ค้นหา
  
Search Engine Optimization Services (SEO)

ทฤษฎีเกม

ทฤษฎีเกม (อังกฤษ: game theory) เป็นสาขาคณิตศาสตร์ประยุกต์ที่ศึกษาการตัดสินใจของผู้ตัดสินใจหลายฝ่าย โดยที่ผลที่แต่ละฝ่ายได้รับขึ้นอยู่กับการตัดสินใจของผู้เล่นฝ่ายอื่นๆ เกมในทางทฤษฎีเกมหมายถึงสถานการณ์ใดๆ ที่ผู้ตัดสินใจ (เรียกว่าผู้เล่น) หลายฝ่ายมีปฏิสัมพันธ์กัน ซึ่งอาจหมายถึงเกมในความหมายทั่วไป เช่น เป่ายิ้งฉุบหรือหมากรุก หรือหมายถึงสถานการณ์ทางสังคมหรือทางธรรมชาติอื่นๆ ทฤษฎีเกมได้รับการนำไปประยุกต์ใช้ในสาขาสังคมศาสตร์ต่างๆ โดยเฉพาะอย่างยิ่งเศรษฐศาสตร์ และในสาขาชีววิทยาวิวัฒนาการและวิทยาการคอมพิวเตอร์ด้วย

การศึกษาทางทฤษฎีเกมเป็นการศึกษาการตัดสินใจของผู้เล่นที่ตัดสินใจแบบ "เป็นเหตุเป็นผล" ซึ่งหมายถึงการที่ผู้เล่นตัดสินใจโดยมีเป้าหมายที่ชัดเจนและตัดสินใจตามเป้าหมายของตนเองอย่างไม่ผิดพลาด สาขาทฤษฎีเกมในรูปแบบปัจจุบันมักถือกันว่ามีจุดเริ่มต้นจากงานของจอห์น ฟอน นอยมันน์ และอ็อสคาร์ มอร์เกินสแตร์น โดยมีผลงานสำคัญคือหนังสือ "ทฤษฎีว่าด้วยเกมและพฤติกรรมทางเศรษฐกิจ" ที่ตีพิมพ์ในปี 1944 ผลงานของจอห์น แนชในการนิยามและพิสูจน์ทฤษฎีบทเกี่ยวกับสมดุลแบบแนช ซึ่งเป็นผลลัพธ์ของเกมที่ผู้เล่นแต่ละฝ่ายไม่มีแรงจูงใจที่จะเปลี่ยนการตัดสินใจของตนเอง เป็นปัจจัยที่สำคัญที่ทำให้นักวิชาการสาขาต่างๆ สามารถนำวิชาทฤษฎีเกมไปใช้ประยุกต์อย่างแพร่หลาย

ทฤษฎีเกมเป็นเครื่องมือสำคัญของทฤษฎีเศรษฐศาสตร์กระแสหลักในปัจจุบัน นักทฤษฎีเกมหลายคนจึงได้รับรางวัลโนเบลสาขาเศรษฐศาสตร์ เริ่มจาก จอห์น แนช, ไรน์ฮาร์ท เซ็ลเทิน และจอห์น ฮาร์ชาญี ในปี 1994

ในทางทฤษฎีเกม "เกม" หมายถึงสถานการณ์ใดๆ ที่มีผู้ตัดสินใจตั้งแต่สองฝ่ายขึ้นไป โดยผู้ตัดสินใจแต่ละฝ่ายมีเป้าหมายของตนเองและผลลัพธ์ที่แต่ละฝ่ายได้รับขึ้นอยู่กับการตัดสินใจของทุกฝ่าย: 1-2  ผู้ตัดสินใจแต่ละฝ่ายในเกมเรียกว่า "ผู้เล่น" โดยผู้เล่นนี้เป็นองค์ประกอบพื้นฐานของเกมในทฤษฎีเกมทุกประเภท: 2  ทฤษฎีเกมตั้งข้อสมมติว่าผู้เล่นทุกฝ่ายตัดสินใจ "อย่างมีเหตุผล" ซึ่งหมายถึงการที่ผู้เล่นแต่ละฝ่ายมีเป้าหมายความต้องการของตัวเองที่ชัดเจนซึ่งมักแสดงในรูปของฟังก์ชันอรรถประโยชน์ และตัดสินใจโดยเลือกทางเลือกที่ทำให้ตัวเองได้รับอรรถประโยชน์สูงสุด: 2 : 4  ทฤษฎีเกมจึงมีความคล้ายกันกับทฤษฎีการตัดสินใจที่ศึกษาการตัดสินใจของผู้ตัดสินใจรายเดียว แต่แตกต่างกันที่ทฤษฎีเกมศึกษาการตัดสินใจในสถานการณ์ที่การตัดสินใจหลายฝ่ายส่งผลซึ่งกันและกัน: 1  ในการประยุกต์ทฤษฎีเกมในสาขาต่างๆ ผู้เล่นในเกมอาจใช้หมายถึงปัจเจกบุคคล แต่ก็อาจใช้หมายถึงกลุ่มบุคคล เช่น บริษัท รัฐบาล ไปจนถึงสิ่งอื่นๆ ที่ไม่ใช่มนุษย์ เช่น สัตว์ พืช พระเป็นเจ้า เป็นต้น

การวิเคราะห์ทางทฤษฎีเกมมักกำหนดว่าผู้เล่นแต่ละฝ่ายมีฟังก์ชันอรรถประโยชน์แบบฟอน นอยมันน์–มอร์เกินสแตร์น ซึ่งมีลักษณะสำคัญคือ หากว่าผลลัพธ์ของการตัดสินใจมีความเป็นไปได้หลายทางและไม่แน่นอนว่าจะได้รับผลลัพธ์ใด ผู้เล่นนั้นจะตัดสินใจในลักษณะที่ให้ได้ค่าคาดหมายของฟังก์ชันอรรถประโยชน์นั้นสูงสุด: 5 : 9 

ทฤษฎีเกมสามารถแบ่งออกได้เป็นสองสาขาใหญ่ๆ ได้แก่ ทฤษฎีเกมแบบร่วมมือ (cooperative game theory) และทฤษฎีเกมแบบไม่ร่วมมือ (non-cooperative game theory) แต่ละสาขาของทฤษฎีเกมมีแนวทางการศึกษาที่แตกต่างกันในด้านรูปแบบการนิยามเกมและแนวคิดที่ใช้ในการวิเคราะห์ การจำแนกทฤษฎีสองแบบนี้มีที่มาเริ่มแรกจากบทความของจอห์น แนช ซึ่งตีพิมพ์ในปี 1951: 1 

ในสาขาทฤษฎีเกมแบบไม่ร่วมมือ นิยามของเกมจะระบุทางเลือกทั้งหมดที่ผู้เล่นแต่ละฝ่ายสามารถตัดสินใจเลือกได้ ผู้เล่นแต่ละฝ่ายตัดสินใจโดยอิสระจากกันและไม่สามารถร่วมกันทำข้อตกลงอื่นๆ ให้มีผลบังคับใช้ได้ ในทฤษฎีเกมแบบร่วมมือ จะสมมติว่าผู้เล่นแต่ละฝ่ายสามารถทำข้อตกลงใดๆ กันก็ได้ โดยจะไม่ให้ความสำคัญกับขั้นตอนการเจราจาตกลงกันระหว่างผู้เล่น แต่ให้ความสำคัญกับการวิเคราะห์กลุ่มผู้เล่นว่าผู้เล่นจะมีการจับกลุ่มร่วมกันอย่างไรและจะมีการแบ่งผลประโยชน์กันอย่างไร คำว่าเกมแบบไม่ร่วมมือในที่นี้ไม่ได้หมายความว่าทฤษฎีเกมชนิดนี้ไม่สามารถใช้จำลองสถานการณ์ที่มีการ "ร่วมมือ" กันในความหมายทั่วไปว่าการตกลงกระทำเพื่อให้ได้ประโยชน์ร่วมกัน แต่การจำลองสถานการณ์ความร่วมมือหรือการเจรจาต่อรองใดๆ จะต้องระบุทางเลือกและขั้นตอนเหล่านั้นในเกมอย่างชัดเจน และข้อตกลงเหล่านั้นจะไม่มีผลบังคับใช้นอกเหนือจากตามกระบวนการที่ระบุอย่างชัดเจนในเกม: 4 

เกมรูปแบบกลยุทธ์ (strategic-form game) หรือเกมรูปแบบปรกติ (normal-form game) ประกอบไปด้วยการระบุผู้เล่นภายในเกม ทางเลือกของผู้เล่นแต่ละฝ่าย เรียกในทางทฤษฎีเกมว่ากลยุทธ์ และฟังก์ชันอรรถประโยชน์ของผู้เล่นแต่ละฝ่าย

ในกรณีที่เกมมีผู้เล่นสองฝ่าย และแต่ละฝ่ายมีทางเลือกจำนวนจำกัด เกมนั้นสามารถเขียนออกมาได้ในรูปของตารางโดยให้แต่ละแถวในตารางหมายถึงทางเลือกของผู้เล่นฝ่ายหนึ่ง และแต่ละสดมภ์หมายถึงทางเลือกของผู้เล่นอีกฝ่ายหนึ่ง ช่องของตารางแต่ละช่องระบุอรรถประโยชน์ของผู้เล่นสองฝ่ายในแต่ละกรณี: 5  ดังตัวอย่างการนำเสนอเกมเป่ายิ้งฉุบในรูปแบบตารางนี้: 78 

โดยทั่วไปแล้ว จำนวนทางเลือกของผู้เล่นไม่จำเป็นต้องมีจำนวนจำกัด (ตัวอย่างกรณีที่ผู้เล่นมีทางเลือกไม่จำกัดคือ ผู้ขายสินค้าสามารถตั้งราคาขายสินค้าเป็นตัวเลขใดๆ ก็ได้) หากว่าทางเลือกของผู้เล่นทุกฝ่ายมีจำนวนจำกัด ทางเลือกในกรณีนี้จะเรียกว่าเป็นกลยุทธ์แท้ เกมกลยุทธ์แท้สามารถขยายให้ผู้เล่นสามารถเลือกกำหนดความน่าจะเป็นที่จะสุ่มเลือกทางเลือกแต่ละทาง เรียกว่ากลยุทธ์ผสม ตัวอย่างเข่น ในเกมเป่ายิ้งฉุบข้างต้น จอห์น ฟอน นอยมันน์ได้เขียนถึงการใช้กลยุทธ์ผสมว่า "สามัญสำนึกจะบอกได้ว่าวิธีที่ดีที่จะเล่นเกมนี้คือการเลือกทางเลือกทั้งสามทางด้วยความน่าจะเป็นแต่ละทางเท่ากับ 1/3": 144 

ในกรณีที่ S i {\displaystyle S_{i}} เป็นเซตกลยุทธ์แท้ เซตกลยุทธ์ผสม Σ i {\displaystyle \Sigma _{i}} สามารถนิยามเป็นเซตของการแจกแจงความน่าจะเป็นของกลยุทธ์แท้ได้ว่า: 146  Σ i = { σ i : S i → [ 0 , 1 ] : ∑ s i i n S i σ i ( s i ) = 1 } {\displaystyle \Sigma _{i}=\left\{\sigma _{i}\colon S_{i}\to [0,1]\colon \sum _{s_{i}inS_{i}}\sigma _{i}(s_{i})=1\right\}}

เกมรูปแบบขยาย (extensive-form game) เป็นรูปแบบการบรรยายลักษณะของเกมที่ระบุลำดับการตัดสินใจก่อนหลังของผู้เล่นแต่ละฝ่ายอย่างชัดเจน เกมรูปแบบขยายสามารถเขียนได้รูปของกราฟแบบต้นไม้ที่จุดยอดแต่ละจุด (ยกเว้นจุดยอดปลายทาง) ระบุว่าผู้เล่นฝ่ายใดตัดสินใจ และจุดปลายทางระบุว่าผู้เล่นแต่ละฝ่ายได้รับอรรถประโยชน์เท่าใด อาจกล่าวได้ว่าเกมรูปแบบขยาย มีลักษณะเหมือนต้นไม้ตัดสินใจที่มีผู้ตัดสินใจหลายฝ่าย: 67 

เกมในรูปแบบขยายสามารถใช้บรรยายสถานการณ์ที่ผู้เล่นไม่ทราบอย่างครบถ้วนว่าการตัดสินใจต่างๆ ในจุดก่อนหน้าเป็นอย่างไร โดยแบ่งจุดตัดสินใจทั้งหมดของผู้เล่นแต่ละฝ่ายออกเป็นเซตสารสนเทศ หากว่าเซตสารสนเทศมีสมาชิกมากกว่าหนึ่งจุด หมายความว่าหากเกมดำเนินไปถึงจุดใดจุดหนึ่งในเซตนั้น ผู้เล่นรายนั้นจะไม่ทราบแน่ชัดว่ากำลังตัดสินใจที่จุดใด ทุกจุดตัดสินใจในเซตสารสนเทศเดียวกันจะมีทางเลือกแบบเดียวกัน เกมที่ผู้เล่นรู้แน่ชัดว่ากำลังตัดสินใจที่จุดใด เรียกว่าเกมที่มีสารสนเทศสมบูรณ์ (perfect information) ซึ่งหมายความว่าเซตสารสนเทศทุกเซตจะมีสมาชิกเพียงจุดยอดเดียว: 55 

เกมรูปแบบขยายยังสามารถใช้ระบุสถานการณ์ที่มีปัจจัยภายนอกที่มีลักษณะของความเสี่ยงหรือการสุ่มด้วย (เช่น การทอยลูกเต๋า) โดยใช้วิธีการกำหนดจุดยอดบางจุดว่าเป็นของผู้เล่นที่เรียกว่า "ธรรมชาติ" ทางเลือกจากจุดของธรรมชาติคือความเป็นไปได้ที่จะเกิดขึ้นในสถานการณ์นั้น และกำหนดความน่าจะเป็นที่แต่ละทางจะเกิดขึ้น: 50 

เกมในรูปแบบขยาย สามารถเขียนออกมาเป็นเกมรูปแบบกลยุทธ์ได้ โดยนิยามทางเลือกของผู้เล่นแต่ละฝ่ายให้ครอบคลุมทุกรูปแบบการตัดสินใจที่เป็นไปได้ การนิยามทางเลือกในรูปแบบนี้ เปรียบได้กับการที่ผู้เล่นตัดสินใจล่วงหน้าก่อนเริ่มเกมว่าจะตัดสินใจอย่างไรบ้างที่แต่ละจุดที่ต้องตัดสินใจ: 85  จากตัวอย่างแผนภาพต้นไม้เกมที่สารสนเทศสมบูรณ์ ผู้เล่น 2 มีจุดที่ต้องตัดสินใจสองจุด คือตัดสินใจหลังจากผู้เล่น 1 เลือก O และตัดสินใจว่าหลังจากผู้เล่น 1 เลือก F หากเขียนเป็นเกมแบบกลยุทธ์ ผู้เล่น 2 จะมีทางเลือกสี่ทาง คือ (Oo,Fo), (Oo,Ff), (Of,Fo) และ (Of, Ff) ซึ่งเขียนออกมาเป็นเกมรูปแบบกลยุทธ์ได้ตามตารางนี้

การนิยามทฤษฎีเกมแบบร่วมมือ ไม่ได้นิยามในลักษณะทางเลือกในการตัดสินใจเลือกของผู้เล่นแต่ละฝ่าย แต่เป็นฟังก์ชันของกลุ่มผู้เล่น (coalition) โดยค่าของฟังก์ชันนั้นคือค่าอรรถประโยชน์หากว่าผู้เล่นในกลุ่มนั้นตกลงร่วมมือกัน การนิยามเกมในลักษณะของทฤษฎีเกมแบบร่วมมือเรียกโดยทั่วไปว่าเป็นเกมรูปแบบการจัดกลุ่ม (coalitional form) เกมลักษณะนี้แบ่งออกได้เป็นสองประเภทหลัก คือ เกมที่มีการยกอรรถประโยชน์ให้กันได้ (transferable utility) และเกมที่ไม่มีการยกอรรถประโยชน์ให้กันได้ (non-transferable utility)

ในเกมที่มีการยกอรรถประโยชน์ให้กันได้ การจับกลุ่มผู้เล่นแต่ละกลุ่มจะมีค่าอรรถประโยชน์ร่วมกันหนึ่งค่า ซึ่งสมาชิกในกลุ่มนั้นๆ จะแบ่งกันอย่างไรก็ได้ กล่าวคือ อรรถประโยชน์มีลักษณะที่ยกให้กันในอัตราส่วนคงที่ เกมในลักษณะนี้สามารถเปรียบได้ว่าอรรถประโยชน์มีลักษณะเหมือนมูลค่าที่เป็นเงินตรา นิยามเกมที่มีการยกอรรถประโยชน์ให้กันได้ ประกอบไปด้วย เซตผู้เล่น N {\displaystyle N} และฟังก์ชันจำนวนจริงที่ระบุค่า v ( S ) {\displaystyle v(S)} สำหรับทุกเซตย่อย S ⊆ N {\displaystyle S\subseteq N} โดยแต่ละเซตย่อย S {\displaystyle S} ที่ไม่เป็นเซตว่างนี้ เรียกว่าเป็นกลุ่มผู้เล่น โดยทั่วไปจะกำหนดให้ค่าของเซตว่าง v ( ∅ ) {\displaystyle v(\emptyset )} เท่ากับศูนย์

เกมที่ไม่มีการยกอรรถประโยชน์ให้กันได้ จะไม่สมมติว่าอรรถประโยชน์สามารถยกให้กันได้ในลักษณะหนึ่งต่อหนึ่ง โดยนิยามเกมประเภทนี้จะระบุเซตของการแบ่งอรรถประโยชน์ที่เป็นไปได้ของแต่ละกลุ่มผู้เล่น S ⊆ N {\displaystyle S\subseteq N} เป็น V ( S ) ⊂ R S {\displaystyle V(S)\subset \mathbb {R} ^{S}}

แนวคิดผลเฉลย (solution concept) หมายถึงฟังก์ชันหรือวิธีการที่ระบุผลลัพธ์จากเกมแต่ละเกม โดยนิยามของแนวคิดผลเฉลยแต่ละชนิดจะเป็นไปตามเงื่อนไขบางประการ

แนวคิดสมดุลแบบแนช (Nash equilibrium; เรียกตามชื่อของจอห์น แนช) เป็นแนวคิดผลเฉลยสำคัญของทฤษฎีเกมแบบไม่ร่วมมือ หลักสำคัญของแนวคิดนี้คือ ผู้เล่นแต่ละฝ่ายเลือกทางเลือกที่ดีสุดสำหรับตนเอง เมื่อพิจารณาถึงทางเลือกของผู้เล่นอื่นในจุดสมดุลนั้นๆ: 11  ผู้เล่นแต่ละฝ่ายจึงไม่สามารถได้ประโยชน์มากขึ้นด้วยการเปลี่ยนทางเลือกของตัวเองแต่เพียงฝ่ายเดียวได้ในจุดสมดุล

จากนิยามของเกมรูปแบบกลยุทธ์ข้างต้น หากกำหนดให้ s − i {\displaystyle s_{-i}} หมายถึงโพรไฟล์กลยุทธ์ของผู้เล่นทุกคนยกเว้นผู้เล่น i {\displaystyle i} โพรไฟล์กลยุทธ์ s {\displaystyle s} สามารถเขียนได้ในอีกรูปแบบหนึ่งเป็น ( s i , s − i ) {\displaystyle (s_{i},s_{-i})}

โพร์ไฟล์กลยุทธ์ s ∗ = ( s 1 ∗ , s 2 ∗ , … , s n ∗ ) {\displaystyle s^{*}=(s_{1}^{*},s_{2}^{*},\dots ,s_{n}^{*})} ถือว่าเป็นจุดสมดุลแบบแนช ถ้ากลยุทธ์ s i ∗ {\displaystyle s_{i}^{*}} ที่ผู้เล่น i {\displaystyle i} เลือก เป็นกลยุทธ์ที่ให้อรรถประโยชน์สูงสุดแก่ผู้เล่น i {\displaystyle i} เมื่อผู้เล่นคนอื่นๆ เลือกเล่นกลยุทธ์ที่ระบุใน s ∗ {\displaystyle s^{*}} กล่าวอีกทางหนึ่งคือ ผู้เล่นแต่ละคนในเกมไม่สามารถทำให้อรรถประโยชน์ของตัวเองสูงขึ้นด้วยการเลือกกลยุทธ์อื่นที่ไม่ใช่ s i ∗ {\displaystyle s_{i}^{*}} ตราบใดที่ผู้เล่นคนอื่นทุกคนเลือกกลยุทธ์ของตัวเองตามที่กำหนดในโพรไฟล์กลยุทธ์ s ∗ {\displaystyle s^{*}} เงื่อนไขนี้เขียนด้วยสัญลักษณ์ทางคณิตศาสตร์ได้ว่า: 11 : 96  ∀ i ∈ N , ∀ s i ′ ∈ S i : u i ( s ∗ ) ≥ u i ( s i ′ , s − i ∗ ) {\displaystyle \forall i\in N,\forall s_{i}'\in S_{i}:u_{i}(s^{*})\geq u_{i}(s_{i}',s_{-i}^{*})}

เกมบางเกมอาจไม่มีจุดสมดุลแบบแนชในกลยุทธ์แท้ ผลงานสำคัญของแนชคือการพิสูจน์ว่า เกมทุกเกมจะมีจุดสมดุลลักษณะนี้ในกลยุทธ์แบบผสมอย่างน้อยหนึ่งจุดเสมอ แนชพิสูจน์ทฤษฎีบทนี้โดยใช้ทฤษฎีบทจุดตรึง: 29  แนวทางการพิสูจน์ด้วยทฤษฎีบทจุดตรึงนี้สามารถพิสูจน์ทฤษฎีบทที่มีนัยทั่วไปกว่าทฤษฎีบทของแนชว่า หากว่าเกมมีเซตกลยุทธ์เป็นเซตย่อยของปริภูมิแบบยุคลิดที่กระชับ คอนเวกซ์ และไม่เป็นเซตว่าง และฟังก์ชันอรรถประโยชน์ของผู้เล่นแต่ละคนเป็นฟังก์ชันต่อเนื่องในเซตโพรไฟล์กลยุทธ์ และกึ่งเว้าต่อกลยุทธ์ของตัวเอง เกมนั้นก็จะมีจุดสมดุลแบบแนชอย่างน้อยหนึ่งจุด กล่าวได้ว่า ทฤษฎีบทของแนชเป็นกรณีเฉพาะของทฤษฎีบททั่วไปนี้: 34 

สมดุลแบบแนชเป็นแนวคิดคำตอบที่นิยามจากเกมในรูปแบบกลยุทธ์ ซึ่งสามารถนำมาใช้กับเกมที่มีการตัดสินใจเป็นลำดับก่อนหลังได้เนื่องจากสามารถเขียนเกมออกไปในรูปแบบกลยุทธ์ได้โดยเปรียบเสมือนว่าผู้เล่นแต่ละฝ่ายเลือกกลยุทธ์ของตนเองทั้งเกมก่อนที่จะเริ่มเล่นเกมจริงๆ แต่สมดุลของแนชในเกมที่มีลำดับก่อนหลังอาจมีลักษณะที่มองได้ว่าเป็นการตัดสินใจที่ไม่สมเหตุสมผล เนื่องจากผู้เล่นสามารถเลือกกลยุทธ์ที่เรียกว่า "คำขู่ที่ไม่น่าเชื่อถือ" (non-credible threat) ซึ่งมีลักษณะเหมือนกับการที่ผู้เล่นขู่ไว้ล่วงหน้าว่าจะเลือกทางที่ทำให้ตนเองเสียประโยชน์ เพื่อกดดันผู้เล่นฝ่ายอื่นที่ตัดสินใจก่อนหน้าให้เลือกทางเลือกอื่นแทน

สมดุลแบบสมบูรณ์ทุกเกมย่อย (subgame perfect equilibrium) เป็นแนวคิดคำตอบที่กำหนดว่าการตัดสินใจของผู้เล่นจะต้องเป็นจุดสมดุลแบบแนชในทุกเกมย่อย (subgame) ที่เริ่มจากจุดยอดใดๆ ในเกม จุดสมดุลแบบสมบูรณ์ทุกเกมย่อยสามารถหาได้ด้วยวิธีการนิรนัยย้อนกลับ (backward induction) ซึ่งหมายถึงการพิจารณาตัดทางเลือกที่ไม่สมเหตุสมผลจากสิ้นสุดของเกมย้อนไปหาจุดเริ่มต้นของเกม

แนวทางการวิเคราะห์เกมแบบร่วมมือ มักประกอบด้วยการเลือกวิธีการจับกลุ่มของผู้เล่นหรือแบ่งผลประโยชน์ ที่เป็นไปตามเงื่อนไข (สัจพจน์) บางประการที่กำหนด เช่น ประสิทธิภาพ ความสมมาตร ความเท่าเทียม ความเสถียร เป็นต้น แนวคิดผลเฉลยของเกมแบบร่วมมือ อาจมีลักษณะเป็นเซต เช่น คอร์ เซตเสถียร หรือมีลักษณะเป็นจุดเดียว เช่น ค่าแชปลีย์ นิวคลีโอลัส เป็นต้น

คอร์ (core) เป็นเซตของการแบ่งอรรถประโยชน์ที่ไม่มีกลุ่มผู้เล่นใดๆ ที่สามารถได้ประโยชน์มากขึ้นด้วยการแยกไปตั้งกลุ่มของตนเองได้ ในเกมแบบที่สามารถยกอรรถประโยชน์ให้กันได้ที่มีผู้เล่น n ฝ่าย คอร์หมายถึงเซตของเวกเตอร์การแบ่งผลประโยชน์ ( x 1 , x 2 , … , x n ) {\displaystyle (x_{1},x_{2},\dots ,x_{n})} ที่ ∑ i ∈ S x i ≥ v ( S ) {\displaystyle \sum _{i\in S}x_{i}\geq v(S)} สำหรับทุกกลุ่มผู้เล่น S {\displaystyle S} ที่เป็นซับเซตของผู้เล่นทั้งหมด

แนวคิดค่าแชปลีย์ (Shapley value) เป็นแนวคิดคำตอบที่กำหนดการแบ่งอรรถประโยชน์แบบเจาะจงหนึ่งรูปแบบให้กับเกมแบบร่วมมือแต่ละเกม แนวคิดนี้เรียกตามชื่อของลอยด์ แชปลีย์ ผู้ที่เสนอแนวคิดนี้ในปี 1953 ค่าแชปลีย์เป็นการแบ่งอรรถประโยชน์รูปแบบเดียวที่เป็นไปตามเงื่อนไขสี่ประการนี้

ค่าแชปลีย์สามารถนิยามได้ในลักษณะต่อไปนี้ S h i ( N ; v ) = ∑ S ⊆ N ∖ { i } | S | ! × ( n − | S | − 1 ) ! n ( v ( S ∪ { i } ) − v ( S ) ) {\displaystyle Sh_{i}(N;v)=\sum _{S\subseteq N\backslash \{i\}}{\frac {|S|!\times (n-|S|-1)!}{n}}(v(S\cup \{i\})-v(S))}

ในการศึกษาที่มีลักษณะทางทฤษฎีเกมก่อนปี 1950 มีหัวใจสำคัญคือแนวคิดแบบมินิแมกซ์ นั่นคือ ผู้เล่นแต่ละฝ่ายเปรียบเทียบผลลัพธ์ที่แย่ที่สุดที่เป็นไปได้ของทางเลือกแต่ละทางของตัวเอง แล้วเลือกทางเลือกการันตีผลลัพธ์ที่ดีที่สุด (นั่นคือ ผลลัพธ์ที่แย่ที่สุดของทางเลือกนั้น ดีกว่ากว่าผลลัพธ์ที่แย่ที่สุดของทางเลือกอื่นๆ) การวิเคราะห์เกมในลักษณะของมินิแมกซ์มีหลักฐานย้อนไปถึงปี 1713 ที่การวิเคราะห์เกมไพ่ เลอ แอร์ (ฝรั่งเศส: le Her) ของของเจมส์ วอลด์เกรฟ ได้รับการเขียนถึงในจดหมายจากปีแยร์ เรมง เดอ มงมอร์ถึงนีโคเลาส์ แบร์นูลลี

ในปี 1913 แอ็นสท์ แซร์เมโล นักคณิตศาสตร์ชาวเยอรมัน ตีพิมพ์บทความ "ว่าด้วยการประยุกต์ทฤษฎีเซตในด้านทฤษฎีหมากรุก" (เยอรมัน: Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels) ซึ่งพิสูจน์ว่า ผลลัพธ์แบบมินิแมกซ์ของเกมหมากรุกสากลมีผลแพ้ชนะเพียงหนึ่งแบบ แต่ไม่มีการพิสูจน์ว่า ผลมินิแมกซ์ของเกมมีลักษณะเป็นฝ่ายใดชนะหรือเสมอกัน เกมที่ผลลัพธ์แบบมินิแมกซ์มีผลแพ้ชนะแบบเดียวนี้เรียกว่าเป็นเกมที่กำหนดแล้วโดยแท้ (strictly determined) ทฤษฎีบทของแซร์เมโลใช้ได้กับกับเกมแบบขยายที่มีผู้เล่นสองคน มีทางเลือกที่จำกัด มีผลแพ้ชนะและผู้เล่นมีสารสนเทศสมบูรณ์ (ไม่มีการเดินพร้อมกัน และสารสนเทศทุกอย่างเปิดเผยให้ผู้เล่นทุกฝ่ายทราบ) เช่น หมากฮอส หมากล้อม เฮกซ์ เป็นต้น

เอมีล บอแรล นักคณิตศาสตร์ชาวฝรั่งเศส ตีพิมพ์บทความฉบับในปี 1921, 1924 และ 1927 โดยเป็นการวิเคราะห์กลยุทธ์ผสมและผลเฉลยแบบมินิแมกซ์ทางคณิตศาสตร์อย่างเป็นระบบครั้งแรก แต่บอแรลพิสูจน์เฉพาะในกรณีอย่างง่าย และสันนิษฐานว่าผลเฉลยแบบมินิแมกซ์นี้ไม่ได้มีอยู่เป็นการทั่วไป แต่ข้อสันนิษฐาน ฟอน นอยมันน์ ได้พิสูจน์ในภายหลังว่าไม่เป็นจริง

แนวคิดสมดุลแบบแนชก็มีการใช้ในการวิเคราะห์ทฤษฎีเศรษฐศาสตร์มาก่อนหน้าเช่นกัน ในปี 1838 อ็องตวน-โอกุสแต็ง กูร์โน ได้ตีพิมพ์หนังสือ "งานวิจัยว่าด้วยหลักคณิตศาสตร์ของทฤษฎีทรัพย์" (ฝรั่งเศส: Recherches sur les principes mathématiques de la théorie de la richesses) โดยมีเนื้อหาบทหนึ่งที่มีทฤษฎีวิเคราะห์ตลาดผูกขาดโดยผู้ขายน้อยราย แบบจำลองทางคณิตศาสตร์ของกูร์โนใช้การวิเคราะห์ที่มีลักษณะเป็นสมดุลแบบแนชรูปแบบหนึ่ง นับว่าเป็นงานเขียนชิ้นแรกที่มีการใช้แนวคิดสมดุลแบบแนช แต่กูร์โนไม่ได้เล็งเห็นว่าแนวคิดการวิเคราะห์ของเขาสามารถมีนัยทั่วไปที่ใช้กับสถานการณ์เชิงกลยุทธ์ใดๆ

ในปี 1928 จอห์น ฟอน นอยมันน์ตีพิมพ์บทความ "ว่าด้วยทฤษฎีของเกมนันทนาการ" (เยอรมัน: Zur Theorie der Gesellschsftsspiele) บทความของฟอน นอยมันน์นำเสนอทฤษฎีของเกมที่มีลักษณะทั่วไปกว่างานก่อนหน้า โดยตั้งคำถามว่า "ผู้เล่น n คน S1, S2,...,Sn เล่นเกม G ผู้เล่น Sm คนใดคนหนึ่งจะต้องเล่นอย่างไรจึงจะได้ผลลัพธ์ที่ดีที่สุด" ในบทความนี้ ฟอน นอยมันน์ได้กำหนดเกมรูปแบบขยาย และนิยาม "กลยุทธ์" ว่าหมายถึงแผนการเล่นที่ระบุการตัดสินใจของผู้เล่นที่จุดต่างๆ ในเกม โดยขึ้นกับสารสนเทศที่ผู้เล่นมีในจุดนั้นๆ ซึ่งเป็นลักษณะเดียวกับแนวคิดวิธีการเล่นของบอแรล การนิยามกลยุทธ์ในลักษณะนี้ทำให้ฟอน นอยมันน์สามารถลดรูปเกมแบบขยายให้เหลือเพียงการเลือกกลยุทธ์ของผู้เล่นแต่ละฝ่ายโดยอิสระจากกันก่อนเริ่มเกมเท่านั้น ฟอน นอยมันน์พิสูจน์ว่า ในเกมที่มีผู้เล่นสองฝ่ายที่ผลรวมเป็นศูนย์และแต่ละฝ่ายมีทางเลือกจำนวนจำกัด หากว่าผู้เล่นสามารถใช้กลยุทธ์ผสมได้ เกมนี้จะมีจุดมินิแมกซ์หนึ่งจุดเสมอ เนื้อหาการพิสูจน์ทฤษฎีบทของฟอน นอยมันน์มีลักษณะที่เกี่ยวข้องกับทฤษฎีบทจุดตรึงของเบราว์เออร์ แม้ว่าฟอน นอยมันน์ไม่ได้เขียนการพิสูจน์ในลักษณะของจุดตรึงในบทความ ฟอน นอยมันน์ยกตัวอย่างเกมนันทนาการในบริบทนี้ว่าอาจหมายถึงเกมหลายประเภท เช่น รูเล็ตต์และหมากรุกสากล แต่ก็กล่าวถึงด้วย ความสัมพันธ์ในลักษณะของเกมนี้สามารถอธิบายสถานการณ์อื่นๆ ได้ด้วย โดยได้เขียนในเชิงอรรถว่าคำถามนี้มีลักษณะเหมือนคำถามในวิชาเศรษฐศาสตร์: 62 

อ็อสคาร์ มอร์เกินสแตร์น เป็นนักเศรษฐศาสตร์ที่ในขณะนั้นสนใจเกี่ยวกับปฏิสัมพันธ์ระหว่างการตัดสินใจของบุคคลหลายฝ่าย ในหนังสือเรื่องการพยากรณ์ทางเศรษฐกิจที่ตีพิมพ์ในปี 1928 มอร์เกินสแตร์นได้ยกตัวอย่างการต่อกรกันระหว่างตัวละครเชอร์ล็อก โฮมส์กับมอริอาร์ตี ที่โฮมส์พิจารณาหลายชั้นว่ามอริอาร์ตีคิดว่าเขาจะทำอย่างไร มอร์เกินสแตร์น มอร์เกินสแตร์นได้รับคำแนะนำจากนักคณิตศาสตร์เอดูอาร์ด เช็คระหว่างนำเสนอบทความที่งานสัมมนาในกรุงเวียนนาในปี 1935 ว่าหัวข้องานของมอร์เกินสแตร์นมีเนื้อหาเกี่ยวข้องกับงานทฤษฎีเรื่องเกมของฟอน นอยมันน์ หลังจากการผนวกออสเตรียเข้ากับนาซีเยอรมนีในปี 1938 มอร์เกินสแตร์นย้ายจากเวียนนาไปยังมหาวิทยาลัยพรินซ์ตันในสหรัฐอเมริกา ทำให้เขาได้พบและมีโอกาสได้ร่วมงานกับฟอน นอยมันน์ จนมีผลงานเป็นหนังสือ "ทฤษฎีว่าด้วยเกมและพฤติกรรมทางเศรษฐกิจ" (Theory of games and economic behavior) ที่ตีพิมพ์ครั้งแรกในปี 1944

หลังจากที่หนังสือของฟอน นอยมันน์และมอร์เกินสแตร์นได้รับการตีพิมพ์ ทศวรรษ 1950 เป็นช่วงที่มีผลงานด้านทฤษฎีเกมที่สำคัญหลายอย่าง โดยมีสถาบันสำคัญที่เป็นศูนย์กลางสองแห่งคือมหาวิทยาลัยพรินซ์ตัน และแรนด์ คอร์เปอเรชัน สถาบันวิจัยเอกชนที่ตั้งขึ้นใหม่ที่มุ่งเน้นการทำวิจัยด้านความมั่นคงให้กับรัฐบาลสหรัฐ

ในช่วงปี 1950 ถึง 1953 จอห์น แนช ได้ตีพิมพ์บทความสำคัญสี่บทความซึ่งมีบทบาทสำคัญอย่างมากต่อสาขาทฤษฎีเกม จากนิยามเกมรูปแบบทั่วไปของฟอน นอยมันน์และมอร์เกินสแตร์น แนชได้นิยามแนวคิดสมดุลสำหรับเกมในรูปแบบทั่วไปที่เรียกในภายหลังว่าเป็นสมดุลแบบแนช และพิสูจน์ว่าเกมรูปแบบทั่วไปที่มีผู้เล่นและกลยุทธ์จำกัดทุกเกมที่ผู้เล่นสามารถใช้กลยุทธ์ผสมจะมีจุดสมดุลอย่างน้อยหนึ่งจุด ผลงานนี้ตีพิมพ์ครั้งแรกในบทความสั้นชื่อ "จุดสมดุลในเกมที่มีผู้เล่น n ฝ่าย" (Equilibrium points in n-person games) ในปี 1950 แนชเขียนถึงแนวคิดสมดุลนี้ในวิทยาพนธ์ปริญญาเอก และตีพิมพ์เนื้อหาฉบับสมบูรณ์ยิ่งขึ้นในบทความปี 1951 ชื่อ "เกมแบบไม่ร่วมมือ" (Non-cooperative games)

จากเดิมที่เนื้อหาในหนังสือของฟอน นอยมันน์และมอร์เกินสแตร์นไม่ได้แยกระหว่างการที่ผู้เล่นแต่ละฝ่ายเลือกกลยุทธ์อย่างเป็นอิสระจากกันและการร่วมมือกัน แนชเป็นคนแรกที่จำแนกทฤษฎีเกมแบบร่วมมือและแบบไม่ร่วมมือ โดยแนวคิดสมดุลแบบแนชเป็นแนวคิดแบบไม่ร่วมมือ แนชยังได้ตีพิมพ์บทความในลักษณะของทฤษฎีเกมแบบร่วมมือ โดยในบทความปี 1950 ชื่อ "ปัญหาการต่อรอง" (The bargaining problem) แนชได้เสนอผลลัพธ์ของเกมการต่อรองระหว่างผู้เล่นสองฝ่ายโดยใช้สัจพจน์สี่ประการ บทความนี้ของแนชเป็นงานชิ้นแรกในสาขาทฤษฎีเกมที่ไม่ใช้สมมติว่าอรรถประโยชน์สามารถยกให้กันได้ระหว่างผู้เล่น บทความนี้มีที่มาจากข้อเขียนของแนชตั้งแต่สมัยเรียนวิชาเศรษฐศาสตร์ระหว่างประเทศในระดับปริญญาตรี ในปี 1953 แนชตีพิมพ์บทความ "เกมแบบร่วมมือที่มีผู้เล่นสองฝ่าย" (Two-person cooperative games) ผลงานของแนชด้านทฤษฎีเกมทำให้แนชได้รับรางวัลโนเบลสาขาเศรษฐศาสตร์ในปี 1994

อัลเบิร์ต ทักเคอร์ (ซึ่งเป็นที่ปรึกษาปริญญาเอกของจอห์น แนช, ลอยด์ แชปลีย์, และเดวิด เกล) และฮาโรลด์ คุห์น นักคณิตศาสตร์ที่พรินซ์ตัน ได้เป็นบรรณาธิการตีพิมพ์ชุดหนังสือรวมเล่มผลงานวิจัยในด้านทฤษฎีเกม โดยตีพิมพ์เล่มแรกใน 1950 ในหนังสือเล่มที่สองที่ตีพิมพ์ในปี 1953 ลอยด์ แชปลีย์ นักศึกษาปริญญาเอกที่พรินซ์ตัน ได้ตีพิมพ์บทความที่นำเสนอแนวคิดคำตอบที่เรียกในภายหลังว่าค่าแชปลีย์ นอกจากนี้ แชปลีย์ ร่วมกับดอนัลด์ จิลลีส ได้เสนอแนวคิดคอร์

ในปี 1965 ไรน์ฮาร์ท เซ็ลเทิน ได้ตีพิมพ์บทความที่วิเคราะห์แบบจำลองการผูกขาดโดยผู้ขายน้อยรายด้วยทฤษฎีเกม ในบทความนี้ เซ็ลเทินได้เสนอแนวคิดสมดุลแบบสมบูรณ์ทุกเกมย่อย ซึ่งเป็นการนิยามสมดุลแบบแนชที่ละเอียดขึ้นเพื่อแยกสมดุลแบบแนชที่มีลักษณะไม่สมเหตุสมผลในเกมที่มีลำดับก่อนหลังออกไป การนิยามสมดุลที่ละเอียดยิ่งขึ้นเป็นหัวข้อวิจัยสำคัญในช่วงทศวรรษ 1960 และ 1970 โดยในปี 1975 เซ็ลเทินได้เสนอแนวคิดสมดุลแบบสมบูรณ์ ที่นิยามจุดสมดุลที่สมมติว่าผู้เล่นอาจจะ "มือลั่น" เลือกกลยุทธ์ที่ผิดจากกลยุทธ์ในจุดสมดุลได้

พัฒนาการสำคัญในทฤษฎีเกมแบบไม่ร่วมมือที่เกิดขึ้นในทศวรรษ 1960 อีกข้อหนึ่งคือการจำลองสถานการณ์ที่ผู้เล่นมีสารสนเทศไม่เท่ากัน จอห์น ฮาร์ชาญี ได้ตีพิมพ์บทความที่เสนอแนวคิดเกมแบบเบยส์ (Bayesian game) ที่ตอนเริ่มเกมผู้เล่นแต่ละฝ่ายมีสารสนเทศส่วนตัวที่ทราบแต่เพียงฝ่ายเดียว เรียกว่าเป็น "ประเภท" ของผู้เล่น และระบุว่าผู้เล่นฝ่ายอื่นเชื่อว่า ประเภทของผู้เล่นนี้มีการแจกแจงความน่าจะเป็นแต่ละแบบอย่างไร

ความสำคัญของทฤษฎีเกมในสาขาเศรษฐศาสตร์ ทำให้นักวิจัยสาขาทฤษฎีเกมได้รับรางวัลเพื่อระลึกถึงอัลเฟรด โนเบล สาขาเศรษฐศาสตร์หลายคน โดยในปี 1994 จอห์น แนช, ไรน์ฮาร์ท เซ็ลเทิน และจอห์น ฮาร์ชาญี ได้รับรางวัลในปี 1994 ต่อมา รอเบิร์ต ออมันน์ และทอมัส เชลลิง ได้รับรางวัลร่วมกันในปี 2005 โดยเชลลิงศึกษาทางด้านแบบจำลองพลวัต ซึ่งเป็นตัวอย่างแรกๆ ของทฤษฎีเกมเชิงวิวัฒนาการ ออมันน์เน้นศึกษาเกี่ยวกับดุลยภาพ ได้ริเริ่มดุลยภาพแบบหยาบ ดุลยภาพสหสัมพันธ์ และพัฒนาการวิเคราะห์ที่เป็นระเบียบมากขึ้นสำหรับสมมติฐานที่เกี่ยวกับความรู้ร่วมและผลที่ตามมา เลออนิด คูร์วิช, เอริก มัสกิน และโรเจอร์ ไมเออร์สัน ได้รับรางวัลโนเบลสาขาเศรษฐศาสตร์ในปี 2007 จาก "การวางรากฐานทฤษฎีการออกแบบกลไก" และอัลวิน รอธ และลอยด์ แชปลีย์ ได้รับรางวัลในปี 2012 "สำหรับทฤษฎีการจัดสรรอย่างคงที่และการใช้การออกแบบตลาด"

เกมความลำบากใจของนักโทษ (Prisoner's dilemma) เป็นเกมที่มีผู้เล่น 2 คนและทางเลือก 2 ทาง แนวคิดของเกมนี้ได้สร้างขึ้นโดย เมอร์ริล ฟลูด และ เมลวิน เดรชเชอร์ ใน พ.ศ. 2493 โดยมีลักษณะเป็นเกมที่ผู้เล่นทั้งสองฝ่ายพยายามเลือกทางเลือกที่ได้ผลตอบแทนมากที่สุด แต่กลับทำให้ผลตอบแทนรวมที่ได้ต่ำลง มีสถานการณ์ดังนี้

จะเห็นว่ากลยุทธเด่นของผู้เล่นทั้งสองฝ่ายคือการรับสารภาพ เพราะไม่ว่าผู้เล่นอีกฝ่ายจะตัดสินใจอย่างไร ก็จะได้ผลตอบแทนที่ดีกว่าเสมอ แต่เมื่อทั้งสองฝ่ายเลือกทางเลือกนี้ กลับไม่ให้ผลตอบแทนที่ดีที่สุด ถึงแม้ผู้เล่นจะทราบว่าผลตอบแทนที่ดีที่สุดจะเกิดขึ้นเมื่อทั้งสองฝ่ายไม่รับสารภาพ แต่ทั้งคู่อาจไม่กล้าทำเพราะไม่ไว้ใจอีกฝ่ายว่าจะรับสารภาพหรือไม่ จึงทำให้ทั้งสองฝ่ายต้องได้รับผลตอบแทนที่ต่ำลง และจุด (-10, -10) ก็เป็นจุดสมดุลของแนชในเกมนี้ เพราะผู้เล่นทั้งสองฝ่ายไม่สามารถเปลี่ยนไปเลือกทางเลือกอื่นที่ได้ผลตอบแทนดีกว่านี้

จะเห็นว่าเกมในรูปแบบนี้ไม่มีกลยุทธเด่น และมีจุดสมดุลของแนชสองจุดคือ (-1, +1) และ (+1, -1) แต่วิธีทางจิตวิทยาสำหรับผู้เล่นเกมนี้คือ พยายามส่งสัญญาณให้ผู้เล่นฝ่ายตรงข้ามเห็นว่า ตนจะไม่หักหลบอย่างแน่นอน ซึ่งจะทำให้ผู้เล่นฝ่ายตรงข้ามต้องยอมหักหลบไปเอง มิฉะนั้นจะเสียผลตอบแทนอย่างมาก

เกมแห่งความร่วมมือ (Stag hunt) เป็นเกมที่มีผู้เล่น 2 คนและทางเลือก 2 ทาง ซึ่งเป็นทางเลือกระหว่างทางที่ปลอดภัยกับการให้ความร่วมมือกับอีกฝ่าย มีสถานการณ์ดังนี้

จะเห็นว่าเกมในรูปแบบนี้ไม่มีกลยุทธเด่น และมีจุดสมดุลของแนชสองจุดคือ (+10, +10) และ (+3, +3) ซึ่งการที่ผู้เล่นทั้งสองจะได้ผลตอบแทนสูงสุดนั้น จะต้องอาศัยความร่วมมือร่วมใจกัน คือเลือกล่ากวางทั้งคู่ ซึ่งผู้เล่นจะต้องมีความไว้วางใจผู้เล่นอีกฝ่ายด้วย

มีการนำทฤษฎีเกมมาประยุกต์ใช้ในด้านรัฐศาสตร์ เช่น การหาเสียงเลือกตั้ง ในปี พ.ศ. 2500 แอนโทนี ดาวน์ส ได้ตีพิมพ์ผลงานเรื่อง An Economic Theory of Democracy ซึ่งมีเนื้อหาเกี่ยวกับการเลือกตำแหน่งในการหาเสียงเลือกตั้งให้ได้ผลดีที่สุด

ในทางเศรษฐศาสตร์ ได้มีการนำทฤษฎีเกมมาช่วยในการตัดสินใจในหลาย ๆ ด้านมาเป็นเวลานานแล้ว เช่น การต่อรองผลประโยชน์ การประมูล การแข่งขันของผู้ผลิต การรวมกลุ่มทางเศรษฐกิจ โดยมีแนวคิดสำคัญที่ใช้คือเรื่องจุดสมดุลของแนช อย่างไรก็ตาม ในเกมการแข่งขันทางธุรกิจ อาจมีการปรับเปลี่ยนกลยุทธได้ตลอดเวลาเพื่อให้ได้รับผลตอบแทนที่สูงขึ้น และผลลัพธ์ที่ได้ก็จะเข้าสู่จุดสมดุลของแนช ซึ่งเป็นจุดที่ทุกฝ่ายไม่สามรถเปลี่ยนกลยุทธเพื่อให้ได้ผลตอบแทนสูงกว่านี้อีกแล้ว

มีการใช้ทฤษฎีเกมเพื่ออธิบายถึงปรากฏการณ์ต่าง ๆ ทางชีววิทยา เช่น ในปี พ.ศ. 2473 โรนัลด์ ฟิชเชอร์ ได้ใช้ทฤษฎีเกมในการอธิบายถึงอัตราส่วนของสัตว์เพศผู้ต่อเพศเมียที่เป็น 1:1 เนื่องจากเป็นอัตราส่วนที่สามารถสืบพันธุ์ได้จำนวนมากที่สุด นอกจากนี้ นักชีววิทยายังใช้ทฤษฎีเกมเพื่อช่วยในการศึกษาพฤติกรรมต่าง ๆ ของสัตว์ เช่น การใช้เกมไก่ตื่นในการอธิบายถึงการต่อสู้ของสัตว์

มีการพัฒนาในด้านวิทยาการคอมพิวเตอร์และการเขียนโปรแกรมเพื่อหาขั้นตอนวิธีที่ดีที่สุดในการเล่นเกมในสถานการณ์หนึ่งเป็นระยะเวลานาน

ได้มีการนำทฤษฎีเกมมาประยุกต์ใช้ในด้านสังคมวิทยา เช่น วิลลาร์ด แวน ออร์มาน ไควน์ และ เดวิด ลูอิส ได้พัฒนาการศึกษาด้านประเพณีนิยม และมีการวิเคราะห์เกี่ยวกับเกมต่าง ๆ ที่ต้องเลือกระหว่างศีลธรรมกับผลประโยชน์ของตนเอง เช่น เกมความลำบากใจของนักโทษ


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด ข้อความคาดการณ์ของโกลด์บาช เอกลักษณ์ของออยเลอร์ ทฤษฎีบทสี่สี วิธีการแนวทแยงของคันทอร์ ทฤษฎีบทมูลฐานของแคลคูลัส ทฤษฎีบทมูลฐานของพีชคณิต ทฤษฎีบทมูลฐานของเลขคณิต ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ทฤษฎีบทสุดท้ายของแฟร์มา ทฤษฎีข้อมูล กลศาสตร์ ทฤษฎีเกม คณิตศาสตร์การเงิน การวิเคราะห์เชิงตัวเลข คณิตศาสตร์ฟิสิกส์ วิทยาการเข้ารหัสลับ การคำนวณ คณิตศาสตร์เชิงการจัด วิยุตคณิต ทฤษฎีความอลวน สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แฟร็กทัล ทอพอลอยี เรขาคณิตสาทิสรูป พีชคณิตเชิงเส้น ทฤษฎีกรุป ทฤษฎีจำนวน อนันต์

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24157