ค้นหา
  
Search Engine Optimization Services (SEO)

ทฤษฎีระบบควบคุม

ทฤษฎีระบบควบคุม (อังกฤษ: control theory) เป็นสาขาหนึ่งของคณิตศาสตร์และวิศวกรรมศาสตร์ ในที่นี้ การควบคุมหมายถึง การควบคุมระบบพลศาสตร์ ให้มีค่าเอาต์พุตที่ต้องการ โดยป้อนค่าอินพุตที่เหมาะสมให้กับระบบ ตัวอย่างที่เห็นได้ทั่วไป เช่น ระบบควบคุมอุณหภูมิห้องของเครื่องปรับอากาศ หรือ แม้แต่ลูกลอยในโถส้วม ที่เปิดน้ำปิดน้ำโดยอัตโนมัติเมื่อน้ำหมดและน้ำเต็ม

การควบคุมการขับเคลื่อนยานพาหนะ เช่น รถยนต์ ก็ถือเป็นการควบคุมชนิดหนึ่ง โดยผู้ขับขี่เป็นผู้ควบคุมทิศทางและความเร็ว ซึ่งระบบควบคุมประเภทที่ต้องมีคนเข้ามาเกี่ยวข้องนี้ถือว่าเป็น ระบบควบคุมไม่อัตโนมัติ (manual control) แต่ทฤษฎีระบบควบคุมจะครอบคลุมเฉพาะการวิเคราะห์และออกแบบ ระบบควบคุมอัตโนมัติ (automatic control) เท่านั้น เช่น ระบบขับเคลื่อนอัตโนมัติ (cruise control)

ระบบควบคุมยังอาจแบ่งออกได้เป็นระบบควบคุมวงเปิด (open-loop control) คือ ระบบควบคุมที่ไม่ได้ใช้สัญญาณจากเอาต์พุต มาบ่งชี้ถึงลักษณะการควบคุม ส่วนระบบควบคุมวงปิด (closed-loop control) หรือ ระบบป้อนกลับ (feedback control) นั้นจะใช้ค่าที่วัดจากเอาต์พุต มาคำนวณค่าการควบคุม นอกจากนี้ยังอาจแบ่งได้ตามคุณลักษณะของระบบ เช่น เป็นเชิงเส้น (linear) / ไม่เป็นเชิงเส้น (nonlinear) , แปรเปลี่ยนตามเวลา (time-varying) / ไม่เปลี่ยนแปลงตามเวลา (time-invariant) และเวลาต่อเนื่อง (Continuous time) / เวลาไม่ต่อเนื่อง (Discontinuous time)

การใช้ระบบควบคุมวงปิด นั้นมีมาแต่โบราณกาล ตัวอย่างเช่น นาฬิกาน้ำของกรีก ซึ่งมีการใช้ลูกลอยในการควบคุมระดับน้ำในถัง อุปกรณ์ที่ถือว่าเป็นจุดเริ่มต้น ของการใช้ระบบควบคุมป้อนกลับในวงการอุตสาหกรรม ก็คือ ลูกเหวี่ยงหนีศูนย์กลาง (centrifugal governor หรือเรียก fly-ball governor) ในการควบคุมความเร็วในการหมุน เครื่องจักรไอน้ำที่ประดิษฐ์ขึ้นโดย เจมส์ วัตต์ ในปี ค.ศ. 1788

ในยุคก่อนหน้านี้ การออกแบบระบบควบคุมต่าง ๆ นั้น เป็นไปในลักษณะลองผิดลองถูก ไม่ได้มีการใช้คณิตศาสตร์ในการวิเคราะห์ ออกแบบแต่อย่างใด จนกระทั่งในปี ค.ศ. 1840 นักดาราศาสตร์ชาวอังกฤษ จอร์จ แอรี ได้ประดิษฐ์อุปกรณ์ควบคุมทิศทางของกล้องดูดาว โดยอุปกรณ์นี้จะหมุนกล้องดูดาว เพื่อชดเชยกับการหมุนของโลกโดยอัตโนมัติ ในระหว่างการออกแบบ แอรีได้สังเกตถึงความไม่เสถียร (instability) ของระบบป้อนกลับ จึงใช้สมการเชิงอนุพันธ์ในการจำลองและวิเคราะห์พฤติกรรมของระบบ การวิเคราะห์เสถียรภาพของระบบนี้เป็นหัวใจสำคัญของทฤษฎีระบบควบคุม

ในปี ค.ศ. 1868 เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นบุคคลแรก ที่ทำการศึกษาถึงเสถียรภาพของ ลูกเหวี่ยงหนีศูนย์กลางของ เจมส์ วัตต์ โดยใช้แบบจำลองสมการเชิงอนุพันธ์เชิงเส้น ทฤษฎีเสถียรภาพของระบบเชิงเส้นของแมกซ์เวลล์นี้ พิจารณาเสถียรภาพของระบบจาก รากของสมการคุณลักษณะ (characteristic equation) ของระบบ ต่อมาในปี ค.ศ. 1892 เลียปูนอฟได้ทำการศึกษาถึงเสถียรภาพของระบบไม่เป็นเขิงเส้น และสร้างทฤษฎีเสถียรภาพของเลียปูนอฟ (Lyapunov stability) แต่ทฤษฎีของเลียปูนอฟนี้เป็นทฤษฎีที่สำคัญที่ไม่ได้รับความสนใจ จนกระทั่งหลายสิบปีต่อมา

พัฒนาการของทฤษฎีระบบควบคุมในช่วงนี้นั้น ส่วนใหญ่พัฒนาขึ้นเพื่อประยุกต์ใช้งานในทางทหารและทางระบบสื่อสาร อันเนื่องมาจากสงครามโลกครั้งที่สอง และ การขยายตัวของโครงข่ายสื่อสารโทรศัพท์

ในช่วงยุคที่มีการขยายตัวของระบบสื่อสารโทรศัพท์นั้น ระบบสื่อสารทางไกลมีความจำเป็นต้องใช้อุปกรณ์ขยายสัญญาณด้วยหลอดสุญญากาศ ในปี ค.ศ. 1927 แนวความคิดและประโยชน์ของระบบป้อนกลับแบบลบ ได้ถูกนำเสนอในรูปของ อุปกรณ์ขยายสัญญาณป้อนกลับแบบลบ (negative feedback amplifier) โดย เอช. เอส. แบล็ก แต่การวิเคราะห์เสถียรภาพของระบบขยายสัญญาณตามทฤษฎีของแมกซ์เวลล์ โดยใช้วิธีของ เราท์-ฮิวรวิทซ์ (Routh-Hurwitz) นั้นเป็นไปได้ยาก เนื่องจากความซับซ้อนของระบบ วิศวกรสื่อสารของ Bell Telephone Laboratories จึงได้นำเสนอการวิเคราะห์บนโดเมนความถี่ โดยในปี ค.ศ. 1932 แฮร์รี่ ไนควิสต์นำเสนอ เกณฑ์เสถียรภาพของไนควิสต์ (Nyquist stability criterion) ซึ่งใช้วิธีการพล็อตกราฟเชิงขั้ว ของผลตอบสนองความถี่ตลอดวงรอบ (loop frequency response) ของระบบ ต่อมาในปี ค.ศ. 1940 เฮนดริค โบดีได้นำเสนอวิธีการวิเคราะห์เสถียรภาพโดยขอบเขตอัตราขยาย (gain margin) และขอบเขตมุม (phase margin) จากกราฟระหว่างขนาดและมุม (phase) ของผลตอบสนองความถี่ เรียกว่า โบดีพล็อต (Bode plot)

ปัญหาหลายปํญหาในทางหทาร เช่น ปัญหาการนำร่องการเดินเรืออัตโนมัติ ปัญหาการเล็งเป้าโดยอัตโนมัติ นั้นเป็นแรงผลักดันสำคัญให้เกิดการพัฒนาการทางทฤษฎีระบบควบคุมที่สำคัญหลายอย่าง ในปี ค.ศ. 1922 มินอร์สกี (N. Minorsky) ได้กำหนดและวิเคราะห์กฎของ ระบบควบคุมพีไอดี หรือ สัดส่วน-ปริพันธ์-อนุพันธ์ (proportional-integral-derivative) ซึ่งยังเป็นที่นิยมใช้อย่างกว้างขวางในปัจจุบัน เพื่อใช้ในการนำร่องการเดินเรือ ปัญหาที่สำคัญในช่วงนั้นคือ การเล็งเป้าของปืนจากเรือหรือเครื่องบิน ซึ่งในปี ค.ศ. 1934 ฮาเซน (H.L. H?zen) ได้บัญญัติคำสำหรับประเภทปัญหาการควบคุมกลไกนี้ว่า กลไกเซอร์โว (servomechanisms) การวิเคราะห์และออกแบบนั้นก็ใช้วิธีการบนโดเมนความถี่ จนกระทั่งในปีค.ศ. 1948 อีแวนส์ (W. R. Evans) ซึ่งทำงานกับปัญหาทางด้านการนำร่องและควบคุมเส้นทางบิน ซึ่งส่วนใหญ่นั้นเป็นระบบที่ไม่เสถียร ได้ประสบกับปํญหาการวิเคราะห์เสถียรภาพบนโดเมนของความถี่ จึงได้หันกลับไปศึกษาถึงรากของสมการคุณลักษณะ ซึ่งเป็นวิธีการวิเคราะห์บนโดเมนการแปลงลาปลาส และได้พัฒนาวิธี ทางเดินราก (root locus) ในการออกแบบระบบ

ระบบควบคุมสมัยใหม่ (อังกฤษ: modern control) หมายถึง ระบบควบคุมที่ไม่ได้ใช้เทคนิคในการออกแบบแบบดั้งเดิม คือ จากรากของสมการคุณลักษณะ และอยู่บนโดเมนความถี่ แต่เป็นการออกแบบ โดยมีพื้นฐานจากแบบจำลองสมการอนุพันธ์ของไดนามิกส์ของระบบ และเป็นการออกแบบอยู่บนโดเมนเวลา

แรงผลักดันของพัฒนาการจากระบบควบคุมแบบดั้งเดิม มาสู่ระบบควบคุมสมัยใหม่นี้ มีอยู่หลัก ๆ สองประการคือ

ข้อจำกัดของระบบควบคุมแบบดั้งเดิมต่องานด้านอวกาศยาน : จากความสำเร็จในการส่งดาวเทียมสปุตนิก 1 ของสหภาพโซเวียตในปี ค.ศ. 1957 นั้นกระตุ้นให้เกิดความตื่นตัวของการประยุกต์ใช้งานทางด้านอวกาศยาน ความสำเร็จของโซเวียตนั้นเนื่องมาจากพัฒนาการทางด้านทฤษฎีระบบควบคุมแบบไม่เป็นเชิงเส้น ซึ่งไม่ได้รับความสนใจมากนักจากประเทศตะวันตก เนื่องจากความล้มเหลวในการใช้เทคนิคต่าง ๆ ของระบบควบคุมแบบดั้งเดิม กับงานด้านอวกาศยาน ซึ่งระบบส่วนใหญ่นั้น เป็นระบบหลายตัวแปรแบบไม่เป็นเชิงเส้น (nonlinear multivariable system) จึงมีการหันกลับมาพิจารณาการวิเคราะห์จากปัญหาดั้งเดิม ในรูปของแบบจำลองสมการอนุพันธ์ของระบบ

พัฒนาการของคอมพิวเตอร์ มีส่วนสำคัญในการพัฒนาทฤษฎีต่าง ๆ ของระบบควบคุม เนื่องจากทำให้สามารถสร้างอุปกรณ์ควบคุมที่สามารถทำงานซับซ้อนได้ รวมทั้งการใช้คอมพิวเตอร์ช่วยคำนวณในการออกแบบกฎของการควบคุม ดังนั้นจึงมีการพัฒนาระบบควบคุมแบบต่าง ๆ ขึ้นอย่างมากมาย

จากความพยายามในการใช้คอมพิวเตอร์ซึ่งเป็นดิจิทัล เพื่อการควบคุมระบบซึ่งโดยส่วนใหญ่จะเป็นระบบอนาล็อก จึงส่งผลให้มีการพัฒนาทางทฤษฎีระบบควบคุมดิจิทัล (อังกฤษ: digital control) โดยในปี ค.ศ. 1952 จอห์น รากัซซินี (J.R. Ragazzini) , แฟรงคลิน (G Franklin) และ ซาเดห์ (L.A. Zadeh ผู้คิดค้นฟัซซี่ลอจิก) ที่มหาวิทยาลัยโคลัมเบีย ได้พัฒนาทฤษฎีระบบแบบชักข้อมูล (sampled data systems) ขึ้น การใช้คอมพิวเตอร์ในการควบคุมกระบวนการในอุตสาหกรรมนั้น ครั้งแรกในปี ค.ศ. 1959 ที่ โรงกลั่นน้ำมัน พอร์ต อาเธอร์ (Port Arthur) ในรัฐเทกซัส

นอกจากนั้นแล้วแนวความคิดของการควบคุมที่ซับซ้อนขึ้นโดยมีการรวม ข้อกำหนดความต้องการทางด้านประสิทธิภาพ (performance) ในการออกแบบระบบควบคุม ซึ่งเรียกว่า ระบบควบคุมแบบเหมาะสมที่สุด (optimal control) รากฐานของทฤษฎีระบบควบคุมแบบเหมาะสมที่สุดนี้มีมายาวนานตั้งแต่ปี ค.ศ. 1696 จาก หลักของความเหมาะสมที่สุด (principle of optimality) ในปัญหา บราคิสโตโครน (Brachistochrone curve) และ แคลคูลัสของการแปรผัน (Calculus of variations) ในปีค.ศ. 1957 ริชาร์ด เบลแมน ได้ประยุกต์ใช้วิธีการกำหนดการพลวัตของเขาในการแก้ปัญหาระบบควบคุมแบบเหมาะสมที่สุด แบบเวลาไม่ต่อเนื่อง ต่อมาในปีค.ศ. 1958 พอนเทรียกิน (L.S. Pontryagin) ได้พัฒนา หลักการมากที่สุด (maximum principle หรือบางครั้งก็เรียก minimum principle) สำหรับแก้ปัญหาในรูปของแคลคูลัสของการแปรผัน แบบเวลาต่อเนื่อง

การสังเกตถึงผลกระทบของสัญญาณรบกวนต่อประสิทธิภาพของระบบควบคุมนั้นมีมาตั้งแต่ในช่วงระบบควบคุมยุคดั้งเดิม เช่นในช่วงสงครามโลกครั้งที่สอง ในการพัฒนาระบบควบคุมสำหรับเรดาร์ติดเครื่องบิน เพื่อควบคุมการยิง ที่ ห้องทดลองเรดิเอชัน (Radiation Lab) ที่ เอ็มไอที, ฮอลล์ (A.C. Hall) ได้ประสบปัญหาในการออกแบบ เขาได้สังเกตถึงผลกระทบจากการออกแบบที่ไม่ได้คำนึงถึงสัญญาณรบกวนต่อประสิทธิภาพของระบบ ถึงแม้ว่าจะมีการคำนึงถึงผลกระทบของสัญญาณรบกวน แต่ก็ไม่ได้มีการใช้แบบจำลองทางคณิตศาสตร์ของสัญญาณรบกวนในการวิเคราะห์แต่อย่างใด จนกระทั่ง นอร์เบิร์ต วีนเนอร์ ได้จำลองสัญญาณรบกวน โดยใช้แบบจำลองกระบวนการสตอแคสติก หรือ แบบจำลองทางสถิติ แบบเวลาต่อเนื่อง ในการพัฒนาระบบเล็งเป้าและควบคุมการยิงปืนต่อต้านอากาศยาน โดยใช้ข้อมูลจากเรดาร์ ซึ่งงานของเขาได้ถูกเก็บเป็นความลับ จนถึงปี ค.ศ. 1949 ในช่วงเดียวกันในปี ค.ศ. 1941 คอลโมโกรอฟ ก็ได้ทำการพัฒนาแบบจำลองสำหรับระบบเวลาไม่ต่อเนื่องขึ้น ระบบควบคุมที่ใช้แบบจำลองสคอแคสติกนี้ในการวิเคราะห์ จะเรียกว่า ระบบควบคุมสตอแคสติก (Stochastic control)

การวิเคราะห์และควบคุมระบบบนโดเมนเวลา โดยใช้แบบจำลองตัวแปรสถานะ หรือ แบบจำลองปริภูมิสถานะ (state space) นั้นเป็นหัวใจของทฤษฎีระบบควบคุมสมัยใหม่ รูดอล์ฟ อีมิว คาลมาน และ Bellman นั้นถือได้ว่าเป็นบุคคลที่มีส่วนสำคัญในการพัฒนาทฤษฎีระบบควบคุมโดยใช้แบบจำลองตัวแปรสถานะนี้ โดยที่ในปี ค.ศ. 1960 คาลมานได้นำทฤษฎีเสถียรภาพของเลียปูนอฟมาใช้ในการออกแบบระบบ ซึ่งเป็นผลให้ผลงานของเลียปูนอฟกลับมาได้รับความสนใจ นอกจากนี้แนวทางใหม่นี้ยังสามารถตอบคำถามเกี่ยวกับลักษณะเฉพาะของตัวระบบได้ ได้แก่ สภาพควบคุมได้ (controllability) สภาพสังเกตได้ (observability) ผลสัมฤทธิ์เล็กสุดเฉพาะกลุ่ม (minimal realization) และยังนำไปสู่การออกแบบตัวควบคุมแบบใหม่ เช่น การวางขั้ว (pole placement) ตัวควบคุมอิงตัวสังเกต (observer-based controller) และตัวควบคุมกำลังสองเชิงเส้นเหมาะที่สุด (optimal linear quadratic regulator) คาลมานได้พัฒนาวิธีการออกแบบระบบควบคุมแบบเหมาะสมที่สุด จากแบบจำลองปริภูมิสถานะ ในรูปของปัญหาระบบเชิงเส้นคงค่าแบบเหมาะสมที่สุดตามสมการกำลังสอง หรือ LQR (linear quadratic regulator) ในปีเดียวกันนี้ คาลมานได้นำเสนอผลงานของเขาในการประยุกต์ใช้แบบจำลองตัวแปรสถานะนี้เข้ากับแนวความคิดทางด้านสตอแคสติกของวีนเนอร์ และคิดค้นสิ่งที่เรารู้จักกันในชื่อ ตัวกรองคาลมาน (Kalman filter) ขึ้นมา โดยใช้งานจริงครั้งแรกของตัวกรองคาลมาน นั้นได้ถูกประยุกต์เป็นส่วนหนึ่งของระบบนำร่องในโครงการอพอลโล ตั้งแต่นั้นมาตัวกรองคาลมานก็ได้ถูกประยุกต์ใช้งานอย่างกว้างขวางในปัจจุบัน

ในปัจจุบันแนวทางการวิเคราะห์และควบคุมระบบบนโดเมนเวลา โดยใช้แบบจำลองตัวแปรสถานะสามารถประยุกต์ใช้ได้กับงานวิศวกรรมห้วงอากาศอวกาศ (aerospace engineering) การควบคุมกระบวนการ (process control) และเศษฐมิติ (econometrics)

เราอาจจะสามารถจำแนกประเภทของระบบได้หลายแบบตามแต่เงื่อนไขในการจำแนกระบบที่ใช้ แต่ในบริบทของทฤษฎีระบบควบคุมนั้น เรามักจำแนกระบบตามภาวะเชิงเส้น, การแปรเปลี่ยนตามเวลา และความต่อเนื่องโดเมนเวลา ดังต่อไปนี้ คือ

ระบบเชิงเส้น (Linear Systems) คือระบบที่มีภาวะเชิงเส้น (Linearity) กล่าวคือ ถ้าให้ เป็นสัญญาณขาเข้าของระบบ และ โดยที่ เป็นสัญญาณขาออก ถ้าระบบมีภาวะเชิงเส้นแล้วจะต้องสอดคล้องกับคุณสมบัติดังนี้

ระบบไม่แปรเปลี่ยนตามเวลา (Time-invariant system) คือระบบที่คุณสมบัติของระบบไม่เปลี่ยนไปเมื่อเวลาเปลี่ยนไป กล่าวคือ สมมุติว่าไม่มีความล่าช้าเกิดขึ้นในระบบ (ระบบรับสัญญาณขาเข้าแล้วสามารถให้สัญญาณขาออกได้ในทันที) ถ้าป้อนสัญญาณขาเข้า ที่เวลา จะได้สัญญาณขาออกเป็น ที่เวลา ดังนั้นหากป้อนสัญญาณขาเข้าเดิมที่เวลา นั้นคือ สัญญาญาณขาออกผลลัพธ์ก็ต้องเป็น ค่าเดิม คือ เพียงแต่จะปรากฏที่เวลา ตามเวลาที่ป้อนสัญญาณขาเข้า

ระบบแปรเปลี่ยนตามเวลา (Time-variant system) คือระบบที่จะปลี่ยนแปลงคุณสมบัติไปตามเวลา กล่าวคือ ถ้าป้อนสัญญาณขาเข้า ที่เวลา แล้วจะได้สัญญาณขาออกเป็น ที่เวลา ดังนั้นหากป้อนสัญญาณขาเข้าเดิมที่เวลา นั้นคือ สัญญาญาณขาออกผลลัพธ์ จะไม่ได้ค่าเดิม คือ แต่จะเป็นค่าอื่นเพราะในช่วงเวลา นั้นระบบได้เปลี่ยนคุณสมบัติไปแล้ว

ระบบเวลาวิยุต หรือ ระบบเวลาไม่ต่อเนื่อง (Discontinuous time systems) คือระบบที่มีโดเมนเวลาเป็นสมาชิกเซตของจำนวนเต็ม (แม้ในบางครั้ง อาจจะไม่ใช้จำนวนเต็ม แต่ ถ้ากล่าวโดยไม่เสียนัยยะความเป็นทั่วไป เราสามารถแทนจำนวนเหล่านั้นที่แม้ไม่ใช้จำนวนเต็มได้ด้วย ดัชนีเวลา (time index) ที่เป็นจำนวนเต็มได้เสมอ) กล่าวคือ

ระบบผสม (Hybrid systems) คือระบบที่โดเมนของเวลาต่อเนื่องเป็นช่วง ๆ กล่าวคือ มีทั้งช่วงที่ต่อเนื่องและไม่ต่อเนื่องในโดเมนของเวลา ตัวอย่างของระบบที่ศึกษากันคือ ระบบเชิงเส้นกระโดดแบบมาร์คอฟ (Markovian jump linear system : MJLS)

ในกรณีที่เป็น ระบบเชิงเส้นกระโดดแบบมาร์คอฟและเวลาไม่ต่อเนื่อง ระบบจะมีแบบจำลองดังต่อไปนี้

เป็นตัวแปรสถานะของกระบวนการมาร์คอฟ (Markov process) ที่มีความน่าจะเป็นในการเปลี่ยนสถานะเป็น และเมทริกซ์ของระบบแปรเปลี่ยนขึ้นกับ

เนื่องจากระบบควบคุมแบบวงเปิดมีปัญหาด้านเสถียรภาพของระบบเพราะไม่มีการป้อนกลับของสัญญาณขาออก ซึ่งไม่เหมาะกับการใช้งานหลายอย่าง จึงมีความต้องการที่จะออกแบบระบบควบคุมที่สามารถตรวจจับความคลาดเคลือนของระหว่างสัญญาณขาออกและสัญญาณอ้างอิงได้ จึงได้มีการคิดค้นระบบควบคุมแบบป้อนกลับ (Feedback control systems) ขึ้นมาเพื่อหลีกเลี่ยงปัญหาที่เกิดขึ้นกับระบบควบคุมแบบวงเปิด โดยมีโครงสร้างดังในรูป

ในบางระบบ ระบบควบคุมแบบวงเปิดและเปิดจะใช้ควบคู่กัน โดยที่ในกรณีนีระบบวงเปิดจะเรียกว่า feedforward

ฟังก์ชันส่งผ่าน (transfer function) คือความสัมพันธ์ทางคณิตศาสตร์ที่ใช้แสดงถึงความสัมพันธ์ระหว่างสัญญาณขาออก (output signal) ต่อสัญญาณขาเข้า (input signal) โดยฟังก์ชันส่งผ่านสามารถหาได้จากความสัมพันธ์ดังต่อไปนี้ สมมุติให้ ตัวควบคุม , ระบบพลวัต , ตัวตรวจจับ เป็นเชิงเส้น และ ไม่เปลี่ยนแปลงตามเวลา (ฟังก์ชันส่งผ่านของ , , and ไม่เปลี่ยนแปลงตามเวลา) และในที่นี้เราจะพิจารณาผลการแปลงการแปลงลาปลาสของฟังก์ชันส่งผ่านย่อย ๆ กล่าวคือ ฟังก์ชันส่งผ่านของ , , and ซึ่งการหาฟังก์ชันส่งผ่านหาได้ดังนี้

ตัวควบคุมพีไอดี หรือ ตัวควบคุมแบบสัดส่วน-ปริพันธ์-อนุพันธ์ เป็นตัวควบคุมที่ได้รับความนิยมเป็นอย่างสูงและใช้งานอย่างแพร่หลาย โดยในปัจจุบันยังมีการใช้งานในแวดวงอุตสาหกรรม จนไปถึงยานอวกาศ ทั้งนี้เพราะเป็นตัวคบคุมที่มีใช้งานกันมานานและจนได้รับความไว้วางในแง่ของประสิทธิภาพ อีกทั้งแบบจำลองทางคณิตศาสตร์ของมันก็เรียบง่ายและง่ายนำไปติดตั้ง ตัวควบคุมพีไอดีมีแบบจำลองทางคณิตศาสตร์ดังต่อไปนี้

สมรรถนะและเสถียรถาพของระบบจะถูกกำหนดโดยปรับแต่งค่าพารามิเตอร์สามตัว คือ , และ นอกเหนือจากการปรับแต่งค่าเหล่านี้หลังจากการวิเคราะห์ทางคณิตศาสตร์ของตัวระบบแล้ว ในทางปฏิบัติ ยังนิยมปรับแต่งค่าโดยใช้หลักการของ Ziegler–Nichols หรือใช้ประสบการณ์ของวิศวกร โดยที่เสถียรภาพของระบบมักขึ้นอยู่กับพารามิเตอร์ แต่เพียงอย่างเดียว ส่วน มักส่งผลในแง่ของความคงทนเปลี่ยนแปลงฉับพลันต่อตัวระบบ และ มักเกี่ยวกับรูปร่างของผลตอบสนอง เมื่อพิจารณาบนโดเมนการแปลงลาปลาส จะได้ว่า

แม้ระบบควบคุมแบบดั้งเดิมที่ใช้ตัวควบคุมพีไอดีจะมีความสามารถที่ถูกปรับปรุงดีขึ้นมากกว่าระบบควบคุมแบบเปิดมาก แต่ก็ยังเหมาะแค่กับระบบที่มีสัญญาณเข้าทางเดียวและสัญญาณขาออกทางเดียว (Single-Input and Single-Output) และยังไม่สามารถใช้ควบคุมระบบที่มีความซับซ้อนสูงได้ โดยเฉพาะอย่างยิ่งระบบที่มีสัญญาณขาเข้าหลายทางและสัญญาณขาออกหลายทาง (Multiple-Input and Multiple-Output)

ระบบพลวัตส่วนใหญ่มักมีพฤติกรรมที่สามารถใช้สมการอนุพันธ์อันดับใด ๆ มาอธิบายได้ ในขณะเดียวกันสมการเชิงอนุพันธ์อันดับใด ๆ ก็สามารถลดอันดับให้เหลือเพียงสมการเชิงอนุพันธ์อันดับหนึ่งได้ จากความจริงตรงนี้จึงได้มีการเสนอวิธีการใหม่ในการวิเคราะห์และควบคุมระบบ ซึ่งจะวิเคราะห์บนโดเมนเวลาและได้มีการนำแบบจำลองปริภูมิสถานะมาใช้ซึ่งจะอยู่ในรูปของสมการอนุพันธ์อันดับหนึ่งและแตกต่างจากระบควบคุมแบบดั้งเดิมที่นิยมวิเคราะห์พฤติกรรมของระบบบนโดเมนความถี่ นอกจากนี้การนำแบบจำลองปริภูมิสถานะมาใช้ทำให้เราสามารถสร้างแบบจำลองทางคณิตศาสตร์สำหรับระบบแบบสัญญาณขาเข้าหลายทางสัญญาณขาออกหลายทาง (MIMO) ได้โดยกำหนดมิติของตัวแปรในสมการปริภูมิสถานะอย่างเหมาะสม

โดยทั่วไปแล้ว เมทริกซ์ข้างต้นจะเป็นเมทริกซ์แปรผันตามเวลาได้ แต่ในกรณีเฉพาะที่ระบบไม่แปรผันตามเวลา (LTI) มักจะถูกนำมาศึกษาอยางแพร่หลายเพราะมีความซับซ้อนน้อยกว่าและเหมาะศึกษาในระดับพื้นฐาน นอกจากนี้ตัวแปรเวลาสามารถมีได้ทั้งแบบเวลาต่อเนื่อง (continuous time : ) และแบบเวลาวิยุต (ไม่ต่อเนื่อง) (discrete time : ) โดยในกรณีของเวลาไม่ต่อเนื่องมักนิยมใช้ตัวแปร นอกเหนื่อจากระบบแบบที่กล่าวมาแล้วยังมีระบบผสมซึ่งเป็นระบบที่มีโดเมนของเวลาอยู่ทั่งบนแกนเวลาต่อเนื่องและไม่ต่อเนื่อง

สภาพควบคุมได้ (อังกฤษ: Controllability) จะบ่งบอกถึงความสามารถที่สัญญาณขาเข้าที่เป็นไปได้ (admissible inputs) จะสามารถขับเคลื่อนตัวแปรสถานะให้ไปถึงค่าใด ๆ ได้ในช่วงเวลาจำกัด (เวลาอันตะ) ไม่ว่าค่าเริ่มต้น (initial value) ของตัวแปรสถานะนั้น ๆ จะเป็นค่าอะไร ในกรณีระบบพลวัตเชิงเส้นเวลาต่อเนื่องไม่แปรผันตามเวลานั้นเงื่อนไขที่จะทำให้มีสภาพควบคุมได้ ก็ต่อเมื่อ

หมายเหตุ : ค่าลำดับขั้น (Rank) คือ ค่าซึ่งแสดงถึงจำนวนแถว (หรือหลัก) ในเมทริกซ์ที่มีความอิสระเชิงเส้น (linearly independent) ต่อกัน

สภาพสังเกตได้ (อังกฤษ: Observability) เป็นสภาพที่บ่งบอกว่าระบบพลวัตมีความสามารถที่จะส่งผ่านข้อมูลของตัวแปรสถานะได้ดีแค่ไหนเมื่อพิจารณาจากสัญญาณขาออก สภาพควบคุมได้ และ สภาพสังเกตได้ เป็นสภาพคู่กันทางคณิตศาสตร์ (Duality) กล่าวคือ ในขณะที่ สภาพสังเกตได้ หมายถึง สภาพที่แสดงออกถึงว่าสัญญาณขาเข้าสามารถขับเคลื่อนตัวแปรสถานะไปที่ค่าใด ๆ ที่ต้องการได้ แต่ สภาพสังเกตได้ จะเป็นสภาพที่แสดงว่าออกว่าการรู้รอยสัญญาณขาออก (output trajectory) จะให้ข้อมูลเพียงพอคาดคะเนค่าเริ่มต้นของตัวแปรสถานะของระบบได้ ในกรณีระบบพลวัตเชิงเส้นเวลาต่อเนื่องไม่แปรผันตามเวลานั้นเงื่อนไขที่จะทำให้มีสภาพสังเกตได้ได้ ก็ต่อเมื่อ

การแยกตัวประกอบคาลมาน (อังกฤษ: Kalman decomposition) เป็นกระบวนการแยกส่วนประกอบของเมทริกซ์ในสมการปริภูมิสถานะของระบบเชิงเส้นไม่เปลี่ยนตามเวลา linear time-invariant (LTI) ให้อยู่ในรูปแบบที่สามารถจำแนกได้ว่าส่วนใดในเมทริกซ์ของระบบ มีผลต่อ สภาพสังเกตได้ และสภาพควบคุมได้ ทำให้ง่ายวิเคราะห์คุณลักษณะของระบบ

จากสมการปริภูมิสถานะของระบบข้างต้น จะเห็นได้ว่าพารามิเตอร์ที่กำหนดลักษณะของระบบ LTI สามารถเขียนโดยย่อได้เป็นเวกเตอร์ ในที่นี้จะสมมุติว่าระบบมีมิติเป็น .

การแยกตัวประกอบคาลมาน ถูกนิยามว่า คือ การแปลงเวกเตอร์ ให้เป็น โดยคูณเมทริกซ์การแปลง ดังต่อไปนี้

จะเห็นได้ว่าโดยสร้งเมทริกซ์ ในลักษณะข้างต้น เมทริกซ์ จึงผกผันได้ เป็นที่น่าสังเกตว่าเมทริกซ์ย่อยในเมทริกซ์ นั้นสามารถเป็นเมทริกซ์ศูนย์ได้ ยกตัวอย่างเช่น กรณีที่ระบบมีสภาพสังเกตได้และควบคุมได้ เมทริกซ์ ลดรูปเหลือ โดยที่ เมทริกซ์ย่อยอื่นเป็นเมทริกซ์ศูนย์


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301