จำนวน (อังกฤษ: number) คือวัตถุนามธรรมที่ใช้สำหรับอธิบายปริมาณ จำนวนมีหลายแบบ จำนวนที่เป็นที่คุ้นเคยก็คือ
จำนวนเชิงซ้อน สามารถขยายเป็น ควอเทอร์เนียน แต่การคูณในระบบควอเทอร์เนียนนั้น ไม่มีคุณสมบัติการสลับที่. ในลักษณะเดียวกัน ออคโนเนียน คือ ส่วนขยายของควอเทอร์เนียน แต่ในครั้งนี้ คุณสมบัติการเปลี่ยนหมู่ จะสูญเสียไป ความจริงก็คือระบบพีชคณิตการหารที่มีมิติจำกัด และมีคุณสมบัติการเปลี่ยนหมู่บน R คือจำนวนจริง, จำนวนเชิงซ้อน และควอเทอร์เนียน เท่านั้น สมาชิกของฟีลด์ฟังก์ชันเชิงพีชคณิตที่มีแคแรกเทอริสติกจำกัดมีลักษณะหลายๆ ประการคล้ายคลึงกับจำนวน ทำให้นักทฤษฎีจำนวนมักพิจารณาให้เป็นจำนวนประเภทหนึ่ง
ในทางคณิตศาสตร์ จำนวน นั้นแตกต่างจาก ตัวเลข ซึ่งเป็นกลุ่มของสัญลักษณ์ที่ใช้แทนจำนวน รูปแบบการเขียนจำนวนด้วยตัวเลขหลาย ๆ หลักถูกอธิบายในระบบตัวเลข
ผู้คนมักนิยมกำหนดจำนวนให้กับวัตถุต่าง ๆ เพื่อสร้างชื่อเฉพาะ ซึ่งมีแผนการให้หมายเลขอยู่หลายแบบ
ส่วนขยายในที่นี้หมายถึงการขยาย จำนวนมาตรฐาน (ซึ่งโดยปกติหมายถึงจำนวนจริงหรือจำนวนเชิงซ้อน) ออกไปให้ครอบคลุม จำนวนชนิดอื่นๆ มากยิ่งขึ้น
การเพิ่มจำนวนสองประเภทนี้เข้าไปในระบบจำนวนมาตรฐาน มีผลให้แคลคูลัสตามแนวคิดดั้งเดิมของไลบ์นิซสามารถพิสูจน์อย่างเคร่งครัดได้
นอกจากนี้ยังมีจำนวนเซอร์เรียล (surreal number)ที่ถูกนิยามโดยจอห์น คอนเวย์ จำนวนเซอร์เรียลครอบคลุมจำนวนไฮเพอร์เรียลและยังมีจำนวนชนิดอื่นๆ เพิ่มเติมมากขึ้นไปอีก
การดำเนินการทางพีชคณิตของจำนวน เช่น การบวก การลบ การคูณ และ การหาร ถูกทำให้มีนัยทั่วไปในสาขาของคณิตศาสตร์ ที่เรียกว่า พีชคณิตนามธรรม ทำให้เราได้กรุป, ริง, และฟิลด์