูรณาการทั้งหมดและแบบไดนามิกที่มีทั้งความซับซ้อนทางกายภาพและทางชีวภาพ แนวคิดพื้นฐานที่สามารถสืบย้อนไปยังปี 1864 ในงานตีพิมพ์ของ George Perkins Marsh ("มนุษย์และธรรมชาติ") ภายในระบบนิเวศ สิ่งมีชีวิตถูกเชื่อมโยงกับองค์ประกอบทางกายภาพและทางชีวภาพของสภาพแวดล้อมของพวกมันเข้ากับสิ่งที่พวกมันถูกปรับแต่งขึ้นมา ระบบนิเวศเป็นระบบการปรับแต่งที่ซับซ้อนที่ซึ่งปฏิสัมพันธ์ของกระบวนการชีวิตก่อตัวเป็นรูปแบบที่มีการจัดระเบียบตัวเองตลอดช่วงเวลาและพื้นที่ที่แตกต่าง ระบบนิเวศมีการแบ่งประเภทกว้างๆเป็น บก น้ำจืด บรรยากาศหรือทะเล ความแตกต่างจะเกิดจากธรรมชาติของสภาพแวดล้อมทางกายภาพที่ไม่เหมือนใครปั้นแต่งความหลากหลายทางชีวภาพในแต่ละประเภท ส่วนเพิ่มเติมที่ผ่านมาเร็วๆนี้กับนิเวศวิทยาระบบนิเวศเป็นระบบนิเวศเทคนิค (อังกฤษ: technoecosystems) ซึ่งได้รับผลกระทบหรือเป็นผลจากกิจกรรมของมนุษย์

เครือข่ายอาหารเป็นเครือข่ายในระบบนิเวศตามแบบฉบับ พืชจะจับพลังงานแสงอาทิตย์และใช้มันในการสังเคราะห์น้ำตาลธรรมดาในระหว่างการสังเคราะห์แสง ขณะที่พืชเจริญเติบโต พวกมันสะสมสารอาหารและถูกกินโดยสัตว์กินพืชแบบและเล็ม และพลังงานจะถูกโอนผ่านห่วงโซ่ของสิ่งมีชีวิตจากการบริโภค เส้นทางการกินอาหารเชิงเส้นง่ายๆจะย้ายจากสายพันธุ์อาหารขั้นพื้นฐานไปยังผู้กินอาหารระดับสูงสุดเรียกว่าห่วงโซ่อาหาร รูปแบบการเชื่อมต่อกันขนาดใหญ่ของห่วงโซ่อาหารในระบบนิเวศชุมชนจะสร้างเครือข่ายอาหารที่ซับซ้อน เคริอข่ายอาหารจะเป็นประเภทของแผนที่แนวคิดหรืออุปกรณ์แก้ปัญหาที่ใช้ในการแสดงและการศึกษาทางเดินของพลังงานและการไหลของวัสดุ

เครือข่ายอาหารมักจะถูกจำกัดในโลกแห่งความจริง การวัดเชิงประจักษ์สมบูรณ์โดยทั่วไปถูกจำกัดสำหรับที่อยู่อาศัยเฉพาะอันใดอันหนึ่ง เช่นถ้ำหรือบ่อน้ำ และหลักการทั้งหลายที่รวบรวมได้จากการศึกษาโลกขนาดเล็กของเครือข่ายอาหารจะถูกประเมินไปใช้กับระบบขนาดที่ใหญ่กว่า ความสัมพันธ์ของการให้อาหารต้องการการตรวจสอบอย่างกว้างขวางในเนื้อหาทางเดินอาหารของสิ่งมีชีวิต ที่อาจเป็นเรื่องยากที่จะถอดรหัส หรือไอโซโทปเสถียรสามารถใช้ในการติดตามการไหลของสารอาหารและพลังงานผ่านทางเครือข่ายอาหาร แม้จะมีข้อจำกัดเหล่านี้ เครือข่ายอาหารยังคงเป็นเครื่องมือที่มีคุณค่าทำความเข้าใจระบบนิเวศชุมชน.

เครือข่ายอาหารแสดงหลักการของการเกิดระบบนิเวศผ่านทางธรรมชาติของความสัมพันธ์ด้านโภชนาการ นั่นคือบางสายพันธ์มีการเชื่อมโยงหลายอย่างของการหาอาหารที่อ่อนแอ (เช่นคนหรือสัตว์ที่กินทั้งพืชและสัตว์เป็นอาหาร (อังกฤษ: omnivores)) ในขณะที่บางสายพันธ์มีความเชี่ยวชาญมากขึ้นด้วยการเชื่อมโยงไมกี่อย่างของการหาอาหารที่แข็งแกร่งกว่า (เช่นนักล่าหลัก) การศึกษาเชิงทฤษฎีและเชิงประจักษ์จะระบุรูปแบบฉุกเฉินแบบไม่สุ่มของการเชื่อมโยงที่อ่อนแอหลายอย่างและที่แข็งแกร่งไม่กี่อย่างที่อธิบายถึงวิธีการของขุมขนแบบนิเวศยังคงมีเสถียรภาพตลอดช่วงเวลาได้อย่างไร เครือข่ายอาหารจะประกอบด้วยกลุ่มย่อยที่สมาชิกในชุมชนหนึ่งมีการเชื่อมโยงโดยมีปฏิสัมพันธ์ที่แข็งแกร่ง และปฏิสัมพันธ์ที่อ่อนแอจะเกิดขึ้นระหว่างกลุ่มย่อยเหล่านี้ ซึ่งจะช่วยเพิ่มความมั่นคงทางเครือข่ายอาหาร เส้นสายหรือความสัมพันธ์จะถูกวาดขึ้นทีละขั้นตอนจนกระทั่งเครือข่ายของชีวิตจะถูกแสดงออกมา

ระดับชั้นของโภชนาการ (อังกฤษ: trophic level) (มาจากภาษากรีก "troph" ????? troph? หมายถึง "อาหาร" หรือ "การให้อาหาร") เป็น "กลุ่มหนึ่งของสิ่งมีชีวิตที่ได้รับส่วนใหญ่ของพลังงานของมันจากระดับที่อยู่ติดกันใกล้กับแหล่งอชีวนะ":383 โยงใยของเครือข่ายอาหารส่วนใหญ่จะเชื่อมต่อความสัมพันธ์กับอาหารหรือ trophism ในหมู่สายพันธ์ทั้งหลาย ความหลากหลายทางชีวภาพภายในระบบนิเวศสามารถจัดรูปขึ้นเป็นปิรามิดโภชนาการ ในที่ซึ่งมิติในแนวตั้งแสดงถึงความสัมพันธ์ของอาหารที่เป็นต่อไปจะถูกลบออกจากฐานของห่วงโซ่อาหารขึ้นไปสู่นักล่าบนสุดและมิติในแนวนอนหมายถึงความอุดมสมบูรณ์หรือชีวมวลในแต่ละระดับ เมื่อความอุดมสมบูรณ์หรือมวลชีวภาพสัมพันธ์ของแต่ละสายพันธุ์ถูกจัดเรียงให้เป็นระดับชั้นของโภชนาการตามลำดับ พวกมันจะจัดเรียงโดยธรรมชาติให้เป็น 'ปิรามิดของจำนวน'

สายพันธุ์ทั้งหลายมีการแบ่งประเภทกว้างๆเป็น autotrophs (หรือผู้ผลิตหลัก) heterotrophs (หรือผู้บริโภค) และ detritivores (หรือผู้ย่อยสลาย) autotrophs เป็นสิ่งมีชีวิตที่ผลิตอาหารให้ตัวของมันเอง (การผลิตมากกว่าการหายใจ) โดยสังเคราะห์แสงหรือสงเคราะห์เคมี (อังกฤษ: photosynthesis or chemosynthesis) Heterotrophs เป็นสิ่งมีชีวิตที่จะต้องกินผู้อื่นเพื่อเสริมสร้างและพลังงาน (หายใจเกินกว่าการผลิต) Heterotrophs สามารถแบ่งย่อยออกไปเป็นกลุ่มการทำงานที่แตกต่างกันได้แก่ผู้บริโภคปฐมภูมิ (สัตว์กินพืชอย่างเดียว (อังกฤษ: herbivore)) ผู้บริโภคทุติยภูมิ (นักล่ากินเนื้อเป็นอาหารที่กินเฉพาะสัตว์กินพืช (อังกฤษ: carnivorous)) และผู้บริโภคในตติยภูมิ (นักล่าที่กินทั้ง herbivore และ carnivorous) สัตว์ที่กินทั้งพืชและสัตว์เป็นอาหาร (อังกฤษ: omnivore) ไม่เข้ากันได้ดีกับประเภทการทำงานข้างบนเพราะพวกมันกินเนื้อเยื่อของทั้งพืชและสัตว์ มีคำแนะนำว่า omnivores มีอิทธิพลด้านการทำงานมากกว่าพวกนักล่าเพราะว่าเมื่อเทียบกับสัตว์กินพืชพวกมันจะค่อนข้างไม่มีประสิทธิภาพในการแทะเล็มพืช

ระดับชั้นโภชนาการเป็นส่วนหนึ่งของมุมมองของระบบนิเวศแบบองค์รวมหรือซับซ้อน ในแต่ละระดับชั้นจะประกอบด้วยสายพันธุ์ที่ไม่เกี่ยวข้องกันรวมกลุ่มกันเพราะพวกมันแชร์ฟังก์ชันของระบบนิเวศที่ใช้ร่วมกันและให้มุมมองของระบบแบบเห็นได้ด้วยตาเปล่า (อังกฤษ: macroscopic view of the system) ในขณะที่ความคิดของระดับโภชนาการให้ข้อมูลเชิงลึกของการไหลของพลังงานและการควบคุมจากบนลงล่างภายในเครือข่ายอาหาร มันถูกปั่นป่วนจริงโดยความชุกของ omnivores ในระบบนิเวศ สิ่งนี้ได้นำนักนิเวศวิทยาบางคนไปเพื่อ "ย้ำว่าความคิดที่ว่าสายพันธุ์ต่างๆจะรวมกันอย่างชัดเจนเป็นกลุ่มๆ ระดับโภชนาการที่เป็นเอกพันธ์เป็นแค่นิยาย":815 อย่างไรก็ตามการศึกษาล่าสุดได้แสดงให้เห็นว่าระดับโภชนาการที่แท้จริงมีอยู่จริง แต่ "เหนือระดับชั้นโภชนาการของสัตว์กินพืช เครือข่ายอาหารถูกแยกเป็นลักษณะที่ดีขึ้นเป็นเครือข่ายที่เกี่ยวพันกันของ omnivores:612

สายพันธุ์เสาหลักเป็นสายพันธ์หนึ่งที่เชื่อมโยงกับสายพันธุ์อื่น ๆ จำนวนมากแต่ไม่เป็นสัดส่วนกันในเครือข่ายอาหาร สายพันธุ์เสาหลักมีระดับของชีวมวลที่ต่ำกว่ามากในพีระมิดโภชนาการเมื่อเทียบกับความสำคัญของบทบาทของพวกมัน ความสำคัญของสายพันธุ์เสาหลักมีต่อเครือข่ายอาหารก็คือมันจะรักษาองค์กรและโครงสร้างของชุมชนทั้งหมดให้คงอยู่ การสูญเสียของสายพันธ์เสาหลักหนึ่งจะส่งผลกระทบในวงกว้างต่อเนื่องที่สามารถเปลี่ยนพลวัตด้านโภชนาการรวมทั้งการโยงใยของเครื่อข่ายอาหารอื่น ๆ และอาจทำให้เกิดการสูญพันธ์ของสายพันธุ์อื่น ๆ

นากทะเล (Enhydra lutris) จะถูกอ้างถึงกันทั่วไปว่าเป็นตัวอย่างของสายพันธุ์เสาหลักเพราะพวกมันจำกัดความหนาแน่นของเม่นทะเลที่กินสาหร่ายทะเล ถ้านากทะเลถูกลบออกจากระบบ เม่นทะเลจะแทะเล็มจนแปลงสาหร่ายทะเลหายไปและนี่จะมีผลอย่างมากต่อโครงสร้างของชุมชน อย่างไรก็ตาม การล่าของนากทะเลถูกพิจารณาว่าได้นำโดยอ้อมไปสู่การสูญพันธ์ของวัวทะเลของ Steller (Hydrodamalis gigas) ในขณะที่แนวคิดสายพันธุ์เสาหลักได้ถูกนำไปใช้อย่างกว้างขวางเพื่อเป็นเครื่องมือในการอนุรักษ์ มันได้รับการวิพากษ์วิจารณ์ว่ามันถูกกำหนดไว้ไม่ดีจากมุมมองการดำเนินงาน มันเป็นเรื่องยากที่จะตรวจสอบด้วยการทดลองว่าสายพันธุ์อะไรที่อาจจะมีบทบาทเป็นเสาหลักในแต่ละระบบนิเวศ นอกจากนั้น ทฤษฎีเครือข่ายอาหารแนะนำว่าสายพันธุ์เสาหลักอาจจะไม่เป็นสายพันธ์ธรรมดา ดังนั้นมันจึงไม่เป็นที่ชัดเจนว่ารูปแบบสายพันธุ์เสาหลักจะสามารถถูกนำมาใช้โดยทั่วไปได้อย่างไร

ความซับซ้อนมีการเข้าใจว่าเป็นความพยายามในคอมพิวเตอร์ขนาดใหญ่ที่จำเป็นในการปะติดปะต่อชิ้นส่วนปฏิสัมพันธ์มากมายเกินความจุของหน่วยความจำซ้ำของจิตใจมนุษย์ รูปแบบทั่วโลกของความหลากหลายทางชีวภาพมีความซับซ้อน ความซับซ้อนทางชีวภาพนี้เกิดขึ้นจากอิทธิพลซึ่งกันและกันในหมู่กระบวนการทางนิเวศวิทยาที่ใช้งานและสร้างอิทธิพลต่อรูปแบบในระดับที่แตกต่างกันที่เกลี่ยเข้าหากัน เช่นพื้นที่ในช่วงการเปลี่ยนแปลงหรือ ecotones ที่กระจายภูมิทัศน์ ความซับซ้อนเกิดจากอิทธิพลซึ่งกันและกันในหมู่ระดับขององค์กรทางชีวภาพเมื่อพลังงานและสสารถูกรวมเข้าเป็นหน่วยที่ใหญ่กว่าที่ซ้อนทับลงบนชิ้นส่วนขนาดเล็กกว่า "สิ่งที่เป็นส่วนรวมทั้งหมด (อังกฤษ: wholes) ในระดับหนึ่งจะกลายเป็นหลายๆชิ้นส่วนของอีกระดับหนึ่งที่สูงกว่า":209 รูปแบบขนาดเล็กไม่จำเป็นต้องอธิบายปรากฏการณ์ของขนาดที่ใหญ่กว่า เพียงแต่แสดงเอาไว้ในสำนวน (ประกาศเกียรติคุณโดยอริสโตเติล) 'ผลรวมใหญ่กว่าชิ้นส่วน'[E]

"ความซับซ้อนในระบบนิเวศเป็นอย่างน้อยหกชนิดที่แตกต่าง: พื้นที่ ชั่วคราว โครงสร้าง กระบวนการ พฤติกรรม และรูปทรงเรขาคณิต":3 จากหลักการเหล่านี้ นักนิเวศวิทยาได้ระบุปรากฏการณ์การอุบัติ (อังกฤษ: emergence) และการจัดระเบียบตัวเอง (อังกฤษ: self-organizing) ที่ทำงานในระดับที่แตกต่างกันทางด้านสิ่งแวดล้อมของอิทธิพล ช่วงตั้งแต่ระดับโมเลกุลจนถึงระดับโลก และสิ่งเหล่านี้จำเป็นต้องมีคำอธิบายที่แตกต่างกันในแต่ละระดับบูรณาการ ความซับซ้อนของระบบนิเวศจะเกี่ยวข้องกับความยืดหยุ่นแบบไดนามิกของระบบนิเวศที่เปลี่ยนไปยังสภาวะนิ่งที่ขยับหลายชั้น (อังกฤษ: multiple shifting steady-states) ที่กำกับโดยความผันผวนแบบสุ่มของประวัติศาสตร์ การศึกษาระบบนิเวศระยะยาวได้ให้บันทึกการติดตามที่สำคัญที่จะเข้าใจได้ดีขึ้นในความซับซ้อนและความยืดหยุ่นของระบบนิเวศตลอดขนาดพื้นที่ชั่วคราวที่ยาวกว่าและกว้างกว่า การศึกษาเหล่านี้จะถูกจัดการโดย'เครือข่ายนิเวศวิทยาระยะยาวนานาชาติ' (LTER) การทดลองที่ยาวที่สุดในการดำรงอยู่เป็น Park Grass Experiment ซึ่งเริ่มต้นในปี 1856 อีกตัวอย่างหนึ่งคือ'การศึกษาห้วยฮับบาร์ด'ที่ได้ดำเนินการมาตั้งแต่ปี 1960

ความเป็นองค์รวมยังคงเป็นส่วนสำคัญของพื้นฐานทางทฤษฎีในการศึกษาระบบนิเวศร่วมสมัย ความเป็นองค์รวมบอกถึงองค์กรทางชีวภาพของสิ่งมีชีวิตที่จัดการตัวเองเป็นชั้นๆของระบบอุบัติการณ์ทั้งมวลที่ทำงานตามคุณสมบัติที่ไม่สามารถลดลงได้ (อังกฤษ: nonreducible) ซึ่งหมายความว่ารูปแบบที่สูงกว่าของระบบการทำงานทั้งมวล เช่นระบบนิเวศหนึ่ง ไม่สามารถมีการคาดการณ์หรือทำความเข้าใจโดยนำชิ้นส่วนต่างๆมารวมกันอย่างเรียบง่าย "คุณสมบัติใหม่จะเกิดขึ้นเพราะส่วนประกอบค่างๆมีปฏิสัมพันธ์กัน ไม่ได้เป็นเพราะธรรมชาติพื้นฐานของส่วนประกอบเหล่านั้นถูกเปลี่ยนแปลง":8

การศึกษาระบบนิเวศมีความจำเป็นต้องเป็นแบบองค์รวมที่ตรงข้ามกับแบบ reductionistic การเป็นองค์รวมมีสามความหมายหรือการใช้งานทางวิทยาศาสตร์ที่ระบุด้วยระบบนิเวศ. 1) ความซับซ้อนของกลไกของระบบนิเวศ 2) รายละเอียดในทางปฏิบัติของรูปแบบในความหมายของ reductionist เชิงปริมาณที่ความสัมพันธ์กลางอาจมีการระบุแต่ไม่มีอะไรเป็นที่เข้าใจได้เกี่ยวกับความสัมพันธ์เชิงสาเหตุโดยปราศจากการอ้างอิงถึงระบบทั้งมวล ซึ่งนำไปสู่ 3) ลำดับชั้น metaphysics ที่ความสัมพันธ์เชิงสาเหตุของระบบขนาดที่ใหญ่กว่ามีความเข้าใจโดยปราศจากการอ้างอิงไปยังส่วนที่มีขนาดเล็กกว่า การเป็นองค์รวมทางวิทยาศาสตร์แตกต่างจากเวทมนตร์ (อังกฤษ: mysticism)ที่ได้จัดสรรคำศัพท์เดียวกัน ตัวอย่างหนึ่งของการเป็นองค์รวมแบบ metaphysics จะถูกระบุในแนวโน้มของความหนาด้านนอกที่เพิ่มขึ้นในเปลือกของสายพันธุ์ที่แตกต่างกัน เหตุผลในการเพิ่มความหนาสามารถเข้าใจได้ผ่านการอ้างอิงถึงหลักการของการคัดเลือกโดยธรรมชาติผ่านการเป็นนักล่าโดยไม่จำเป็นต้องอ้างอิงหรือเข้าใจคุณสมบัติชีวโมเลกุลของเปลือกหอยภายนอก

นิเวศวิทยาและวิวัฒนาการถือว่าเป็นพื่น้องกันของสาขาวิชาวิทยาศาสตร์เพื่อชีวิต การคัดเลือกโดยธรรมชาติ ประวัติชีวิต การพัฒนา การปรับตัว ประชากร และมรดก เป็นตัวอย่างของแนวคิดที่ร้อยเข้าด้วยกันให้เป็นทฤษฎีทางนิเวศวิทยาและวิวัฒนาการ ลักษณะทางสัณฐานวิทยา ทางพฤติกรรมและทางพันธุกรรมเป็นตัวอย่างที่สามารถสร้างเป็นแผนที่ของต้นไม้แห่งวิวัฒนาการเพื่อศึกษาพัฒนาการเชิงประวัติศาสตร์ของสายพันธ์ในส่วนที่เกี่ยวกับการทำงานและบทบาทของพวกมันในสถานการณ์ของระบบนิเวศที่แตกต่างกัน ในกรอบงานนี้ เครื่องมือการวิเคราะห์ของนักนิเวศวิทยาและนักวิวัฒนาการมีการทับซ้อนกันเมื่อพวกเขาจัดองค์กร จำแนกและตรวจสอบชีวิตผ่านหลักการระบบทั่วไปเช่น phylogenetics หรือระบบของอนุกรมวิธานแบบ Linnaean(อังกฤษ: Linnaean system of taxonomy) สองสาขานี้มักจะปรากฏอยู่ด้วยกัน เช่นในชื่อเรื่องของวารสาร "แนวโน้มในนิเวศวิทยาและวิวัฒนาการ" ไม่มีขอบเขตที่คมชัดที่แบ่งแยกนิเวศวิทยาออกจากวิวัฒนาการและพวกมันแตกต่างกันมากขึ้นในพื้นที่ของพวกมันมุ่งเน้นการประยุกต์ใช้ ทั้งสองสาขาวิชาได้ค้นพบและอธิบายการอุบัติขึ้นและคุณสมบัติและกระบวนการที่ไม่เหมือนใครในการดำเนินงานทั่วขนาดพื้นที่หรือชั่วคราวที่แตกต่างกันขององค์กร ในขณะที่เขตแดนระหว่างนิเวศวิทยาและวิวัฒนาการยังไม่ชัดเจน นิเวศวิทยาจะศึกษาปัจจัยแบบอชีวนะและชีวนะที่มีอิทธิพลต่อกระบวนการวิวัฒนาการ และวิวัฒนาการอย่างรวดเร็วอาจจะเกิดขึ้นในระยะเวลาทางนิเวศวิทยาที่สั้นที่สุดเท่ากับคนรุ่นหนึ่ง

สิ่งมีชีวิตทั้งหมดสามารถแสดงพฤติกรรมของตัวเอง แม้กระทั่งพืชยังแสดงพฤติกรรมที่ซับซ้อนรวมถึงหน่วยความจำและการสื่อสาร นิเวศวิทยาพฤติกรรมเป็นการศึกษาพฤติกรรมของสิ่งมีชีวิตในสภาพแวดล้อมของมันและผลกระทบทางนิเวศวิทยาและวิวัฒนาการของมัน Ethology คือการศึกษาของการเคลื่อนไหวหรือพฤติกรรมในสัตว์ที่สังเกตได้ ซึ่งอาจรวมถึงการตรวจสอบของสเปิร์มที่เคลื่อนที่ได้ของพืช แพลงก์ตอนพืชที่เคลื่อนที่ได้ แพลงก์ตอนสัตว์ที่กำลังว่ายน้ำไปหาไข่ตัวเมีย การเพาะปลูกเชื้อราโดยตัวด้วง การเต้นรำเพื่อผสมพันธุ์ของซาลาแมนเดอร์ หรือการชุมนุมทางสังคมของอะมีบา

การปรับตัวเป็นแนวคิดกลางรวมกันในนิเวศวิทยาเชิงพฤติกรรม พฤติกรรมสามารถบันทึกเป็นลักษณะพันธุกรรมและถุกถ่ายทอดไปยังลูกหลานในลักษณะเดียวกันกับที่ตาและสีผมสามารถทำได้ พฤติกรรมสามารถวิวัฒน์โดยใช้วิธีการคัดเลือกโดยธรรมชาติแบบลักษณะพุนธุกรรมการปรับตัวที่ส่งต่อความสามารถทำงานที่เพิ่มความเหมาะสมในการสืบสายพันธุ์

ปฏิสัมพันธ์ระหว่างนักล่าและเหยื่อเป็นแนวคิดเบื้องต้นให้กับการศึกษาด้านเครือข่ายอาหารเช่นเดียวกับนิเวศวิทยาเชิงพฤติกรรม สายพันธ์ที่เป็นเหยื่อสามารถแสดงการปรับพฤติกรรมในชนิดที่แตกต่างกันกับนักล่า เช่นการหลีกเลี่ยง การหนีหรือการป้องกัน สายพันธ์เหยื่อหลายชนิดจะต้องเผชิญกับนักล่าที่หลากหลายที่มีระดับของอันตรายที่แตกต่างกัน เพื่อปรับตัวเองให้เข้ากับสภาพแวดล้อมของพวกมันและเผชิญกับภัยคุกคามของนักล่า สิ่งมีชีวิตที่จะต้องปรับสมดุลด้านงบประมาณพลังงานของพวกมันขณะที่พวกมันจะเข้าลงทุนในแง่มุมที่แตกต่างกันของประวัติศาสตร์ชีวิตของพวกมัน เช่นการเจริญเติบโต การหาอาหาร การผสมพันธุ์ การเข้าสังคม หรือการดัดแปลงที่อยู่อาศัยของพวกมัน สมมติฐานที่ปรากฏในนิเวศวิทยาเชิงพฤติกรรมโดยทั่วไปจะมีพื้นฐานจากหลักการการปรับตัวของการอนุรักษ์, การใช้ประโยชน์ให้เหมาะสมหรือมีประสิทธิภาพ ตัวอย่างเช่น "สมมติฐานการหลีกเลี่ยงนักล่าที่ไวต่อภัยคุกคามจะคาดการณ์ว่าเหยื่อควรประเมินระดับของภัยคุกคามที่เกิดจากนักล่าที่แตกต่างกันและจับคู่ให้ตรงกับพฤติกรรมของพวกนักล่าตามระดับของความเสี่ยงในขณะนั้น" หรือ "ระยะหนี (อังกฤษ: escape distance หรือ flight initiation distance) ที่เหมาะสมจะเกิดขึ้นเมื่อความแข็งแกร่งของร่างกายหลังจากประสบกับนักล่าที่คาดไว้จะส่งสู่ระดับสูงสุด ซึ่งขึ้นอยู่กับความแข็งแกร่งแรกเริ่มของเหยื่อ ประโยชน์ที่จะได้รับโดยไม่หนี ค่าใช้จ่ายในการหลบหนีในแง่ของพลังงาน และการสูญเสียความแข็งแกร่งที่คาดไว้เนื่องจากความเสี่ยงจากการล่า"

การแสดงและการวางท่าทางเพศที่ประณีตจะพบในนิเวศวิทยาเชิงพฤติกรรมของสัตว์ เช่น"นกแห่งสวรรค์"ร้องเพลงและแสดงเครื่องประดับที่ประณีตระหว่างการเกี้ยวพาราสี การแสดงเหล่านี้ตอบสนองวัตถุประสงค์สองอย่างได้แก่การส่งสัญญาณของตัวตนที่มีสุขภาพดีหรือมีการปรับตัวที่ดีและการมียีนที่พึงประสงค์ การแสดงจะถูกขับเคลื่อนด้วยการเลือกทางเพศสัมพันธ์เพื่อเป็นการโฆษณาถึงคุณภาพของลักษณะทางกรรมพันธ์ให้กับเหล่าคู่ครอง

นิเวศวิทยากระบวนการการรับรู้ (อังกฤษ: Cognitive ecology) รวบรวมทฤษฎีและข้อสังเกตจากนิเวศวิทยาเชิงวิวัฒนาการและประสาทชีววิทยา วิทยาศาสตร์กระบวนการการรับรู้ขั้นต้น เพื่อให้เข้าใจถึงผลกระทบที่การปฏิสัมพันธ์ของสัตว์กับถิ่นที่อยู่อาศัยของพวกมันที่มีกับระบบการรับรู้ของพวกมันและวิธีการที่ระบบเหล่านั้นจะจำกัดพฤติกรรมภายในกรอบนิเวศวิทยาและวิวัฒนาการ "อย่างไรก็ตาม จนกระทั่งเมื่อเร็วๆนี้วิทยาศาสตร์กระบวนการการรับรู้ยังไม่ได้ให้ความสนใจเพียงพอที่จะเป็นจริงพื้นฐานที่ว่าลักษณะพันธุกรรมกระบวนการรับรู้ได้วิวัฒน์ภายใต้สภาวะตามธรรมชาติที่เจาะจง ด้วยการพิจารณาของความกดดันตัวเลือกเกี่ยวกับการรับรู้ นิเวศวิทยากระบวนการการรับรู้สามารถนำไปอุดหนุนการเชื่อมโยงทางปัญญาเข้ากับการศึกษาสหสาขาวิชาชีพของกระบวนการการรับรู้" ขณะที่การศึกษาที่เกี่ยวข้องกับ 'การเชื่อมต่อ' หรือการปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตและสิ่งแวดล้อม นิเวศวิทยากระบวนการการรับรู้ที่เกี่ยวข้องอย่างใกล้ชิดกับ enactivism ซึ่งเป็นสาขาทางวิชาการหนึ่งที่มีพื้นฐานจากมุมมองที่ว่า "... เราต้องดูสิ่งมีชีวิตและสิ่งแวดล้อมเหมือนกับว่ามันถูกผูกไว้ด้วยกันในรายละเอียดและตัวเลือกซึ่งกันและกัน ... "

พฤติกรรมของนิเวศวิทยาทางสังคมจะมีความโดดเด่นในแมลงสังคมเช่นผึ้ง พวกสืบพันธ์ด้วยสปอร์ (อังกฤษ: slime moulds) แมงมุมสังคม สังคมมนุษย์และหนูตุ่นไร้หนัง ในที่ซึ่ง'ระบบสังคมแบบพึ่งพาอาศัย' (อังกฤษ: eusocialism) มีการพัฒนา พฤติกรรมทางสังคมจะรวมถึงพฤติกรรมที่เป็นประโยชน์ซึ่งกันและกันในหมู่ญาติและเพื่อนร่วมรัง และวิวัฒน์จากญาติและการเลือกกลุ่ม การเลือกญาติจะอธิบายความบริสุทธิ์ใจผ่านทางความสัมพันธ์ทางพันธุกรรมโดยพฤติกรรมที่เห็นแก่ผู้อื่นที่กำลังนำไปสู่การเสียชีวิตได้รับรางวัลโดยอยู่รอดของสำเนาทางพันธุกรรมกระจายในหมู่ญาติที่รอดชีวิต แมลงสังคมที่มีทั้งมด ผึ้งและตัวต่อถูกนำมารศึกษามากที่สุดสำหรับความสัมพันธ์ประเภทนี้เพราะผึ้งตัวผู้เป็นสิ่งที่มีชีวิตที่เกิดจากเซลล์เดียวกัน (อังกฤษ: clone) จึงแชร์พันธุกรรมเหมือนกันกับตัวผู้ทุกตัวในอาณานิคม ในทางตรงกันข้าม นักเลือกกลุ่มพบหลายตัวอย่างของความบริสุทธิ์ใจในหมู่ญาติที่ไม่ใช่ทางพันธุกรรมและอธิบายเรื่องนี้ผ่านการคัดเลือกที่กระทำต่อกลุ่มโดยเลือกที่มันจะกลายเป็นข้อได้เปรียบสำหรับกลุ่มถ้าสมาชิกของพวกมันแสดงพฤติกรรมไม่เห็นแก่ได้กับอีกสมาชิกหนึ่ง กลุ่มที่มีสมาชิกส่วนใหญ่ไม่เห็นแก่ตัวเองจะชนะสมาชิกส่วนใหญ่ที่เห็นแก่ตัว

ปฏิสัมพันธ์เชิงนิเวศน์สามารถจำแนกกว้างๆออกเป็นเจ้าของบ้าน (อังกฤษ: host) และผู้อาศัย (อังกฤษ: associate) โฮสต์เป็นตัวตนที่ให้ที่พักพิงแก่ผู้อาศัย ความสัมพันธ์ภายในสายพันธ์ใดๆที่เป็นประโยชน์ร่วมกันหรือซึ่งกันและกันจะเรียกว่า mutualisms ตัวอย่างของ mutualism ได้แก่ มดที่เลี้ยงเชื้อราที่ใช้ขบวนการการพึ่งพาอาศัยกัน (อังกฤษ: symbiosis) แบคทีเรียที่อาศัยอยู่ในกระเพาะของแมลงและสิ่งมีชีวิตอื่นๆ ต่อมะเดื่อและการผสมเกสรของมอดมันสำปะหลังที่ซับซ้อน ไลเคนที่มีเชื้อราและสาหร่ายสังเคราะห์แสง และปะการังที่มีสาหร่ายสังเคราะห์แสง ถ้ามีการเชื่อมต่อทางกายภาพระหว่างโฮสต์และผู้อาศัย ความสัมพันธ์นั้นจะเรียกว่า symbiosis ตัวอย่างเช่น ประมาณ 60% ของพืชทุกชนิดจะมีความสัมพันธ์แบบ symbiosis กับเชื้อรา arbuscular mycorrhizal fungi ที่อาศัยอยู่ในรากของพวกมันก่อให้เกิดเครือข่ายการแลกเปลี่ยนคาร์โบไฮเดรตสำหรับสารอาหารที่เป็นแร่ธาตุ

mutualisms แบบทางอ้อมจะเกิดขึ้นที่สิ่งมีชีวิตแยกกันอยู่ ตัวอย่างเช่นต้นไม้ที่อาศัยอยู่ในแถบเส้นศูนย์สูตรของโลกปล่อยออกซิเจนออกมาในบรรยากาศที่ช่วยค้ำจุนสายพันธุ์ต่างๆที่อาศัยอยู่ในบริเวณขั้วโลกที่ห่างไกลของโลก ความสัมพันธ์นี้จะเรียกว่าภาวะอิงอาศัย (อังกฤษ: commensalism) เพราะผู้อื่นจำนวนมากได้รับผลประโยชน์ของอากาศที่สะอาดฟรีๆหรือไม่เป็นอันตรายกับต้นไม้ที่ปล่อยออกซิเจนออกมา ถ้าผู้อาศัยได้รับประโยชน์ในขณะที่โฮสต์ต้องได้รับความทุกข์ ความสัมพันธ์นี้จะเรียกว่าปรสิต (อังกฤษ: Parasitism) แม้ว่าปรสิตสร้างภาระให้กับโฮสต์ (เช่น การเสียหายต่ออวัยวะหรือหน่อพันธ์ที่ใช้สืบพันธุ์ของพวกมัน ทำให้มีการปฏิเสธการบริการของผู้ที่รับประโยชน์) ผลกระทบสุทธิของพวกมันในความเหมาะสมของโฮสต์ไม่จำเป็นต้องเป็นลบและดังนั้นจึงกลายเป็นเรื่องยากที่จะคาดการณ์ วิวัฒนาการร่วมยังถูกผลักดันโดยแข่งขันระหว่างสายพันธุ์หรือในหมู่สมาชิกของสายพันธุ์เดียวกันภายใต้ร่มธงของการเป็นปรปักษ์กันซึ่งกันและกัน (อังกฤษ: reciprocal antagonism) เช่นหญ้าแข่งขันกันสำหรับพื้นที่การเจริญเติบโต ตัวอย่างเช่นสมมติฐาน Red Queen Hypothesis กล่าวว่าปรสิตติดตามและเชี่ยวชาญในระบบป้องกันทางพันธุกรรมที่พบบ่อยในท้องถิ่นของโฮสต์ของมันที่ผลักดันวิวัฒนาการของการสืบพันธุ์แบบอาศัยเพศเพื่อกระจายพื้นที่ทางพันธุกรรมของประชากรที่ตอบสนองต่อความกดดันปฏิปักษ์

ชีวภูมิศาสตร์ (การควบรวมกันของชีววิทยาและภูมิศาสตร์) คือการศึกษาเชิงเปรียบเทียบของการกระจายทางภูมิศาสตร์ของสิ่งมีชีวิตและวิวัฒนาการที่สอดคล้องกันของลักษณะทางพันธุกรรมของพวกมันในพื้นที่และเวลาวารสารชีวภูมิศาสตร์ ได้ก่อตั้งขึ้นในปี 1974 ชีวภูมิศาสตร์และนิเวศวิทยามีการแชร์รากทางวิชาการจำนวนมากของพวกมัน ตัวอย่างเช่น'ทฤษฎีของเกาะชีวภูมิศาสตร์'ที่พิมพ์โดยนักคณิตศาสตร์ Robert MacArthur และนักนิเวศวิทยา Edward O. Wilson ในปี 1967 ถือเป็นหนึ่งในพื้นฐานของทฤษฎีนิเวศ

ชีวภูมิศาสตร์มีประวัติศาสตร์อันยาวนานในวิทยาศาสตร์ธรรมชาติที่เกี่ยวข้องกับการกระจายทางพืนที่ของพืชและสัตว์ นิเวศวิทยาและวิวัฒนาการให้บริบทเชิงอธิบายสำหรับการศึกษาด้านชีวภูมิศาสตร์ รูปแบบทางชีวภูมิศาสตร์เป็นผลมาจากกระบวนการทางนิเวศวิทยาที่มีอิทธิพลกระจายในช่วงระยะต่าง ๆ เช่นการอพยพของสัตว์และการแพร่พันธ์ุ และจากกระบวนการทางประวัติศาสตร์ที่แยกประชากรหรือสายพันธุ์ลงในพื้นที่ที่แตกต่างกัน กระบวนการทางชีวภูมิศาสตร์ที่มีผลในการแยกตามธรรมชาติของสายพันธุ์ช่วยอธิบายอย่างมากของการกระจายของชีวชาติที่ทันสมัยของโลก การแยกสายโลหิตในสายพันธ์หนึ่งๆถูกเรียกว่า vicariance biogeography และมันเป็นสาขาย่อยสาขาหนึ่งของชีวภูมิศาสตร์ ใช้งานจริงในสาขาชีวภูมิศาสตร์ที่เกี่ยวกับระบบและกระบวนการทางนิเวศ ตัวอย่างเช่นช่วงและการกระจายตัวของความหลากหลายทางชีวภาพและสายพันธุ์บุกรุก (อังกฤษ: invasive species) ที่ตอบสนองเปลี่ยนแปลงสภาพภูมิอากาศเป็นปัญหาร้ายแรงอย่างหนึ่งและต่อพื้นที่ใช้งานของการวิจัยในบริบทของภาวะโลกร้อน

แนวคิดนิเวศวิทยาประชากรคือทฤษฎีการเลือก r/K[D] ซึ่งเป็นหนึ่งในรูปแบบการพยากรณ์แรกในนิเวศวิทยาที่ใช้อธิบายวิวัฒนาการประวัติศาสตร์ชีวิต หลักฐานที่อยู่เบื้องหลังรูปแบบการเลือก r/K คือแรงกดดันการคัดเลือกโดยธรรมชาติจะเปลี่ยนแปลงไปตามความหนาแน่นของประชากร เช่นเมื่อเกาะหนึ่งถูกสร้างเป็นอาณานิคมครั้งแรก ความหนาแน่นของประชากรอยู่ในระดับต่ำ การเพิ่มขึ้นในขนาดของประชากรในตอนต้นจะไม่ถูกจำกัดโดยแข่งขัน ปล่อยให้ความอุดมสมบูรณ์ของทรัพยากรที่มีอยู่ถูกนำไปใช้สำหรับการเจริญเติบโตของประชากรอย่างรวดเร็ว หลายขั้นตอนแรก ๆ เหล่านี้ของการเจริญเติบโตของประชากรจะประสบกับแรง"ที่ไม่ขึ้นกับความหนาแน่น"ของการคัดเลือกโดยธรรมชาติ ซึ่งถูกเรียกว่า การเลือกแบบ r ในขณะที่ประชากรเริ่มที่จะแออัดมากขึ้น มันก็เข้าใกล้ขีดความสามารถในการรองรับของเกาะ นี่เป็นการบังคับให้บุคคลเข้าสู่การแข่งขันมากขึ้นสำหรับทรัพยากรที่เหลืออยู่น้อย ภายใต้สภาวะที่แออัด ประชากรจะประสบกับแรงที่ไม่ขึ้นกับความหนาแน่นของการคัดเลือกโดยธรรมชาติ ที่เรียกว่าการเลือกแบบ K

ในโมเดลของการเลือกแบบ r/K ตัวแปรแรก r เป็นอัตราที่แท้จริงของการเพิ่มขึ้นตามธรรมชาติของขนาดของประชากรและตัวแปรที่สอง K เป็นขีดความสามารถในการรองรับประชากร สายพันธุ์ที่แตกต่างกันมีวิวัฒนาการด้านกลยุทธ์ของประวัติศาสตร์ชีวิตที่แตกต่างกันซึ่งกระจายไปตามความต่อเนื่องระหว่างแรงการเลือกทั้งสองนี้ สายพันธุ์ที่ถูกเลือกแบบ r เป็นสายพันธ์หนึ่งที่มีอัตราการเกิดสูง การลงทุนของพ่อแม่อยู่ในระดับต่ำ และอัตราของการเสียชีวิตก่อนโตเต็มที่ที่สูง วิวัฒนาการจะพอใจกับความสามารถมีบุตรในอัตราที่สูงของสายพันธุ์ที่ถูกเลือกแบบ r แมลงและสายพันธ์บุกรุกหลายชนิดจะแสดงออกถึงลักษณะทางพันธุกรรมที่ถูกเลือกแบบ r ในทางตรงกันข้ามสายพันธุ์ที่ถูกเลือกแบบ "K" มีอัตราการเกิดในระดับต่ำ การลงทุนของพ่อแม่ให้กับลูกในวัยหนุ่มสาวในระดับสูง และอัตราการตายในบุคคลที่เป็นผู้ใหญ่ในระดับต่ำ มนุษย์และช้างเป็นตัวอย่างของการแสดงลักษณะสายพันธุ์ที่ถูกเลือกแบบ "K" รวมถึงการมีอายุยืนยาวและมีประสิทธิภาพในการแปลงทรัพยากรให้มากขึ้นสำหรับลูกหลานไม่มากนัก

ความสัมพันธ์ที่สำคัญระหว่างนิเวศวิทยาและการถ่ายทอดทางพันธุกรรมถือกำเนิดขึ้นมาก่อนเทคนิคที่ทันสมัยสำหรับการวิเคราะห์โมเลกุล การวิจัยนิเวศวิทยาโมเลกุลกลายเป็นไปได้มากขึ้นด้วยการพัฒนาเทคโนโลยีทางพันธุกรรมอย่างรวดเร็วและสามารถเข้าถึงได้ เช่นปฏิกิริยาลูกโซ่โพลีเมอร์ (อังกฤษ: Polymerase chain reaction (PCR)) การเพิ่มขึ้นของเทคโนโลยีโมเลกุลและการไหลเข้าของคำถามด้านการวิจัยลงในสาขาทางนิเวศวิทยาใหม่นี้ได้ส่งผลในสิ่งพิมพ์'นิเวศวิทยาโมเลกุล'ในปี 1992 นิเวศวิทยาโมเลกุลใช้เทคนิคการวิเคราะห์ต่างๆในการศึกษาเกียวกับยีนในบริบทของวิวัฒนาการและนิเวศวิทยา ในปี 1994 จอห์น Avise ยังเล่นในบทบาทนำในพื้นที่นี้ของวิทยาศาสตร์ที่มีการตีพิมพ์หนังสือของเขา 'ตัวทำเครื่องหมายโมเลกุล, ประวัติศาสตร์ธรรมชาติและวิวัฒนาการ' เทคโนโลยีที่ใหม่กว่าด้เปิดคลื่นของการวิเคราะห์ทางพันธุกรรมให้กับสิ่งมีชีวิตที่ครั้งหนึ่งเคยเป็นเรื่องยากที่จะศึกษาจากมุมมองของนิเวศวิทยาหรือวิวัฒนาการ เช่นแบคทีเรีย เชื้อราและไส้เดือนฝอย นิเวศวิทยาโมเลกุลก่อให้เกิดกระบวนทัศน์การวิจัยใหม่ในการตรวจสอบคำถามด้านนิเวศวิทยาที่ถูกการพิจารณาเป็นอย่างอื่นว่ายากที่จะควบคุม การตรวจสอบโมเลกุลเปิดเผยก่อนหน้านี้บดบังรายละเอียดเล็กๆ น้อยๆของความซับซ้อนของธรรมชาติและความละเอียดที่ดีขึ้นเป็นคำถามเจาะลึกเกี่ยวกับนิเวศวิทยาเชิงพฤติกรรมและเชิงชีวภูมิศาสตร์ ตัวอย่างเช่นนิเวศวิทยาโมเลกุลเปิดเผยถึงพฤติกรรมทางเพศที่สำส่อนและคู่ควงชายหลายคนในนกนางแอ่นต้นไม้ (อังกฤษ: tree swallow) ที่เคยคิดว่าจะเป็นแบบผัวเดียวเมียเดียว ในบริบททางชีวภูมิศาสตร์ การแต่งงานระหว่างพันธุศาสตร์นิเวศวิทยาและวิวัฒนาการส่งผลให้เกิดสาขาย่อยใหม่ที่เรียกว่า phylogeography

ประวัติศาสตร์ของชีวิตบนโลกได้เป็นประวัติศาสตร์ของการปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตและสภาพแวดล้อมของพวกมัน ด้วยขอบเขตขนาดใหญ่รูปแบบทางกายภาพและนิสัยของพืชผักและชีวิตสัตว์ของโลกได้รับการหล่อหลอมจากสภาพแวดล้อม เมื่อพิจารณาจากช่วงทั้งหมดของเวลาโลก ผลกระทบในทางตรงกันข้ามในที่ซึ่งชีวิตปรับเปลี่ยนสภาพแวดล้อมของมันได้จริงจะมีค่อนข้างเล็กน้อย เฉพาะภายในช่วงเวลาเท่านั้นที่ถุกแสดงออกโดยศตวรรษปัจจุบันมีหนึ่งสายพันธุ์คือมนุษย์ที่ได้รับพลังงานอย่างมีนัยสำคัญในการเปลี่ยนแปลงธรรมชาติของโลกของเขา

นิเวศวิทยาเป็นวิทยาศาสตร์ทางชีวภาพมากเท่าๆกับวิทยาศาสตร์ของมนุษย์ นิเวศวิทยามนุษย์เป็นการสืบสวนแบบสหวิทยาการเข้าไปในนิเวศวิทยาของสายพันธุ์ของเรา "นิเวศวิทยามนุษย์อาจถูกกำหนดเป็น จากมุมมองทางชีว-นิเวศเพื่อการศึกษามนุษย์ในฐานะที่เป็นผู้ที่มีอำนาจครอบงำทางนิเวศของชุมชนและระบบของทั้งพืชและสัตว์ จากมุมมองทางชีว-นิเวศในแบบที่เป็นเพียงแค่ผลกระทบจากสัตว์ที่มีต่อสัตว์อื่นสัตว์ได้รับผลกระทบเนื่องจากสภาพแวดล้อมทางกายภาพของพวกมัน.. และ เพียงแค่ความเป็นมนุษย์ ที่มีสักอย่างที่แตกต่างจากชีวิตสัตว์โดยทั่วไป การมีปฏิสัมพันธ์กับสภาพแวดล้อมทั้งทางกายภาพและที่ผ่านการปรับปรุงในวิธีการที่โดดเด่นและสร้างสรรค์ นิเวศวิทยามนุษย์แบบสหวิทยาการที่แท้จริงจะบ่งบอกตัวเองได้มากที่สุดในทั้งสามแบบข้างต้น":3 คำว่านิเวศวิทยามนุษย์ได้รับการแนะนำอย่างเป็นทางการในปี 1921 แต่นักสังคมวิทยา นักภูมิศาสตร์ นักจิตวิทยาและสาขาอื่นๆ ให้ความสนใจในความสัมพันธ์ของมนุษย์กับระบบธรรมชาติในหลายศตวรรษก่อนหน้านี้โดยเฉพาะอย่างยิ่งในช่วงปลายศตวรรษที่ 19

ความซับซ้อนทั้งหลายทางนิเวศที่มนุษย์กำลังเผชิญอยู่ผ่านทางการแปลงทางเทคโนโลยีของ biome ของโลกได้เป็นสาเหตุให้เกิดยุค Anthropocene (ยุคหนึ่งในช่วงเวลาสำคัญในอดีตที่เริ่มขึ้นเมื่อกิจกรรมต่างๆของมนุษย์มีผลกระทบอย่างมีนัยสำคัญต่อระบบนิเวศของโลก) ชุดที่เป็นเอกลักษณ์ของสถานการณ์ทั้งหลายได้สร้างความจำเป็นสำหรับวิทยาศาสตร์แนวรวมใหม่ที่เรียกว่า'มนุษย์กับระบบธรรมชาติ' (อังกฤษ: coupled human and natural systems) ที่สร้างขึ้นบนสถานการณ์นั้น แต่เคลื่อนที่เกินจากสาขานิเวศวิทยาของมนุษย์ ระบบนิเวศผูกเข้ากับสังคมมนุษย์ผ่านทางหน้าที่การทำงานที่วิกฤตและครอบคลุมทั้งหมดของการสนับสนุนชีวิตที่พวกเขาค้ำจุนไว้ ในการรับรู้ของหน้าที่การทำงานเหล่านี้และความไม่สามารถของวิธีการประเมินมูลค่าทางเศรษฐกิจแบบดั้งเดิมที่จะเห็นค่าในระบบนิเวศ ได้มีการพุ่งขึ้นของการสนใจในทุนทางสังคมธรรมชาติซึ่งจัดหาวิธีการใส่มูลค่าในคลังและการใช้ข้อมูลและวัสดุอันเนื่องมาจากสินค้าและบริการของระบบนิเวศ ระบบนิเวศทำการผลิต ควบคุม บำรุงรักษา และให้ในสิ่งจำเป็นที่สำคัญและเป็นประโยชน์ต่อสุขภาพของมนุษย์ (ด้านกระบวนการการรับรู้และด้านสรีรวิทยา) เศรษฐกิจ, และแม้กระทั่งพวกมันยังจัดหาข้อมูลหรือฟังก์ชันอ้างอิงเป็นเหมือนห้องสมุดมีชีวิตที่ให้โอกาสสำหรับการพัฒนาวิทยาศาสตร์และขบวนการการรับรู้ในเด็กที่มีส่วนร่วมในความซับซ้อนของโลกธรรมชาติ ระบบนิเวศเกี่ยวข้องอย่างสำคัญกับนิเวศวิทยามนุษย์เนื่องจากพวกมันเป็นรากฐานที่ดีที่สุดของเศรษฐกิจโลกในขณะที่ทุกสินค้าและความสามารถในการแลกเปลี่ยนในที่สุดเกิดจากระบบนิเวศบนโลก

การจัดการระบบนิเวศไม่ได้เป็นเพียงเกี่ยวกับวิทยาศาสตร์หรือไม่เป็นเพียงการขยายการจัดการทรัพยากรแบบดั้งเดิม มันให้การสร้างกรอบใหม่ด้านพื้นฐานของวิธีการที่มนุษย์อาจทำงานร่วมกับธรรมชาติ

นิเวศวิทยาเป็นวิทยาศาสตร์ที่ถูกนำมาใช้ในการบูรณะซ่อมแซมสถานที่ที่ถูกปั่นป่วนโดยผ่านการแทรกแซงของมนุษย์ ในการจัดการทรัพยากรธรรมชาติ และในการประเมินผลกระทบต่อสิ่งแวดล้อม Edward O. Wilson ได้คาดการณ์ไว้ในปี 1992 ว่าศตวรรษที่ 21 "จะเป็นยุคของการฟื้นฟูในนิเวศวิทยา" วิทยาศาสตร์เชิงนิเวศน์ได้ขยายตัวอย่างมากในการลงทุนอุตสาหกรรมในการฟื้นฟูระบบนิเวศและกระบวนการทั้งหลายของระบบเหล่านี้เพื่อละทิ้งสถานที่เหล่านั้นหลังจากการฟื้นฟู ผู้จัดการทรัพยากรธรรมชาติในป่าไม้เป็นตัวอย่างที่ว่าจ้างนักนิเวศวิทยาเพื่อพัฒนา ปรับตัว และดำเนินการในวิธีการที่มีพื้นฐานจากระบบนิเวศให้เป็นการวางแผน การดำเนินงาน และขั้นตอนการฟื้นฟูของการใช้ประโยชน์ที่ดิน วิทยาศาสตร์เชิงนิเวศน์จะถูกใช้ในวิธีการของการเก็บเกี่ยวแบบอย่างยั่งยืน การจัดการของโรคและการระบาดของไฟป่า ในการจัดการปริมาณปลาในการประมง สำหรับการบูรณาการการใช้ที่ดินที่มีการป้องกันพื้นที่และชุมชน และการอนุรักษ์ในภูมิทัศน์ทางภูมิศาสตร์-การเมืองที่ซับซ้อน

สภาพแวดล้อมของระบบนิเวศจะรวมถึงพารามิเตอร์ทั้งทางกายภาพและคุณสมบัติทางชีววิทยา มันเป็นเรื่องที่เชื่อมโยงกันแบบไดนามิกและประกอบด้วยทรัพยากรสำหรับสิ่งที่มีชีวิตในทุกเวลาตลอดวงจรชีวิตของพวกมัน เหมือน "นิเวศวิทยา" คำว่า "สภาพแวดล้อม" มีความหมายทางความคิดที่แตกต่างกันและคาบเกี่ยวกับแนวคิดของ "ธรรมชาติ" สภาพแวดล้อม "... จะรวมถึงโลกทางกายภาพ โลกทางสังคมของความสัมพันธ์ของมนุษย์ และโลกที่ถูกสร้างขึ้นโดยมนุษย์":62 สภาพแวดล้อมทางกายภาพอยู่ด้านนอกของระดับขององค์กรทางชีวภาพภายใต้การตรวจสอบ รวมถึงปัจจัยทางอชีวนะเช่นอุณหภูมิ รังสีแสง สารเคมี สภาพภูมิอากาศและธรณีวิทยา สภาพแวดล้อมแบบชีวนะจะรวมถึงยีน เซลล์ สิ่งมีชีวิต สมาชิกของสายพันธุ์เดียวกัน (conspecifics) และสายพันธุ์อื่น ๆ ที่ใช้ที่อยู่อาศัยร่วมกัน

อย่างไรก็ตาม ความแตกต่างระหว่างสภาพแวดล้อมภายนอกและภายในเป็นนามธรรมที่รวมชีวิตและสภาพแวดล้อมให้เป็นหน่วยหรือข้อเท็จจริงที่แยกออกจากกันไม่ได้ในความเป็นจริง มีการแทรกซึมของเหตุและผลระหว่างสภาพแวดล้อมและใช้ชีวิต ตัวอย่างเช่นกฎของอุณหพลศาสตร์ถูกนำไปใช้กับนิเวศวิทยาด้วยวิธีสภาวะทางกายภาพของมัน ด้วยความเข้าใจของหลักการการเผาผลาญอาหารและหลักการทางอุณหพลศาสตร์ การบัญชีที่สมบูรณ์ของการใช้พลังงานและการไหลของวัสดุสามารถได้รับการตรวจสอบผ่านทางระบบนิเวศหนึ่ง ด้วยวิธีนี้ความสัมพันธ์ทางด้านสิ่งแวดล้อมและระบบนิเวศจะมีการศึกษาผ่านการอ้างอิงถึงชิ้นส่วนวัสดุที่ตามหลักการแล้วจัดการได้และแยกจากกันได้ อย่างไรก็ตาม หลังจากที่องค์ประกอบด้านสิ่งแวดล้อมที่มีประสิทธิภาพมีการทำความเข้าใจผ่านการอ้างอิงถึงสาเหตุของพวกมัน องค์ประกอบพวกนี้เชื่อมโยงโดยหลักการกลับมารวมกันเป็นความสมบูรณ์แบบบูรณาการหรือระบบที่ครั้งหนึ่งเคยถูกเรียกว่าเป็น holocoenotic ซึ่งรู้กันว่าเป็นวิธีการวิภาษไปสู่นิเวศวิทยา วิธีการวิภาษใช้ตรวจสอบชิ้นส่วน แต่ผสมสิ่งมีชีวิตกับสิ่งแวดล้อมให้เป็นความสมบูรณ์แบบไดนามิก (หรือ Umwelt) การเปลี่ยนแปลงในปัจจัยทางนิเวศและทางสิ่งแวดล้อมอย่างหนึ่งสามารถมีผลควบคู่กันไปกับสถานะแบบไดนามิกของระบบนิเวศทั้งหมด

ระบบนิเวศกำลังเผชิญหน้าอย่างสม่ำเสมอกับการเปลี่ยนแปลงสิ่งแวดล้อมธรรมชาติและการปั่นป่วนทั้งหลายตลอดเวลาและตลอดพื้นที่ทางภูมิศาสตร์ การปั่นป่วนหมายถึงกระบวนการใดๆที่เอาชีวมวลออกจากชุมชน เช่นไฟไหม้ น้ำท่วม ภัยแล้ง หรือการปล้นสะดม การปั่นป่วนเกิดขึ้นในช่วงที่แตกต่างกันอย่างมากมายในแง่ของขนาด ระยะทางที่ห่างไกลและระยะเวลา และเป็นทั้งสาเหตุและผลิตภัณฑ์จากความผันผวนของธรรมชาติในอัตราการตาย, การวมกลุ่มกันของหลายสายพันธ์ และความหนาแน่นของมวลชีวภาพภายในชุมชนของระบบนิเวศ การปั่นป่วนเหล่านี้สร้างสถานที่ขึ้นมาใหม่ในที่ซึ่งทิศทางใหม่เกิดขึ้นจากการปะติดปะต่อกันของการทดลองและโอกาสทางธรรมชาติ การกลับคืนสู่ปกติในระบบนิเวศเป็นทฤษฎีรากฐานที่สำคัญในการบริหารจัดการระบบนิเวศ ความหลากหลายทางชีวภาพช่วยขับเคลื่อนการกลับคืนสู่ปกติของระบบนิเวศที่ทำหน้าที่เป็นชนิดหนึ่งของการประกันในสิ่งที่จะเกิดขึ้นใหม่

การเผาผลาญอาหาร - อัตราที่พลังงานและทรัพยากรวัสดุถูกกินจากสภาพแวดล้อม ถูกแปลงภายในสิ่งมีชีวิตหนึ่ง และถูกจัดสรรไปซ่อมบำรุง การเจริญเติบโตและการเจริญพันธ์ - เป็นลักษณะทางพันธุกรรมทางสรีรวิทยาพื้นฐาน

โลกถูกสร้างขึ้นเมื่อประมาณ 4.5 พันล้านปีมาแล้ว ขณะที่มันเย็นลง เปลือกโลกและมหาสมุทรก็ก่อตัวขึ้น บรรยากาศของมันถูกแปลงจากการถูกครอบงำโดยไฮโดรเจนไปเป็นสิ่งที่ประกอบด้วยก๊าซมีเทนและแอมโมเนีย มากกว่าพันล้านปีต่อมากิจกรรมการเผาผลาญอาหารของชีวิตได้แปลงบรรยากาศให้เป็นส่วนผสมของก๊าซคาร์บอนไดออกไซด์, ไนโตรเจน และไอน้ำ ก๊าซเหล่านี้ได้เปลี่ยนวิธีการที่แสงจากดวงอาทิตย์ที่กระทบพื้นผิวโลกและผลกระทบเรือนกระจกก็เก็บกักความร้อนเอาไว้ มีแหล่งที่มาของพลังงานฟรีที่ไม่ได้ถูกเก็บกักภายในส่วนผสมของก๊าซที่มีการลดและออกซิไดซ์ที่ตั้งเวทีสำหรับระบบนิเวศดั้งเดิมที่จะพัฒนาและในทางกลับกันบรรยากาศก็พัฒนาไปด้วย

ตลอดประวัติศาสตร์ที่ผ่านมา ชั้นบรรยากาศและวัฏจักรชีวภูมิเคมีของโลกได้อยู่ในสมดุลแบบไดนามิกด้วยระบบนิเวศของดาวเคราะห์ ประวัติศาสตร์ถูกจัดแบ่งตามคุณลักษณะออกเป็นช่วงระยะเวลาของการเปลี่ยนแปลงอย่างมีนัยสำคัญที่ตามมาด้วยหลายล้านปีของความมั่นคง วิวัฒนาการของสิ่งมีชีวิตที่เก่าแก่ที่สุดเช่นจุลินทรีย์แบบไม่ใช้ออกซิเจนประเภทเมทาโนเจนได้เริ่มกระบวนการโดยแปลงไฮโดรเจนในชั้นบรรยากาศให้เป็นเป็นก๊าซมีเทน (4H2 + CO2  CH4 + 2H2O) การสังเคราะห์แสงโดยไม่ใช้อ๊อกซิเจน (อังกฤษ: Anoxygenic photosynthesis) ช่วยลดความเข้มข้นของไฮโดรเจนและช่วยเพิ่มก๊าซมีเทนในชั้นบรรยากาศโดยแปลงก๊าซไข่เน่า (อังกฤษ: hydrogen sulfide) ลงในน้ำหรือสารประกอบกำมะถันอื่น ๆ (เช่น 2H2S + CO2 + hv  CH2O + H2O + 2S) รูปแบบในช่วงต้นของการหมักยังช่วยเพิ่มระดับของก๊าซมีเทนในชั้นบรรยากาศ การเปลี่ยนแปลงไปเป็นบรรยากาศที่มีออกซิเจนเป็นส่วนใหญ่ ("Great Oxidation") ยังไม่เริ่มจนกระทั่งราว 2.4-2.3 พันล้านปีที่แล้ว แต่กระบวนการสังเคราะห์แสงได้เริ่มต้นเมื่อ 0.3-1 พันล้านปีก่อนหน้านั้น

ชีววิทยาของชีวิตดำเนินไปในช่วงที่แน่นอนช่วงหนึ่งของอุณหภูมิ ความร้อนที่เป็นรูปแบบหนึ่งของพลังงานที่ควบคุมอุณหภูมิ ความร้อนส่งผลกระทบต่ออัตราการเจริญเติบโต กิจกรรม พฤติกรรมและการผลิตขั้นต้น อุณหภูมิขึ้นอยู่อย่างมากกับการตกกระทบของรังสีจากดวงอาทิตย์ การเปลี่ยนแปลงเชิงพื้นที่ทางละติจูดและลองติจูดของอุณหภูมิส่งผลกระทบอย่างมากต่อสภาพอากาศและไปทำให้เกิดการกระจายตัวของความหลากหลายทางชีวภาพและระดับของการผลิตขั้นต้นในระบบนิเวศหรือ biomes ที่แตกต่างกันทั่วโลก ความร้อนและอุณหภูมิเกี่ยวข้องอย่างสำคัญกับกิจกรรมการเผาผลาญอาหาร เช่นสิ่งมีชีวิตประเภท Poikilotherms ที่มีอุณหภูมิภายในร่างกายของมันได้รับการควบคุมและขึ้นอยู่กับอุณหภูมิของสภาพแวดล้อมภายนอกอย่างมาก ในทางตรงกันข้ามสิ่งมีชีวิตประเภท homeotherms จะควบคุมอุณหภูมิของร่างกายภายในของพวกมันโดยใช้พลังงานจากการเผาผลาญอาหาร

มีความสัมพันธ์อย่างหนึ่งระหว่างแสงกับการผลิตขั้นต้นและงบประมาณพลังงานเชิงนิเวศ แสงแดดเป็นอินพุตขั้นต้นของพลังงานให้กับระบบนิเวศของโลก แสงประกอบด้วยพลังงานแม่เหล็กไฟฟ้าของหลายๆความยาวคลื่นที่แตกต่างกัน พลังงานที่กระจายออกจากดวงอาทิตย์เป็นต้วสร้างความร้อน ให้โฟตอนของแสงที่วัดได้เป็นพลังงานที่แอคทีฟในปฏิกิริยาทางเคมีของชีวิตและยังทำหน้าที่เป็นตัวเร่งปฏิกิริยาสำหรับการเปลี่ยนแปลงทางพันธุกรรม พืชทั้งหลาย สาหร่าย และแบคทีเรียบางชนิดดูดซับแสงและดูดซึมพลังงานผ่านการสังเคราะห์แสง สิ่งมีชีวิตทั้งหลายที่มีความสามารถในการดูดซับพลังงานโดยสังเคราะห์แสงหรือผ่านการยึดติดสารอนินทรีย์ของ H2S เรียกว่า "ผู้ผลิต" (อังกฤษ: autotrophs) autotrophs - รับผิดชอบในการผลิตขั้นต้น - ดูดซับพลังงานแสงซึ่งจะกลายเป็นการเก็บแบบการเผาผลาญอาหาร (อังกฤษ: metabolically) เป็นพลังงานศักย์ (อังกฤษ: potential energy) ในรูปแบบของการผูกพันแบบเอนทัลปีทางชีวเคมี (อังกฤษ: biochemical enthalpic bonds)

สภาพพื้นที่ชุ่มน้ำเช่นแหล่งน้ำตื้น ผลผลิตของพืชที่สูงและพื้นผิวแบบไม่ใช้ออกซิเจนช่วยให้มีสภาพแวดล้อมที่เหมาะสมสำหรับกระบวนการทางกายภาพ ทางชีวภาพ และทางเคมีที่สำคัญ เป็นเพราะกระบวนการเหล่านี้ พื้นที่ชุ่มน้ำจึงมีบทบาทสำคัญในวัฏจักรสารอาหารและองค์ประกอบระดับโลก

การแพร่กระจายของก๊าซคาร์บอนไดออกไซด์และออกซิเจนในน้ำจะช้ากว่าในอากาศที่ประมาณ 10,000 เท่า เมื่อดินมีน้ำท่วม พวกมันสูญเสียออกซิเจนได้อย่างรวดเร็ว กลายเป็น hypoxic (สภาพแวดล้อมที่มีความเข้มข้นของ O2 ต่ำกว่า 2 มิลลิกรัม/ลิตร) และในที่สุดก็จะกลายเป็น anoxic (สภาพแวดล้อมที่ขาด O2) อย่างสิ้นเชิงในที่ซึ่งแบคทีเรียจะเจริญเติบโตได้ดีในหมู่ราก น้ำยังมีอิทธิพลต่อความรุนแรงและองค์ประกอบสเปกตรัมของแสงเมื่อมันสะท้อนกับพื้นผิวน้ำและอนุภาคที่จมอยู่ใต้น้ำ พืชน้ำแสดงความหลากหลายของการปรับตัวทางสัณฐานวิทยาและทางสรีรวิทยาที่ช่วยให้พวกมันอยู่รอดในการแข่งขันและแพร่กระจายไปในสภาพแวดล้อมเหล่านี้ ตัวอย่างเช่นรากและลำต้นของพวกมันมีช่องว่างอากาศขนาดใหญ่ (aerenchyma) ที่ควบคุมการขนส่งก๊าซ (เช่น CO2 และ O2) อย่างมีประสิทธิภาพเพื่อนำไปใช้ในการหายใจและการสังเคราะห์แสง พืชน้ำเค็ม (halophytes) มีการปรับตัวพิเศษเพิ่มเติม เช่นการพัฒนาของอวัยวะพิเศษสำหรับการสกัดทิ้งเกลือและการควบคุมความเข้มข้นของเกลือภายใน (NaCl) ของพวกมันแบบ osmoregulating เพื่ออาศัยอยู่ในสภาพแวดล้อมที่เป็นน้ำเค็มหรือน้ำกร่อยหรือในมหาสมุทร จุลินทรีย์ดินที่ไม่ใช้อากาศในสภาพแวดล้อมที่เป็นน้ำจะใช้ไนเตรต ไอออนแมงกานีส ไอออนเฟอริก ซัลเฟต คาร์บอนไดออกไซด์และสารอินทรีย์บางอย่าง; จุลินทรีย์อื่น ๆ เป็นพวกที่เจริญเติบโตได้โดยไม่ใช้ออกซิเจน (อังกฤษ: facultative anaerobes) และใช้ออกซิเจนในระหว่างการหายใจเมื่อดินแห้ง กิจกรรมของจุลินทรีย์ดินและคุณสมบัติทางเคมีของน้ำจะช่วยลดศักยภาพการเกิดออกซิเดชันของน้ำ เช่นคาร์บอนไดออกไซด์จะลดลงเป็นมีเทน (CH4) โดยแบคทีเรียที่ผลิตก๊าซชีวภาพ สรีรวิทยาของปลายังถูกดัดแปลงมาเป็นพิเศษเช่นกันเพื่อชดเชยระดับเกลือสิ่งแวดล้อมผ่านการ osmoregulation เหงือกของพวกมันก่อรูปเป็นการไล่ระดับทางไฟฟ้าเคมีที่ไกล่เกลี่ยการขับถ่ายเกลือในน้ำทะเลและดูดซึมในน้ำจืด

รูปร่างและพลังงานของแผ่นดินได้รับผลกระทบอย่างมีนัยสำคัญโดยแรงโน้มถ่วง ในระดับขนาดใหญ่ การกระจายของแรงโน้มถ่วงบนโลกจะไม่สม่ำเสมอและมีอิทธิพลต่อรูปร่างและการเคลื่อนไหวของแผ่นเปลือกโลกเช่นเดียวกับที่มีอิทธิพลต่อกระบวนการทางธรณีสัณฐานเช่นการก่อตัวเป็นเทือกเขาและการกัดเซาะ แรงเหล่านี้ควบคุมคุณสมบัติทั้งหลายทางธรณีฟิสิกส์และการกระจายตัวของ biomes ระบบนิเวศทั่วโลก ในระดับสิ่งมีชีวิต แรงโน้มถ่วงกำหนดตัวชี้นำทิศทางสำหรับการเจริญเติบโตของพืชและของเชื้อรา (Gravitropism) กำหนดตัวชี้นำการวางแนวทางสำหรับการอพยพของสัตว์ และอิทธิพลที่มีต่อชีวกลศาสตร์และขนาดของสัตว์ ลักษณะทางนิเวศเช่นการจัดสรรชีวมวลในต้นไม้ในช่วงการเจริญเติบโตอาจมีการล้มเหลวทางกลเนื่องจากแรงโน้มถ่วงมีอิทธิพลต่อตำแหน่งและโครงสร้างของกิ่งและใบ ระบบหัวใจและหลอดเลือดของสัตว์มีการปรับตัวตามภาระหน้าที่ที่จะเอาชนะความดันและแรงโน้มถ่วงที่มีการเปลี่ยนแปลงไปตามคุณสมบัติของสิ่งมีชีวิต (เช่นความสูง ขนาด รูปร่าง ) พฤติกรรมของพวกเขา (เช่นการดำน้ำ, วิ่ง, การบิน) และที่อยู่อาศัยที่ครอบครองอยู่ (เช่นน้ำ ทะเลทรายร้อน ทุนดราเย็น)

ความดันภูมิอากาศและแรงดันออสโมติก (อังกฤษ: osmotic pressure) (แรงดันต่ำสุดที่ป้องกันไม่ไห้น้ำซึมผ่านเยื่อหุ้มเซลล์ได้) เป็นตัวสร้างข้อจำกัดทางสรีรวิทยาในสิ่งที่มีชีวิต โดยเฉพาะอย่างยิ่งพวกที่บินและหายใจในระดับความสูง หรือการดำน้ำในทะเลลึก ข้อจำกัดเหล่านี้มีอิทธิพลต่อข้อจำกัดในแนวตั้งของระบบนิเวศในชีวมณฑล เนื่องจากสิ่งที่มีชีวิตจะมีความไวด้านสรีรวิทยาและมีการปรับตัวให้เข้ากับความแตกต่างของแรงดันน้ำในชั้นบรรยากาศและแรงดันออสโมติก ตัวอย่างเช่นระดับออกซิเจนจะลดลงตามแรงดันที่ลดลงและเป็นปัจจัยที่จำกัดการใช้ชีวิตในระดับความสูง เนื้อเยื่อที่ใช้ในการขนส่งทางน้ำของพืชเป็นอีกหนึ่งพารามิเตอร์ทางสรีรนิเวศที่สำคัญที่ถูกกระทบจากการไล่ระดับแรงดันออสโมติก แรงดันน้ำในระดับความลึกของมหาสมุทรต้องการให้สิ่งมีชีวิตปรับให้เข้ากับเงื่อนไขเหล่านี้ ยกตัวอย่างเช่นสัตว์ดำน้ำได้เช่นปลาวาฬ ปลาโลมา และแมวน้ำจะต้องถูกดัดแปลงมาเป็นพิเศษเพื่อรับมือกับการเปลี่ยนแปลงในเสียงเนื่องจากความแตกต่างแรงดันน้ำ ความแตกต่างภายในสายพันธุ์ hagfish (ปลายาวชนิดหนึ่งที่คล้ายปลาไหล มันมีฟันเป็นหนามยื่นออกมา) เป็นอีกตัวอย่างหนึ่งของการปรับตัวให้เข้ากับความดันในทะเลลึกโดยผ่านการดัดแปลงโปรตีนพิเศษเฉพาะ

แรงการปั่นป่วนในอากาศและน้ำจะส่งผลกระทบต่อสภาพแวดล้อมและการกระจายระบบนิเวศ การขึ้นรูปและเป็นไดนามิค ในระดับของโลก ระบบนิเวศได้รับผลกระทบจากรูปแบบการไหลเวียนของลมสินค้าโลก พลังลมและแรงปั่นป่วนที่มันสร้างขึ้นจะมีผลต่อความร้อน สารอาหาร และโปรไฟล์ทางชีวเคมีของระบบนิเวศ ตัวอย่างเช่นลมที่พัดบนผิวน้ำของทะเลสาบสามารถสร้างความปั่นป่วน ผสมกับกำแพงน้ำและมีอิทธิพลต่อโปรไฟล์ของสิ่งแวดล้อมในการสร้างโซนของชั้นความร้อน สร้างผลกระทบต่อโครงสร้างของปลา สาหร่าย และส่วนอื่น ๆ ของระบบนิเวศในน้ำ ความเร็วของลมและความปั่นป่วนที่เกิดจากมันยังมีอิทธิพลต่ออัตราการคายน้ำและการระเหยและงบประมาณการใช้พลังงานในพืชและสัตว์ ความเร็วลม อุณหภูมิ และความชื้นสามารถเปลี่ยนแปลงเมื่อลมเดินทางผ่านคุณลักษณะของดินและระดับความสูงที่แตกต่างกัน ตัวอย่างเช่น ลมตะวันตก (อังกฤษ: Westerlies) เข้ามาปะทะกับภูเขาชายฝั่งทะเลและภูเขาภายในของตะวันตกของทวีปอเมริกาเหนือ(ที่ทำให้เกิดพื้นที่แห้งแล้งที่เรียกว่าเงาฝน (อังกฤษ: rain shadow) ขึ้นที่อีกด้านหนึ่งหรือบนด้านใต้ลม (อังกฤษ: leeward side) ของภูเขา) เมื่อลมลอยสูงขึ้น อากาศจะขยายตัวและความชื้นจะควบแน่น; ปรากฏการณ์นี้เรียกว่าการยกเนื่องจากภูเขา (อังกฤษ: orographic lift) และสามารถทำให้เกิดฝน หิมะหรือลูกเห็บได้ กระบวนการด้านสิ่งแวดล้อมนี้จะสร้างการแบ่งพื้นที่ในความหลากหลายทางชีวภาพ เนื่องจากสายพันธุ์ที่ปรับตัวให้เข้ากับสภาพเปียกชื้นถูกจำกัดเป็นช่วงตามหุบเขาชายฝั่งและไม่สามารถที่จะโยกย้ายข้ามระบบนิเวศที่แห้งแล้ง (เช่นที่ลุ่มน้ำโคลัมเบียในภาคตะวันตกของทวีปอเมริกาเหนือ) เพื่อผสมกับสายเลือดพื่น้องที่ถูกแยกออกจากกลุ่มไปอยู่ในระบบภูเขาภายใน

พืชจะแปลงก๊าซคาร์บอนไดออกไซด์ให้เป็นชีวมวลและปล่อยออกซิเจนออกสู่ชั้นบรรยากาศ โดยประมาณ 350 ล้านปีมาแล้ว (สิ้นสุดระยะเวลาดีโวเนียน) การสังเคราะห์แสงได้ทำให้ความเข้มข้นของออกซิเจนในชั้นบรรยากาศมีมากกว่าร้อยละ 17 ซึ่งทำให้มีการเผาไหม้เกิดขึ้น ไฟจะปล่อย CO2 และแปลงเชื้อเพลิงเป็นเถ้าและน้ำมันดิน ไฟเป็นพารามิเตอร์ด้านนิเวศที่สำคัญที่สร้างประเด็นหลายอย่างที่เกี่ยวข้องกับการควบคุมและปราบปรามของมัน ในขณะที่ประเด็นของไฟในความสัมพันธ์กับนิเวศวิทยาและพืชได้รับการยอมรับมาเป็นเวลานานแล้ว นักนิเวศ ชาร์ลส์ คูเปอร์ ได้นำประเด็นไฟไหม้ป่าในความสัมพันธ์กับนิเวศวิทยาของการดับเพลิงและการจัดการไฟป่าขึ้นสู่ความสนใจในปี 1960s

ชาวพื้นเมืองของทวีปอเมริกาเหนือเป็นชนกลุ่มแรกที่มีอิทธิพลต่อระบอบของไฟโดยควบคุมการแพร่กระจายของพวกมันที่อยู่ใกล้กับบ้านของพวกเขาหรือโดยจุดไฟเพื่อกระตุ้นการผลิตอาหารและวัสดุจักสานจากสมุนไพร ไฟจะสร้างยุคระบบนิเวศและโครงสร้างหลังคาที่แตกต่างกัน และอุปทานสารอาหารในดินที่มีการเปลี่ยนแปลงและโครงสร้างหลังคาที่ถูกทำขึ้นใหม่จะเปิด niches ทางนิเวศใหม่สำหรับการจัดตั้งต้นกล้า ระบบนิเวศส่วนใหญ่จะปรับตัวให้เข้ากับวัฏจักรของไฟตามธรรมชาติ เช่นพืชมีการติดตั้งด้วยความหลากหลายของการปรับตัวในการจัดการกับไฟป่า บางสายพันธ์ (เช่น Pinus halepensis (สนพื้นเมืองแถบเมดิเตอเรเนียน)) ไม่สามารถงอกได้จนกระทั่งหลังจากที่เมล็ดของพวกมันมีชีวิตอยู่ผ่านการเกิดไฟไหม้หรือได้รับการสัมผัสกับสารบางอย่างจากการควันไฟ การงอกของเมล็ดที่ถูกสั่งโดยสิ่งแวดล้อมนี้เรียกว่า serotiny ไฟจึงมีบทบาทสำคัญในการคงอยู่และความฟื้นตัวของระบบนิเวศ

ดินเป็นชั้นบนสุดของที่อยู่อาศัยของแร่และสิ่งสกปรกอินทรีย์ที่ครอบคลุมพื้นผิวของโลก มันเป็นหัวหน้าศูนย์กลางการจัดระเบียบของฟังก์ชันส่วนใหญ่ของระบบนิเวศ และมันเป็นสิ่งสำคัญอย่างยิ่งในด้านวิทยาศาสตร์และนิเวศวิทยาการเกษตร การสลายตัวของสารอินทรีย์ที่ตายแล้ว (เช่นใบไม้บนพื้นป่า) ส่งผลให้ดินมีแร่ธาตุและสารอาหารที่ป้อนเข้าสู่การผลิตของพืช ทั้งหมดทั้งปวงของระบบนิเวศดินของโลกถูกเรียกว่า pedosphere ที่ชีวมวลขนาดใหญ่ของความหลากหลายทางชีวภาพของโลกจัดวางเป็นระดับของห่วงโซ่อาหาร ตัวอย่างเช่นสัตว์ไม่มีกระดูกสันหลังที่กินและฉีกใบไม้ขนาดใหญ่จะสร้างชิ้นอาหารคำขนาดเล็กสำหรับสิ่งมีชีวิตขนาดเล็กในห่วงโซ่ของอาหาร โดยรวมแล้วสิ่งมีชีวิตเหล่านี้เป็นผู้บริโภคซากอินทรีย์ (อังกฤษ: detritivores) ที่ควบคุมการก่อตัวของดิน รากของต้นไม้ เชื้อรา แบคทีเรีย หนอน มด เต่าทอง ตะขาบ แมงมุม สัตว์เลี้ยงลูกด้วยนม นก สัตว์เลื้อยคลาน ครึ่งบกครึ่งน้ำ และสัตว์อื่นๆที่คุ้นเคยน้อยทั้งหมดจะทำงานเพื่อสร้างเครือข่ายโภชนาการของชีวิตในระบบนิเวศของดิน ดินจะก่อตัวเป็น ลักษณะที่แสดงออกให้เห็นเช่นสูงต่ำดำขาวตามสภาพแวดล้อมและพันธุกรรมที่ประกอบขึ้นจากหลายส่วน (อังกฤษ: composite phenotypes) ในที่ซึ่งสารอนินทรีจะถูกห่อหุ้มเป็นสรีรวิทยาของชุมชนทั้งหมด เมื่อสิ่งมีชีวิตกินอาหารและอพยพผ่านดิน พวกมันทำการโยกย้ายวัสดุต่างๆไปด้วย กระบวนการทางนิเวศนี้เรียกว่าความปั่นป่วนทางชีว (อังกฤษ: bioturbation) ซึ่งเป็นการเติมอากาศให้กับดินและกระตุ้นการเจริญเติบโตและการผลิต โภชนาการผสมที่แตกต่างกัน (อังกฤษ: heterotrophic) จุลินทรีย์ในดินได้รับอิทธิพลจากไดนามิกโภชนาการของระบบนิเวศและป้อนกลับไปยังระบบนิเวศ ไม่มีแกนเดียวของความสัมพันธ์ระหว่างเหตุและผลที่สามารถมองเห็นได้ในการแยกความแตกต่างของระบบทางชีวภาพออกจากระบบธรณีสัณฐานวิทยาในดิน การศึกษาด้านนิเวศโบราณ (อังกฤษ: Paleoecological studies) ของดินมีการจัดวางให้ต้นกำเนิดสำหรับความปั่นป่วนทางชีวะอยู่ในช่วงระยะเวลาก่อนช่วง Cambrian เหตุการณ์อื่นๆเช่นวิวัฒนาการของต้นไม้และการล่าอาณานิคมของที่ดินในช่วงเวลา Devonian มีบทบาทสำคัญในการพัฒนาในช่วงต้นของระบบโภชนาการทางนิเวศในดิน

นักนิเวศวิทยาจะศึกษาและวัดงบประมาณสารอาหารที่จะเข้าใจว่าวัสดุเหล่านี้ถูกควบคุม มีการไหล และถูกรีไซเคิลผ่านสภาพแวดล้อมได้อย่างไร งานวิจัยนี้ได้นำไปสู่ความเข้าใจที่ว่ามีข้อเสนอแนะทั่วโลกระหว่างระบบนิเวศต่างๆและพารามิเตอร์ทั้งหลายทางกายภาพของ ดาวเคราะห์ดวงนี้ รวมทั้งแร่ธาตุ ดิน ค่า pH ไอออน น้ำและก๊าซในชั้นบรรยากาศ หกองค์ประกอบที่สำคัญ (ไฮโดรเจน คาร์บอน ไนโตรเจน ออกซิเจน กำมะถัน และฟอสฟอรัส; H, C, N, O, S และ P) ก่อรูปเป็นเสาหลักของไมโครโมเลกุลทางชีวภาพทั้งหมดและป้อนเข้าสู่กระบวนการทางธรณีเคมีของโลก จากขนาดของชีววิทยาที่เล็กที่สุด ผลที่เกิดขึ้นโดยรวมของพันล้านของพันล้านของกระบวนการทางนิเวศวิทยาได้ทำการขยายและควบคุมอย่างหนักในวัฏจักรทางชีวธรณีเคมีของโลก การเข้าใจเกี่ยวกับความสัมพันธ์และวัฏจักรที่เป็นสื่อกลางระหว่างองค์ประกอบทั้งหลายเหล่านี้กับทางเดินของระบบนิเวศของพวกมันมีผลอย่างมีนัยสำคัญทำความเข้าใจชีวธรณีเคมีทั่วโลก นิเวศวิทยาของงบประมาณคาร์บอนทั่วโลกเป็นตัวอย่างหนึ่งของการเชื่อมโยงระหว่างความหลากหลายทางชีวภาพและชีวธรณีเคมี คาดว่ามหาสมุทรของโลกเก็บปริมาณคาร์บอนไว้ 40,000 gigatonnes (Gt) พืชและดินเก็บ 2070 Gt และคาดว่าการปล่อยคาร์บอนจากเชื้อเพลิงฟอสซิลเป็น 6.3 Gt ต่อปี ได้มีการปรับโครงสร้างที่สำคัญในงบประมาณคาร์บอนทั่วโลกเหล่านี้ในช่วงประวัติความเป็นมาของโลก มีการควบคุมในระดับสูงมากโดยนิเวศวิทยาของพื้นดิน ตัวอย่างเช่นตลอดช่วงครึ่งแรกของช่วงเวลา Eocene volcanic outgassing ออกซิเดชันของก๊าซมีเทนที่เก็บไว้ในพื้นที่ชุ่มน้ำและก๊าซอื่นที่ก้นทะเลได้เพิ่มความเข้มข้นของ CO2 (คาร์บอนไดออกไซด์) ในชั้นบรรยากาศขึ้นอยู่ในระดับสูงถึง 3,500 พีพีเอ็ม

ในช่วง Oligocene (25-32 ล้านปีที่ผ่านมา) มีการปรับโครงสร้างที่สำคัญอีกครั้งหนึ่งของวัฏจักรคาร์บอนทั่วโลกเมื่อหญ้าได้พัฒนากลไกใหม่ของการสังเคราะห์แสงนั่นคือการ สังเคราะห์ C4 carbon fixation(C4) และได้ขยายช่วงสังเคราะห์ของพวกมันออกไป ทางเดินใหม่นี้ได้พัฒนาในการตอบสนองลดลงของความเข้มข้นของ CO2 ในชั้นบรรยากาศที่ระดับต่ำกว่า 550 พีพีเอ็ม ความชุกชุมและการกระจายสัมพันธ์ของความหลากหลายทางชีวภาพมีการเปลี่ยนแปลงพลวัตระหว่างสิ่งมีชีวิตและสิ่งแวดล้อมของพวกมันเช่นระบบนิเวศที่สามารถเป็นได้ทั้งสาเหตุและผลกระทบที่เกี่ยวข้องกับการเปลี่ยนแปลงสภาพภูมิอากาศ การปรับเปลี่ยนที่ขับเคลื่อนโดยมนุษย์ที่ทำกับระบบนิเวศของโลก (เช่นการปั่นป่วน การสูญเสียความหลากหลายทางชีวภาพ เกษตรกรรม) ก่อให้เกิดการเพิ่มขึ้นของระดับก๊าซเรือนกระจกในชั้นบรรยากาศ การเปลี่ยนแปลงของวัฏจักรคาร์บอนทั่วโลกในศตวรรษต่อไปคาดว่าจะเพิ่มอุณหภูมิของดาวเคราะห์ที่นำไปสู่ความผันผวนอย่างสุดขั้วในสภาพอากาศ เปลี่ยนแปลงการกระจายสายพันธุ์ และเพิ่มอัตราการสูญพันธุ์ ผลกระทบของภาวะโลกร้อนได้ถูกลงทะเบียนอยู่แล้วในธารน้ำแข็งที่กำลังละลาย น้ำแข็งบนยอดภูเขาที่กำลังละลาย และการเพิ่มขึ้นของระดับน้ำทะเล จากผลกระทบนั้นการกระจายสายพันธุ์กำลังมีการเปลี่ยนแปลงไปตามริมฝั่งน้ำและในพื้นที่ในทวีปบริเวณที่รูปแบบการอพยพและพื้นที่เพาะพันธุ์จะติดตามการเปลี่ยนแปลงที่เกิดขึ้นในสภาพภูมิอากาศ ชั้นดินเยือกแข็งคงตัว (อังกฤษ: permafrost) ขนาดใหญ่ก็กำลังละลายเช่นกันเพื่อสร้างตารางหมากรุกใหม่ของพื้นที่น้ำท่วมที่มีอัตราการเพิ่มขึ้นของกิจกรรมการสลายตัวของดินเพิ่มการปล่อยก๊าซมีเทน (CH4) มีความกังวลเกี่ยวกับการเพิ่มขึ้นของก๊าซมีเทนในชั้นบรรยากาศในบริบทของวัฏจักรคาร์บอนทั่วโลกเพราะก๊าซมีเทนเป็นก๊าซเรือนกระจกที่มีประสิทธิภาพในการดูดซับรังสีคลื่นยาวมากกว่า CO2 ถึง 23 เท่าในช่วงเวลา 100 ปี ดังนั้น ภาวะโลกร้อนจึงมีความสัมพันธ์กับการสลายตัวและการหายใจในดินและพื้นที่ชุ่มน้ำที่ผลิตการฟีดแบ็คด้านสภาพภูมิอากาศอย่างมีนัยสำคัญและได้เปลี่ยนแปลงวัฏจักรชีวธรณีเคมีทั่วโลก


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301