ทฤษฎีบทสุดท้ายของแฟร์มา (อังกฤษ: Fermat's last theorem) เป็นหนึ่งในทฤษฎีบทที่โด่งดังในประวัติศาสตร์ของคณิตศาสตร์ ซึ่งกล่าวว่า:
ไม่มีจำนวนเต็มบวก x, y, และ z ที่ทำให้
x
n
+
y
n
=
z
n
{\displaystyle x^{n}+y^{n}=z^{n}\;}
เมื่อ n เป็นจำนวนเต็มที่มากกว่า 2
ปีแยร์ เดอ แฟร์มา นักคณิตศาสตร์ในคริสต์ศตวรรษที่ 17 ได้เขียนทฤษฎีบทนี้ลงในหน้ากระดาษหนังสือ Arithmetica ของไดโอแฟนตัส ฉบับแปลเป็นภาษาละตินโดย Claude-Gaspar Bachet เขาเขียนว่า "ฉันมีบทพิสูจน์ที่น่าอัศจรรย์สำหรับบทสรุปนี้ แต่พื้นที่กระดาษเหลือน้อยเกินไปที่จะอธิบายได้" (เขียนเป็นภาษาละตินว่า "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") อย่างไรก็ตาม ตลอดระยะเวลา 358 ปี ไม่มีใครสามารถพิสูจน์ได้ถูกต้องเลย จนกระทั่ง แอนดรูว์ ไวลส์ ได้พิสูจน์ทฤษฎีบทนี้ในปี 1994 ซึ่งเป็นผลให้เขาได้รับรางวัลอาเบลในปี 2016 จากบทพิสูจน์ที่ "น่าตื่นตะลึง"
ความสนใจของนักคณิตศาสตร์ที่จะพิสูจน์ทฤษฎีบทสุดท้ายของแฟร์มาทำให้เกิดคณิตศาสตร์สาขาใหม่ ๆ ขึ้นมา ได้แก่ ทฤษฎีจำนวนเชิงพีชคณิต ในช่วงคริสต์ศตวรรษที่ 19 และนำไปสู่บทพิสูจน์ข้อคาดการณ์ทานิยามา-ชิมูระในคริสต์ศตวรรษที่ 20 ที่ปัจจุบันรู้จักกันในชื่อ ทฤษฎีบทมอดูลาริตี
ทฤษฎีบทสุดท้ายของแฟร์มา เป็นรูปแบบทั่วไปของสมการไดโอแฟนไทน์ a2 + b2 = c2 (สมการที่ตัวแปรเป็นจำนวนเต็มเท่านั้น) ชาวจีน ชาวกรีก และชาวบาบิโลเนียนได้ค้นพบคำตอบของสมการนี้หลายคำตอบเช่น (3, 4, 5) (32 + 42 = 52) หรือ (5, 12, 13) เป็นต้น คำตอบเหล่านี้เรียกว่า สามสิ่งอันดับพีทาโกรัส (Pythagorean triples) และมีอยู่จำนวนไม่จำกัด ทฤษฎีบทสุดท้ายของแฟร์มา กล่าวว่า สมการนี้จะไม่มีคำตอบเมื่อเลขยกกำลังมากกว่า 2
เราอาจพิสูจน์ทฤษฎีบทนี้ในกรณีที่ n = 4 และกรณีที่ n เป็นจำนวนเฉพาะ ก็สามารถสรุปได้ว่าทฤษฎีบทเป็นจริงสำหรับทุกค่า n.
แฟร์มาได้พิสูจน์กรณี n = 4, ออยเลอร์ พิสูจน์กรณี n = 3, ดิลิชเลต และ เลอจองดร์ พิสูจน์กรณี n = 5 เมื่อ ค.ศ. 1828, Gabriel Lamé พิสูจน์กรณี n = 7 เมื่อ ค.ศ. 1839
ใน ค.ศ. 1983 Gerd Faltings ได้พิสูจน์ข้อความคาดการณ์ของ Mordell สำเร็จ ซึ่งกล่าวว่าสำหรับ n > 2 จะมีจำนวนเต็ม a, b และ c ซึ่งเป็นจำนวนเฉพาะสัมพัทธ์กัน และทำให้ an + bn = cn อยู่จำนวนจำกัด
แอนดรูว์ ไวลส์ (Andrew Wiles) นักคณิตศาสตร์ชาวอังกฤษจากมหาวิทยาลัยแคมบริดจ์ ได้พิสูจน์ทฤษฎีบทสุดท้ายของแฟร์มา โดยใช้เครื่องมือในการพิสูจน์คือ เรขาคณิตเชิงพีชคณิต โดยเฉพาะอย่างยิ่ง ในเรื่องเส้นโค้งเชิงวงรี และ รูปแบบมอดุลาร์ ไวลส์ใช้เวลา 7 ปีในการพิสูจน์ทฤษฎีบทสุดท้ายของแฟร์มา เขาทำการพิสูจน์โดยลำพัง และเก็บเรื่องนี้เป็นความลับมาโดยตลอด (ยกเว้น ตอนตรวจทานครั้งสุดท้าย ซึ่งเขาได้ขอความช่วยเหลือจากเพื่อนของเขาที่ชื่อ Nick Katz) ในวันที่ 21-23 มิถุนายน ค.ศ. 1993 เขาก็ได้แสดงบทพิสูจน์ของเขาที่มหาวิทยาลัยเคมบริดจ์ ผู้เข้าฟังการบรรยายครั้งนั้นต่างก็ประหลาดใจไปกับวิธีการต่างๆ ในบทพิสูจน์ของเขา ต่อมา เขาก็พบข้อผิดพลาดในบทพิสูจน์ ไวลส์และ ริชาร์ด เทย์เลอร์ (Richard Taylor) ลูกศิษย์ของเขาเองใช้เวลาอยู่หนึ่งปีในการแก้ไขบทพิสูจน์ใหม่ ในเดือนกันยายน ค.ศ. 1994 เขาก็ได้เสนอบทพิสูจน์ใหม่อีกครั้งที่ผ่านการแก้ไขแล้ว และตีพิมพ์ลงในวารสาร
Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exigitas non caperet.
(มันเป็นไปไม่ได้ที่จะแบ่งจำนวนยกกำลัง 3 ออกเป็นจำนวนยกกำลัง 3 สองจำนวน หรือแบ่งจำนวนยกกำลัง 4 ออกเป็นจำนวนยกกำลัง 4 สองจำนวน หรือกล่าวโดยทั่วไปว่า ไม่สามารถแบ่งจำนวนที่ยกกำลังมากกว่า 2 ออกเป็นจำนวนที่ยกกำลังเท่าเดิมสองจำนวนได้ ฉันมีบทพิสูจน์ที่น่าอัศจรรย์สำหรับบทสรุปนี้ แต่ขอบกระดาษนี้มีพื้นที่น้อยเกินกว่าที่จะเขียนบรรยายได้)
หลายคนต่างสงสัยใน "บทพิสูจน์ที่น่าอัศจรรย์" ของแฟร์มาว่ามันมีอยู่จริงหรือไม่ บทพิสูจน์ของไวลส์นั้น หนาประมาณ 200 หน้า และยากเกินกว่าที่นักคณิตศาสตร์ในปัจจุบันจะเข้าใจ ในขณะที่บทพิสูจน์ของแฟร์มาน่าจะใช้วิธีที่พื้นฐานมากกว่านี้ เนื่องจากข้อจำกัดด้านความรู้ทางด้านคณิตศาสตร์ในสมัยนั้น ซึ่งก็เป็นเหตุให้นักคณิตศาสตร์และนักประวัติศาสตร์ที่เชี่ยวชาญด้านวิทยาศาสตร์ส่วนใหญ่ก็ยังไม่ค่อยเชื่อว่าแฟร์มาจะมีบทพิสูจน์ที่ถูกต้องสำหรับเลขยกกำลัง n ทุกจำนวนจริงๆ
แอนดรูส์ ไวลส์ เองก็เคยให้สัมภาษณ์ไว้ว่าเขาไม่เชื่อว่าแฟร์มาจะมีบทพิสูจน์ที่ถูกต้องจริง
(ผมไม่เชื่อว่าแฟร์มาจะมีบทพิสูจน์ที่ถูกต้องจริง ผมคิดว่าเขาหลอกให้ตัวเองเชื่อว่าเขามีบทพิสูจน์นั้น แต่สิ่งที่ทำให้โจทย์ข้อนี้เป็นเรื่องพิเศษสำหรับนักคณิตศาสตร์สมัครเล่นก็คือ มันทำให้เกิดความหวังว่า ยังมีโอกาสที่จะค้นพบบทพิสูจน์อันสวยงามได้โดยใช้เพียงความรู้คณิตศาสตร์ในศตวรรษที่ 17)