ค้นหา
  
Search Engine Optimization Services (SEO)

ทฤษฎีบทมูลฐานของเลขคณิต

ในคณิตศาสตร์สาขาทฤษฎีจำนวน ทฤษฎีบทมูลฐานของเลขคณิต, ทฤษฎีบทหลักมูลของเลขคณิต หรือ ทฤษฎีบทการแยกตัวประกอบได้แบบเดียว (อังกฤษ: fundamental theorem of arithmetic หรือ unique factorization theorem) เป็นทฤษฎีบทซึ่งกล่าวว่าจำนวนเต็มบวกทุกจำนวนที่มากกว่า 1 สามารถเขียนอยู่ในรูปผลคูณของจำนวนเฉพาะได้เพียงวิธีเดียวเท่านั้น หากไม่สนใจการเรียงลำดับ ตัวอย่างเช่น เราสามารถเขียน

และไม่มีทางที่จะแยกตัวประกอบเฉพาะของ 6936 หรือ 1200 ได้เป็นผลคูณของจำนวนเฉพาะในรูปแบบอย่างอื่น (หากเราไม่คำนึงถึงลำดับของตัวประกอบ)

เงื่อนไขที่ว่าตัวประกอบทั้งหมดในผลคูณเป็นตัวประกอบเฉพาะนั้นจำเป็น เพราะการเขียนในรูปผลคูณของตัวประกอบที่ไม่ใช่ตัวประกอบเฉพาะอาจไม่ได้มีเพียงแบบเดียว เช่น 12 = 2 ⋅ 6 = 3 ⋅ 4 {\displaystyle 12=2\cdot 6=3\cdot 4}

ทฤษฎีบทนี้เป็นอีกเหตุผลหนึ่งที่ทำไม 1 จึงไม่ถือว่าเป็นจำนวนเฉพาะ เพราะถ้าหาก 1 เป็นจำนวนเฉพาะ แล้วการแยกตัวประกอบเฉพาะจะไม่ได้มีแบบเดียว เช่น 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 = … {\displaystyle 2=2\cdot 1=2\cdot 1\cdot 1=\ldots }

ทฤษฎีบทนี้สามารถขยายไปยังโครงสร้างเชิงพีชคณิตอื่นที่เรียกว่า โดเมนแยกตัวประกอบได้แบบเดียว (unique factorization domain หรือ UFD) ซึ่งรวมโครงสร้างริงจำนวนมากในพีชคณิต ตั้งแต่ โดเมนไอดีลมุขสำคัญ (principal ideal domain หรือ PID) โดเมนยูคลิเดียน (Euclidean domain) และจนถึงริงพหุนามเหนือฟีลด์ ด้วยเหตุที่ทฤษฎีบทการแยกตัวประกอบได้แบบเดียวไม่จำเป็นจริงต้องเป็นจริงในริงทั่ว ๆ ไป เป็นหนึ่งในเหตุผลที่ทำให้ทฤษฎีบทสุดท้ายของแฟร์มามีความซับซ้อน

เพื่อให้ทฤษฏีบทนี้ใช้ได้กับจำนวน 1 เราสามารถมองว่า 1 เป็นผลคูณของของจำนวนเฉพาะศูนย์จำนวน (ดูใน ผลคูณว่าง)

ทฤษฎีบทมูลฐานของเลขคณิตสามารถพิสูจน์ได้จากประพจน์ที่ 30, 31 และ 32 เล่ม VII และประพจน์ 14, เล่ม IX ในตำราเอเลเมนส์ของยุคลิด ยุคลิดเป็นผู้แรกที่เขียนถึงการมีอยู่ของการแยกตัวประกอบเฉพาะ ในขณะที่อัล-ฟาริสีเป็นบุคคลแรกที่พิจารณาการมีแบบเดียว และระบุข้อความของทฤษฎีบทหลักมูลของเลขคณิตที่รวมทั้งการมีอยู่และการมีได้แบบเดียว (existence and uniqueness)

เกาส์ได้เขียนไว้ใน Article 16 (ข้อที่ 16) ในหนังสือ Disquisitiones Arithmeticae ถึงรูปแบบสมัยใหม่อันแรกของทฤษฎีบทมูลฐานของเลขคณิต พร้อมกับให้บทพิสูจน์ที่ใช้เลขคณิตมอดุลาร์

เมื่อ p1 < p2 < ... < pk เป็นจำนวนเฉพาะ และ ni เป็นจำนวนเต็มบวก การเขียนเช่นนี้อาจขยายไปสำหรับทุกจำนวนเต็มบวกได้โดยรวม 1 โดยอาศัยข้อกำหนดที่ว่า ผลคูณว่างจะเท่ากับ 1 (ผลคูณว่างคือกรณีเมื่อ k = 0)

การเขียนแบบนี้เรียกว่ารูปแบบบัญญัติ (canonical representation) ของ n หรือรูปแบบมาตรฐาน (standard form) ของ n ตัวอย่างเช่น

สามารถเพิ่มตัวประกอบ p0 = 1 โดยไม่เปลี่ยนค่าของ n (ตัวอย่างเช่น 1000 = 23×30×53) ยิ่งไปกว่านั้นทุกจำนวนเต็มสามารถเขียนได้ในรูปของผลคูณอนันต์ของจำนวนเฉพาะบวก

รูปแบบบัญญัติของผลคูณ, รูปแบบบัญญัติของห.ร.ม. และ รูปแบบบัญญัติของค.ร.น. ของจำนวนเต็มบวกสองจำนวนสามารถเขียนได้ในเทอมของรูปแบบบัญญัติของจำนวนเต็มทั้งสอง

อย่างไรก็ตาม การแยกตัวประกอบจำนวนเต็ม นั้นยากกว่าการหาผลคูณ, ห.ร.ม. และ ค.ร.น. ของจำนวนเต็มบวกสองจำนวน

ฟังก์ชันเลขคณิตจำนวนมากนิยามผ่านรูปแบบบัญญัติข้างต้น โดยเฉพาะอย่างยิ่งค่าของฟังก์ชันเลขคณิตที่เป็นฟังก์ชันแยกบวก หรือเป็นฟังก์ชันแยกคูณขึ้นอยู่กับค่าของมันสำหรับกำลังของจำนวนเฉพาะ

การพิสูจน์ด้านล่างจประกอบด้วย 2 ส่วน ส่วนแรก เราจะพิสูจน์ให้เห็นว่าจำนวนทุกจำนวน สามารถเขียนอยู่ในรูปผลคูณของจำนวนเฉพาะได้ จากนั้นจะพิสูจน์ว่าการเขียน 2 แบบใด ๆ จะเหมือนกันเสมอ

สมมติว่ามีจำนวนเต็มบวกที่มากกว่า 1 ที่ไม่สามารถเขียนในรูปผลคูณของจำนวนเฉพาะได้ ดังนั้นจะต้องมีจำนวนที่น้อยสุดในจำนวนพวกนั้นโดยหลักการจัดอันดับดี ให้จำนวนนั้นคือ n {\displaystyle n} จะเห็นได้ว่า n {\displaystyle n} ไม่สามารถเป็นจำนวนเฉพาะได้เพราะ n {\displaystyle n} เป็นผลคูณของตัวมันเองตัวเดียวซึ่งเป็นจำนวนเฉพาะ ดังนั้น n {\displaystyle n} จะต้องเป็นจำนวนประกอบ จะได้

เมื่อ a {\displaystyle a} และ b {\displaystyle b} เป็นจำนวนเต็มบวกที่น้อยกว่า n {\displaystyle n} แต่ n {\displaystyle n} เป็นจำนวนที่น้อยที่สุดที่ทำให้ทฤษฎีบทไม่จริง ดังนั้น a = p 1 ⋯ p j {\textstyle a=p_{1}\dotsb p_{j}} และ b = q 1 ⋯ q j {\displaystyle b=q_{1}\dotsb q_{j}} ต้องเขียนในรูปผลคูณของจำนวนเฉพาะได้ ทำให้ได้ว่า

เราจะใช้บทตั้งของยุคลิดที่ว่า ถ้าจำนวนเฉพาะ p หารผลคูณ ab ลงตัวแล้ว มันจะหาร a ลงตัว หรือหาร b ลงตัว เป็นบทตั้งในการพิสูจน์

พิจารณาการแยก n {\displaystyle n} ให้อยู่ในรูปผลคูณของจำนวนเฉพาะ p 1 , … , p j {\textstyle p_{1},\dotsc ,p_{j}} และ q 1 , … , q k {\textstyle q_{1},\dotsc ,q_{k}} สองแบบ

จะเห็นว่า p 1 {\displaystyle p_{1}} จะหาร q 1 ⋯ q k {\displaystyle q_{1}\dotsb q_{k}} ลงตัว จากบทตั้งของยุคลิด p 1 {\displaystyle p_{1}} จะต้องหารตัวประกอบ q i {\displaystyle q_{i}} ในผลคูณ q 1 ⋯ q k {\displaystyle q_{1}\dotsb q_{k}} ลงตัวอย่างน้อย 1 ตัว โดยไม่เสียนัยทั่วไปให้เป็น q 1 {\displaystyle q_{1}} แต่ตัวประกอบเป็นจำนวนเฉพาะทั้งหมด ดังนั้น p 1 {\displaystyle p_{1}} จะต้องเท่ากับ q 1 {\displaystyle q_{1}} ดังนั้นเราจึงตัด p 1 {\displaystyle p_{1}} และ q 1 {\displaystyle q_{1}} ออกจากทั้งสองผลคูณได้ จะได้ว่า

และทำซ้ำอย่างนี้ไปเรื่อย ๆ จะเห็นว่าตัวประกอบเฉพาะของผลคูณสองผลคูณจะจับคู่กันเสมอจนหมด (เทียบเท่ากับการใช้อุปนัยเชิงคณิตศาสตร์บนจำนวนตัวประกอบเฉพาะ)

The two monographs Gauss published on biquadratic reciprocity have consecutively numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, § n". Footnotes referencing the Disquisitiones Arithmeticae are of the form "Gauss, DA, Art. n".


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด ข้อความคาดการณ์ของโกลด์บาช เอกลักษณ์ของออยเลอร์ ทฤษฎีบทสี่สี วิธีการแนวทแยงของคันทอร์ ทฤษฎีบทมูลฐานของแคลคูลัส ทฤษฎีบทมูลฐานของพีชคณิต ทฤษฎีบทมูลฐานของเลขคณิต ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ทฤษฎีบทสุดท้ายของแฟร์มา ทฤษฎีข้อมูล กลศาสตร์ ทฤษฎีเกม คณิตศาสตร์การเงิน การวิเคราะห์เชิงตัวเลข คณิตศาสตร์ฟิสิกส์ วิทยาการเข้ารหัสลับ การคำนวณ คณิตศาสตร์เชิงการจัด วิยุตคณิต ทฤษฎีความอลวน สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แฟร็กทัล ทอพอลอยี เรขาคณิตสาทิสรูป พีชคณิตเชิงเส้น ทฤษฎีกรุป ทฤษฎีจำนวน อนันต์

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24157