ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4, ...) หรือ จำนวนเต็มไม่เป็นลบ (0 1 2 3 4 ...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์ เซตและวิทยาการคอมพิวเตอร์
จำนวนธรรมชาติ มีการใช้งานหลักอยู่สองประการ กล่าวคือสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรืออาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น
คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจัด
สันนิษฐานว่าจำนวนธรรมชาติ มีแหล่งกำเนิดอยู่ที่การนับ เริ่มด้วยเลขหนึ่ง
จำนวนธรรมชาติในนามธรรมได้เกิดขึ้นครั้งแรกจากการใช้ตัวเลข เพื่อแสดงให้ค่าจำนวน จนพัฒนาขึ้นมาในการบันทึกจำนวนที่มากขึ้น ยกตัวอย่างเช่น ชาวบาบิลอนสร้างระบบหลักจำนวนขึ้นมาซึ่งจำเป็นมากในระบบเลขหนึ่งถึงสิบ ชาวอียิปต์ได้สร้างระบบจำนวนอย่างแตกต่างในภาษาเฮียโรกริฟต์ สำหรับหนึ่งถึงสิบและเลขยกกำลังตั้งแต่หลักสิบถึงหลักล้าน ตั้งแต่ที่ถ้ำหินของคาร์หนัก(เคหกรรมของชาวอียิปต์)ก่อนคริสต์ศักราช 1500 ปี จนถึงลูฟฟ์ที่ปารีส แสดงจำนวน 276 โดย 2 แทนที่หลักร้อย 7 แทนที่หลักสิบ 6 แทนที่หลักหน่วย และดังเช่นการเขียนจำนวน 4,622 ด้วย
นิยามอย่างเป็นรูปนัยเชิงคณิตศาสตร์ของจำนวนธรรมชาติพัฒนาตลอดช่วงประวัติศาสตร์โดยมีอุปสรรคบางประการ สัจพจน์ของเปอาโนกำหนดเงื่อนไขที่นิยามสมบูรณ์ใด ๆ ต้องสอดคล้อง การสร้างบางประการแสดงว่าแบบจำลองทางคณิตศาสตร์เมื่อกำหนดทฤษฎีเซต ต้องมีอยู่
สัจพจน์ของเปอาโนเป็นที่มาของทฤษฎีอย่างเป็นรูปนัยของจำนวนธรรมชาติ
สัจพจน์ของเปอาโนมีดังนี้:
หมายเหตุ
0
{\displaystyle 0}
ในนิยามข้างต้นไม่ได้หมายถึงเลขศูนย์เสมอไป
0
{\displaystyle 0}
หมายถึงบางจำนวนที่สอดคล้องกับสัจพจน์ของเปอาโน เมื่อพิจารณาร่วมกับ"ฟังก์ชันตัวตามหลัง"ตามเหมาะสม ทุกระบบที่สอดคล้องกับสัจพจน์เหล่านี้สมมูลกันตามรูปแบบเชิงตรรก อย่างไรก็ตาม มีแบบจำลองสัจพจน์ของเปอาโนที่นับไม่ได้ ซึ่งเรียกว่าแบบจำลองเลขคณิตแบบไม่มาตรฐาน และยืนยันโดยUpward Löwenheim-Skolem Theorem ชื่อ
0
{\displaystyle 0}
ใช้ในที่นี้สำหรับสมาชิกตัวแรก (มีการเสนอชื่อ"สมาชิกตัวที่ศูนย์" เพื่อให้ใช้ "สมาชิกตัวแรก" เรียก
1
{\displaystyle 1}
ใช้ "สมาชิกตัวที่สอง" เรียก
2
{\displaystyle 2}
ฯลฯ) ซึ่งเป็นสมาชิกที่ไม่มีตัวนำหน้า เช่นจำนวนธรรมชาติที่เริ่มด้วย
1
{\displaystyle 1}
ก็สอดคล้องสัจพจน์ ถ้าสัญลักษณ์
0
{\displaystyle 0}
ถือเป็นจำนวนธรรมชาติ
1
{\displaystyle 1}
สัญลักษณ์
S
(
0
)
{\displaystyle S}
ถือเป็น
2
{\displaystyle 2}
ฯลฯ ที่จริงแล้วในต้นฉบับของเปอาโน จำนวนธรรมชาติจำนวนแรกคือ
1
{\displaystyle 1}
การสร้างมาตรฐานในวิชาทฤษฎีเซต เป็นกรณีพิเศษของการสร้างเรียงลำดับแบบวอน นิวมันน์ กำหนดนิยามของจำนวนธรรมชาติดังนี้: