การวิเคราะห์อภิมาน (อังกฤษ: meta-analysis) หมายถึงวิธีการทางสถิติที่ใช้เพื่อเปรียบเทียบและรวบรวมข้อมูลจากงานวิจัยต่าง ๆ กัน โดยมีจุดมุ่งหมายเพื่อกำหนดสิ่งที่พบเหมือน ๆ กัน สิ่งที่ต่างกัน และความสัมพันธ์ที่น่าสนใจอื่น ๆ ที่อาจปรากฏด้วยการศึกษางานวิจัยหลาย ๆ งาน Meta-analysis สามารถพิจารณาได้ว่าเป็นการ "ทำการศึกษาเกี่ยวกับการศึกษาอื่นที่ทำมาแล้ว" โดยแบบที่ง่ายที่สุด Meta-analysis จะทำโดยกำหนดการวัดค่าทางสถิติที่เหมือนกันในงานวิจัยหลาย ๆ งาน เช่น ขนาดผล (effect size) หรือ p-value แล้วสร้างค่าเฉลี่ยถ่วงน้ำหนัก (weighted average) ของการวัดค่าที่เหมือนกัน โดยน้ำหนักที่ให้มักจะขึ้นอยู่กับขนาดตัวอย่าง (sample size) ของแต่ละงานวิจัย แต่ก็สามารถขึ้นอยู่กับองค์ประกอบอย่างอื่น ๆ เช่นคุณภาพของงานศึกษาด้วย
แรงจูงใจที่จะทำงานศึกษาแบบ meta-analysis ก็เพื่อรวมข้อมูลเพื่อจะเพิ่มกำลังทางสถิติ (statistical power) ของค่าที่สนใจ เมื่อเปรียบเทียบกับเพียงใช้ค่าวัดจากงานศึกษาเดียว ทำงานศึกษาเช่นนี้ นักวิจัยต้องเลือกองค์ประกอบหลายอย่างที่อาจมีอิทธิพลต่อผลงาน รวมทั้งวิธีการสืบหางานวิจัย การเลือกงานวิจัยตามกฏเกณฑ์ที่เป็นกลาง การแก้ปัญหาเมื่อมีข้อมูลไม่ครบ การวิเคราะห์ข้อมูลที่ได้ และการแก้ปัญหาหรือไม่แก้ปัญหาความเอนเอียงในการตีพิมพ์
การศึกษาแบบ Meta-analysis มักจะเป็นส่วนสำคัญของงานปริทัศน์แบบทั้งระบบ (systematic review) แต่ไม่เสมอไป ยกตัวอย่างเช่น อาจจะมีการทำงานแบบ Meta-analysis โดยใช้ผลงานการทดลองทางคลินิก (clinical trial) เกี่ยวกับการรักษาทางแพทย์อย่างหนึ่ง เพื่อได้ความเข้าใจที่ดีขึ้นว่าการรักษาได้ผลแค่ไหน
เมื่อใช้ศัพท์ต่าง ๆ ที่กำหนดโดยองค์กร Cochrane Collaboration คำว่า meta-analysis ก็จะหมายถึงวิธีทางสถิติที่ใช้ในการประมวลหลักฐาน โดยไม่รวมเอาการประมวลข้อมูลรูปแบบอื่น ๆ เช่น research synthesis (แปลว่า การสังเคราะห์งานวิจัย) หรือ evidence synthesis (แปลว่า การสังเคราะห์หลักฐาน) ที่ใช้ประมวลข้อมูลจากงานศึกษาเชิงคุณภาพ (qualitative studies) ซึ่งใช้ในงานปริทัศน์แบบทั้งระบบ
งานศึกษาแบบ Meta-analysis ที่เก่าแก่ที่สุดเกิดขึ้นเมื่อคริสต์ทศวรรษที่ 12 ในประเทศจีน เมื่อนักปราชญ์จู ซี (??, ค.ศ. 1130~1200) สร้างหลักปรัชญาโดยรวบรวมข้อมูลจากงานหนังสือต่าง ๆ จู ซี เรียกวิธีการศึกษาของตนว่า "ทฤษฏีกฏเกณฑ์ทั้งระบบ" (อังกฤษ: Theory of Systematic Rule, จีน: ???) ส่วนในประวัติชาวตะวันตก รากฐานของ meta-analysis เริ่มมาจากการศึกษาทางดาราศาสตร์ในคริสต์ศตวรรษที่ 17 แต่การประมวลผลการทดลองทางคลินิกด้วย meta-analysis เป็นครั้งแรก เกิดขึ้นเมื่อปี ค.ศ. 1904 เผยแพร่ในวารสารแพทย์อังกฤษ (British Medical Journal) ซึ่งแสดงประสิทธิภาพของวัคซีนไข้รากสาดน้อย ทำโดยนักสถิติชาวอังกฤษคาร์ล เพียร์สัน ส่วนงาน meta-analysis ที่รวบรวมงานศึกษาที่มีแนวคิดเดียวกันทั้งหมดเกี่ยวกับประเด็นวิจัยเดียวกัน แต่ทำโดยนักวิจัยกลุ่มต่าง ๆ กัน เป็นหนังสือที่ตีพิมพ์ในปี ค.ศ. 1940 ชื่อว่า Extrasensory Perception After Sixty Years (ประสาทที่ 6 หลังจากผ่านมา 60 ปี) โดยนักจิตวิทยาของมหาวิทยาลัยดุ๊กคือ ดร. โจเซ็ฟ แพร็ตต์ และคณะ เป็นงานปริทัศน์รวบรวมผลงานวิจัย 145 ผลงานในเรื่อง ESP (การรับรู้นอกประสาทสัมผัส) ที่พิมพ์ในระหว่างปี ค.ศ. 1882-1939 เป็นงานปริทัศน์ที่มีการประเมินระดับอิทธิพลของงานศึกษาที่ไม่ได้เผยแพร่ (คือประเมินอิทธิพลของความเอนเอียงในการตีพิมพ์)
โดยแนวคิดแล้ว งานศึกษาแบบ meta-analysis ใช้วิธีทางสถิติเพื่อประมวลผลข้อมูลจากงานศึกษาหลาย ๆ งานเพื่อ
โดยพื้นฐานแล้ว งานศึกษาเช่นนี้ให้ผลเป็นค่าเฉลี่ยถ่วงน้ำหนัก (weighted average) ซึ่งมีข้อดีหลายอย่าง คือ
งานศึกษา meta-analysis ที่ใช้งานวิจัยหลายงานที่มีขนาดตัวอย่างน้อย ไม่สามารถพยากรณ์ผลงานวิจัยงานเดียวที่มีขนาดตัวอย่างมากได้ นักวิชาการบางท่านแย้งว่า จุดอ่อนของวิธีการศึกษาเช่นนี้ก็คือ ไม่สามารถจะควบคุมความเอนเอียงต่าง ๆ ที่มาจากงานที่ใช้เป็นข้อมูลได้ คืองาน meta-analysis ที่มีการออกแบบดี แต่ใช้ข้อมูลจากงานวิจัยที่มีการออกแบบที่ไม่ดี ก็ยังจะคงให้ผลเป็นค่าต่าง ๆ ทางสถิติที่ไม่ดี ดังนั้น ควรจะใช้งานวิจัยที่มีระเบียบวิธี (methodology) ที่ดีเท่านั้น ซึ่งเป็นกฏปฏิบัติที่เรียกว่า "best evidence synthesis" (แปลว่า การสังเคราะห์ผลโดยใช้หลักฐานที่ดีที่สุด) ส่วนนักวิชาการท่านอื่นคิดว่าสามารถรวมงานวิจัยที่ออกแบบไม่ค่อยดีได้ โดยเพิ่มตัวแปร (study-level predictor) ที่บ่งถึงคุณภาพระเบียบวิธีของผลงาน เพื่อตรวจสอบคุณภาพของผลงานเทียบกับระดับของผลที่เป็นประเด็นวิจัยได้ แต่ก็มีนักวิชาการท่านอื่นที่แย้งว่า วิธีที่ดีกว่าก็คือให้เก็บรักษาข้อมูลของความแปรปรวน (variance) ของตัวอย่างการศึกษาไว้ และให้ใช้ข้อมูลงานวิจัยที่มีอยู่ให้มากที่สุด เพราะว่า กฏเกณฑ์ที่คัดสรรงานวิจัยโดยคุณภาพระเบียบวิธี จะทำให้เกิดความไม่เป็นกลาง (subjectivity) เป็นการทำเหตุผลที่จะศึกษาโดยวิธีนี้ให้เป็นโมฆะ
ปัญหาอีกอย่างหนึ่งที่อาจจะมีก็คือการใช้ข้อมูลที่มีการตีพิมพ์ ซึ่งอาจจะทำให้แสดงผลที่เกินความจริงเพราะเหตุแห่งความเอนเอียงในการตีพิมพ์ เพราะว่า งานวิจัยหลายงานได้พบว่า งานวิจัยที่แสดงผลเปล่า (หรือผลลบ) มีโอกาสน้อยกว่าที่จะรับเผยแพร่ ยกตัวอย่างเช่น นักวิจัยอาจจะไม่ได้สืบหาผลงานที่เป็นวิทยานิพนธ์ หรืองานที่ไม่ได้รับการเผยแพร่ นี่เป็นปัญหาที่แก้ได้ยาก เพราะไม่มีใครรู้ว่า มีผลงานกี่งานที่ไม่ได้รายงาน
ความเอนเอียงในการตีพิมพ์เช่นนี้มีผลเป็นขนาดผล (ที่เป็นประเด็นวิจัย) ที่ไม่ตรงกับความจริง ทำให้เกิดเหตุผลวิบัติประเภท base rate fallacy ที่นัยสำคัญของงานที่เกิดการตีพิมพ์เกินความจริง เพราะว่างานอื่น ๆ (ที่ไม่แสดงนัยสำคัญ) ผู้วิจัยไม่ส่งเพื่อพิมพ์ หรือวารสารปฏิเสธที่จะพิมพ์ ปัญหาเช่นนี้ต้องมีการพิจารณาอย่างถี่ถ้วนเมื่อแปลผลที่เกิดจาก meta-analysis
การแจกแจงของขนาดผล (distribution of effect sizes) สามารถเห็นได้ด้วยการวาด funnel plot ซึ่งเป็นแผนภาพกระจายของขนาดตัวอย่าง (sample size) และขนาดผล (effect size) คือจริง ๆ แล้ว ในขนาดผลบางอย่าง ตัวอย่างยิ่งมีน้อยเท่าใด ความน่าจะเป็นก็จะสูงขึ้นเท่านั้นในการพบขนาดผลนั้น ในขณะเดียวกัน ขนาดผลยิ่งสูงขึ้นเท่าไร ความน่าจะเป็นที่งานที่มีตัวอย่างมากจะแสดงผลที่ระดับนั้นโดยสุ่มก็เป็นไปได้น้อยลงเท่านั้น ถ้ามีงานที่แสดงผลเปล่าที่ไม่ได้พิมพ์เป็นจำนวนมาก งานที่แสดงผลบวกที่เหลือจะทำให้เกิด funnel plot ที่ขนาดผลจะมีลักษณะเป็นสัดส่วนผกผันกับขนาดตัวอย่าง กล่าวโดยอีกนัยก็คือ ขนาดผลยิ่งสูงขึ้นเท่าไร ขนาดตัวอย่างก็น้อยลงเท่านั้น ดังนั้นส่วนหนึ่งของผลที่แสดงนัยสำคัญนั้น จะเป็นค่าที่เกิดขึ้นโดยสุ่มและไม่มีความสมดุลใน plot เพราะงานวิจัยแสดงผลลบไม่ได้รับการพิมพ์ โดยเปรียบเทียบกัน ถ้างานวิจัยโดยมาก (ทั้งผลบวกผลลบผลเปล่า) ได้รับการพิมพ์ ขนาดผลที่แสดงจะไม่มีอิทธิพลจากขนาดตัวอย่าง และ funnel plot จะออกมาสมดุล ดังนั้น ถ้าไม่มีความเอนเอียงในการตีพิมพ์ ก็จะไม่มีความสัมพันธ์กันระหว่างขนาดตัวอย่างและขนาดผล ดังนั้น ความสัมพันธ์เชิงลบระหว่างขนาดตัวอย่างและขนาดผลจึงบอกเป็นนัยว่า งานศึกษาที่พบนัยสำคัญในผล มีการตีพิมพ์มากกว่า มีวิธีการหลายอย่างที่สามารถใช้แก้ปัญหาความเอนเอียงในการตีพิมพ์ เช่นการตัดข้อมูลออกแต่จะต้องเดาว่า ควรจะตัดออกที่จุดไหน
วิธีการตรวจจับความเอนเอียงในการตีพิมพ์เป็นเรื่องที่ยังไม่มีที่ยุติ เพราะมักจะมีกำลังทางสถิติต่ำในการตรวจจับ และสามารถแม้จะให้ผลบวกที่ไม่เป็นจริงในบางกรณี ยกตัวอย่างเช่น ในงานที่มีขนาดผลต่ำ ถ้ามีความแตกต่างกันในระเบียบวิธีระหว่างงานที่มีขนาดตัวอย่างน้อยและงานที่มีขนาดตัวอย่างมาก อาจทำให้เกิดความแตกต่างกันของขนาดผลที่ดูเหมือนจะเป็นความเอนเอียงในการตีพิมพ์[โปรดขยายความ]
นอกจากนั้นแล้วยังมีวิธี "Tandem Method" ที่ใช้ในการวิเคราะห์หาความเอนเอียงในการตีพิมพ์ และสามารถลดระดับผลบวกที่ไม่จริง เป็นวิธีที่มี 3 ขั้นตอน อย่างไรก็ดี มีการเสนอว่า 25% ของผลงาน meta-analysis ที่เกี่ยวกับจิตวิทยา อาจจะมีความเอนเอียงในการตีพิมพ์ แต่ว่า เนื่องจากว่าวิธีการตรวจจับมีกำลังต่ำ ดังนั้น การประเมินระดับความเอนเอียงในการตีพิมพ์อาจจะต่ำเกินไปจากความเป็นจริง
การอภิปรายเรื่องความเอนเอียงในการตีพิมพ์ มักจะพุ่งความสนใจไปในเรื่องข้อปฏิบัติในการตีพิมพ์ที่เน้นงานที่พบผลที่มีนัยสำคัญทางสถิติ แต่ว่า จริง ๆ แล้ว แม้นักวิจัยเองก็มีพฤติกรรมที่เป็นปัญหาบางอย่าง เช่นการเปลี่ยนรูปแบบทางสถิติของงานวิจัยไปเรื่อย ๆ จนกระทั่งพบผลที่มีนัยสำคัญ เพื่อสนับสนุนสมมติฐานของตน และเพราะว่า พฤติกรรมที่เป็นปัญหาเช่นนี้จะไม่ปรากฏว่ามีความสัมพันธ์กับขนาดตัวอย่าง ดังนั้น ปัญหาเช่นนี้จะไม่ปรากฏให้เห็นใน funnel plot และอาจจะไม่สามารถตรวจจับได้โดยใช้วิธีอื่น ๆ ที่ใช้ตรวจจับความเอนเอียงในการตีพิมพ์
นอกจากนั้นแล้ว ยังมีปัญหาที่เป็นจุดอ่อนอื่น ๆ รวมทั้ง Simpson's paradox (คืองานวิจัยมีขนาดตัวอย่างน้อยสองงานอาจจะชี้ผลไปทางหนึ่ง ในขณะที่งานรวมข้อมูลอาจจะชี้ไปอีกทางหนึ่ง) และความไม่เป็นกลาง (subjectivity) ในวิธีการประมวลค่าของผล หรือในการตัดสินว่างานวิจัยงานไหนควรจะได้รับเลือก
ปัญหาที่หนักที่สุดของ meta-analysis มักจะเกิดขึ้นเมื่อผู้ทำงานมีแรงจูงใจทางเศรษฐกิจ ทางสังคม หรือทางการเมือง เช่นมีความต้องการที่จะสนับสนุนหรือคัดค้านการออกกฎหมาย ผู้ทำงานที่มีแรงจูงใจเช่นนี้มีโอกาสมากกว่าที่จะใช้ meta-analysis อย่างผิด ๆ เพราะความเอนเอียงส่วนตัว ยกตัวอย่างเช่น งานวิจัยที่แสดงผลสอดคล้องกับความต้องการของผู้ทำงาน Meta analysis มีโอกาสที่จะรับเลือกใช้ข้อมูล (ในการประมวลผล) ในขณะที่งานที่ไม่มีความสอดคล้อง อาจจะไม่ได้รับความสนใจหรืออาจจะกำหนดว่า ไม่น่าเชื่อถือ ยิ่งไปกว่านั้น งานวิจัยที่แสดงผลสอดคล้องเองอาจจะมีความเอนเอียงอยู่แล้ว หรือผู้ทำงานของงานวิจัยนั้นเองอาจจะได้รับผลประโยชน์ในการแสดงผลที่สนับสนุนจุดมุ่งหมายทางการเมือง ทางสังคม หรือทางเศรษฐกิจ โดยใช้วิธีเลือกข้อมูลส่วนน้อยกว่าแต่สนับสนุนผลที่ต้องการ และไม่เลือกเอาข้อมูลที่ครอบคลุมกว่าแต่ไม่สนับสนุน อิทธิพลของความเอนเอียงเหล่านี้ต่อผลงาน meta-analysis เป็นไปได้เพราะว่า ระเบียบวิธีทำงาน meta-analysis สามารถยืดหยุ่นได้
ในปี ค.ศ. 2011 มีงานวิจัยหนึ่งที่มุ่งจะเปิดเผยการขัดกันแห่งผลประโยชน์ของงานวิจัยที่ได้รับเลือกเพื่อใช้ในงาน meta-analysis ทางการแพทย์ งานวิจัยทำการปริทัศน์งาน meta-analysis ต่าง ๆ 29 งาน แล้วพบว่า การขัดกันแห่งผลประโยชน์ของงานวิจัยที่ได้รับเลือกเพื่อใช้ในงาน แทบไม่มีการเปิดเผยโดยประการทั้งปวง งาน 29 งานนี้รวม
งาน 29 งานนี้ประมวลข้อมูลจากงานวิจัยแบบสุ่มและมีกลุ่มควบคุม (randomized controlled trials) 509 งาน จากงานเหล่านี้ 318 งานรายงานแหล่งทุนการวิจัย โดยที่ 219 งาน (69%) รับทุนมาจากอุตสาหกรรมและธุรกิจ[โปรดขยายความ] จากงาน 509 งาน 132 งานรายงานการขัดกันแห่งผลประโยชน์ของผู้ทำ โดยมี 91 งาน (69%) ที่เปิดเผยว่า ผู้ทำงานหนึ่งหรือมากกว่าหนึ่ง มีผลประโยชน์ทางการเงินร่วมกับอุตสาหกรรมและธุรกิจ แต่ว่า ข้อมูลเช่นนี้ แทบไม่เคยเปิดเผยในงาน meta-analysis เลย คือ จากงาน 29 งาน มีเพียงแค่ 2 (7%) ที่แสดงแหล่งทุนการวิจัย และไม่มีการรายงานผลประโยชน์ทางการเงินของผู้ทำงานวิจัยเลย ผู้ทำงานปริทัศน์นี้สรุปว่า
เพราะไม่มีการชี้แจงความขัดกันแห่งผลประโยชน์ เนื่องจากได้รับเงินทุนหรือมีผลประโยชน์ทางการเงินร่วมกับอุตสาหกรรมและธุรกิจ สำหรับงานวิจัยแบบสุ่มและมีกลุ่มควบคุมที่รวมอยู่ใน meta-analysis (ดังนั้น) ความเข้าใจและการประเมินหลักฐานที่ได้มาจาก meta-analysis อาจจะมีความบิดเบือน
meta-regression เป็นเทคนิคที่ใช้ในงาน meta-analysis เพื่อตรวจสอบอิทธิพลของตัวแปร moderator ต่อขนาดผลที่เป็นประเด็นวิจัยโดยใช้เทคนิคทาง regression ต่าง ๆ meta-regression นั้นมีประสิทธิภาพสำหรับงานนี้มากกว่าเทคนิค regression ธรรมดาทั่ว ๆ ไป
ส่วนมาตรฐานของรูปแบบการรายงาน ให้ดูรายละเอียดในเอกสาร Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA แปลว่า รายการข้อมูลที่ควรรายงานในงานปริทัศน์แบบทั้งระบบและ meta-analysis)