ค้นหา
  
Search Engine Optimization Services (SEO)

ทฤษฎีการวัด

ทฤษฎีเมเชอร์ (อังกฤษ: measure theory) เป็นสาขาทางคณิตศาสตร์ของคณิตวิเคราะห์เชิงจริง เพื่อใช้อธิบายนิยามทางคณิตศาสตร์ของ "ความยาว" "พื้นที่" "ปริมาตร" หรืออะไรก็ตามที่วัดได้ ตัวอย่างการนำทฤษฎีเมเชอร์ไปใช้ในสาขาอื่น คือ การที่นักคณิตศาสตร์หลายท่านมองว่าความน่าจะเป็นเหมาะสมเป็นปริมาณเมเชอร์ประเภทหนึ่ง จึงได้ใช้ทฤษฎีเมเชอร์ในการพัฒนาทฤษฎีความน่าจะเป็นเชิงคณิตศาสตร์ (mathematical probability) (หรือทฤษฎีความน่าจะเป็นยุคใหม่) ขึ้น ก่อให้เกิดความก้าวหน้ากับทฤษฎีความน่าจะเป็นเป็นอย่างมาก

อย่างไรก็ตาม จุดประสงค์เริ่มต้นของการสร้างสาขาทฤษฎีเมเชอร์คือ การนำไปใช้กับทฤษฎีของปริพันธ์ เพื่อขยายทฤษฎีปริพันธ์ของรีมันน์ไปยังขอบเขตที่กว้างขึ้น โดยนักคณิตศาสตร์ที่มีส่วนสำคัญในการคิดค้นทฤษฎีเมเชอร์ในยุคแรก ๆ คือ จูเซ็ปเป้ เพียโน มารี คามิลเลอร์ จอร์แดน เอมีล โบเรล และอองรี เลอเบ็ก

จากคำอธิบายอย่างหยาบข้างต้น จะเห็นว่าแม้ในนิยามอย่างเป็นทางการของทฤษฎีเมเชอร์ในหัวข้อต่อไปจะดูซับซ้อน แต่แนวคิดของทฤษฎีเมเชอร์นั้นง่ายและสมเหตุสมผลเป็นอย่างยิ่ง.

ในทางคณิตศาสตร์ เมเชอร์: ? คือ ฟังก์ชันที่ส่งค่าจากโดเมนประเภทซิกมาแอลจีบรา ? ที่นิยามบนเซต X ไปยังเรนจ์ที่เป็นจำนวนจริงบวกขยาย [0, ?] และ ? ต้องมีคุณสมบัติสองข้อต่อไปนี้

2. มี สภาพการบวกนับได้ (countable additivity) หรืออาจเรียกว่ามีสภาพการบวกแบบซิกมา (?-additivity) : ถ้ากำหนดให้ E1, E2, E3, ... เป็นลำดับแบบนับได้ของเซตที่ไม่มีส่วนร่วมเป็นคู่ ๆใน ? แล้ว,

เราจะใช้สัญกรณ์ (X,?,?) เพื่อนิยามปริภูมิเมเชอร์ หรืออาจเรียกว่าปริภูมิเมเชอร์. นั่นคือปริภูมิเมเชอร์ประกอบไปด้วยเซต X, ซิกมาแอลจีบรา บนเซต X และฟังก์ชันที่นิยามบน ซิกมาแอลจีบรา นั้น. อนึ่ง แต่ละสมาชิกใน ? จะถูกเรียกว่าเซตที่สามารถวัดได้ (measurable sets).

ในทฤษฎีความน่าจะเป็นเชิงคณิตศาสตร์, ฟังก์ชันความน่าจะเป็น ก็คือ ฟังก์ชันเมเชอร์ที่มีเงื่อนไขเพิ่มเติม คือ

นอกจากนั้นมักจะใช้สัญกรณ์ (?,F,P){\displaystyle (\Omega ,{\mathfrak {F}},P)} แทนปริภูมิความน่าจะเป็น แทนที่จะใช้สัญกรณ์ (X,?,?) เนื่องจาก X มักใช้แทนตัวแปรสุ่ม และใช้ ? แทนค่าเฉลี่ย .

คำอธิบายอย่างหยาบ: ถ้าวัตถุหนึ่งและวัตถุสองสามารถวัดค่าได้ และวัตถุแรกจริง ๆ แล้วเป็นเพียงส่วนประกอบของวัตถุสอง ค่าที่วัดได้ของวัตถุสองจะมากกว่าหรือเท่ากับวัตถุแรกเสมอ

นอกจากนั้นเรายังได้ว่า ถ้ากำหนดให้ E1,E2,E3,...{\displaystyle E_{1},E_{2},E_{3},...} เป็นเซตใน ? และ En?En+1,?n?N{\displaystyle E_{n}\subseteq E_{n+1},\forall n\in \mathbb {N} }, แล้วจะได้ว่า ?n=1?En{\displaystyle \bigcup _{n=1}^{\infty }E_{n}} อยู่ใน ? ด้วยและ

กำหนดให้ E1,E2,E3,...{\displaystyle E_{1},E_{2},E_{3},...} เป็นเซตใน ? และ En+1?En,?n?N{\displaystyle E_{n+1}\subseteq E_{n},\forall n\in \mathbb {N} }, แล้วจะได้ว่า ?n=1?En{\displaystyle \bigcap _{n=1}^{\infty }E_{n}} อยู่ใน ? ด้วยและ ยิ่งไปกว่านั้น ถ้ามีสมาชิก En{\displaystyle E_{n}} อย่างน้อยหนึ่งตัวที่มีค่าเมเชอร์จำกัด เราจะได้ว่า

คุณสมบัตินี้ไม่เป็นจริงถ้าไม่มีสมาชิก En{\displaystyle E_{n}} ใด ๆ เลยที่มีเมเชอร์จำกัด (คือมีค่าเมเชอร์เป็นอนันต์ทุกตัว) ตัวอย่างเช่น ถ้าให้ n ? N,

เราจะได้ว่าทุก ๆ En{\displaystyle E_{n}} มีเมเชอร์อนันต์แต่ว่าอินเตอร์เซ็กชันของเซตทั้งหมดมีเมเชอร์เป็นศูนย์


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301