ในคณิตศาสตร์ ควอเทอร์เนียน (อังกฤษ: Quaternion) เป็นระบบจำนวนที่เพิ่มเติมออกมาจากจำนวนเชิงซ้อน เป็นจำนวนที่เขียนได้ในรูป
w
+
i
x
+
j
y
+
k
z
{\displaystyle w+ix+jy+kz}
โดยที่
w
,
x
,
y
{\displaystyle w,x,y}
และ
z
{\displaystyle z}
เป็นจำนวนจริง และ
i
2
=
j
2
=
k
2
=
−
1
,
i
j
=
k
=
−
j
i
{\displaystyle i^{2}=j^{2}=k^{2}=-1,ij=k=-ji}
ซึ่งแสดงว่าควอเทอร์เนียนไม่มีสมบัติการสลับที่
ควอเทอร์เนียนมีบทบาททั้งในคณิตศาสตร์ทฤษฎีและคณิตศาสตร์ประยุกต์ โดยเฉพาะอย่างยิ่งการคำนวณที่มีการหมุนในสามมิติ เช่น คอมพิวเตอร์กราฟฟิกสามมิติ ในการใช้ประโยชน์เชิงปฏิบัติ ควอเทอร์เนียนสามารถใช้ควบคู่กับวิธีอื่นๆ เช่น มุมออยเลอร์ และเมทริกซ์การหมุน หรือใช้แทนไปเลยโดยขึ้นอยู่กับการใช้ประโยชน์
ควอเทอร์เนียน ถูกสร้างขึ้นโดย วิลเลียม โรวัน แฮมิลตัน (Sir William Rowan Hamilton) ซึ่งมีชีวิตอยู่ในปี ค.ศ. 1805-1865 นักคณิตศาสตร์ชาวไอร์แลนด์ มีผลงานในด้านพีชคณิต ดาราศาสตร์ และฟิสิกส์
วันที่ 16 ตุลาคม ปี ค.ศ. 1843 แฮมิลตันได้สร้างจำนวนชนิดใหม่ขึ้นเรียกว่า ควอเทอร์เนียน ระหว่างทางที่เขากำลังเดินทางไปยัง Royal Irish Academy แฮมิลตันตื่นเต้นมากจนถึงขั้นสลักสมการต่อไปนี้ของควอเทอร์เนียนเอาไว้
i
2
=
j
2
=
k
2
=
i
j
k
=
−
1
{\displaystyle \mathbf {i} ^{2}=\mathbf {j} ^{2}=\mathbf {k} ^{2}=\mathbf {i\,j\,k} =-1}
ควอเทอร์เนียน H คือเซตที่เท่ากับปริภูมิเวกเตอร์ 4 มิติของจำนวนจริง (R4) การดำเนินการทางคณิตศาสตร์ในควอเทอร์เนียนมี 3 แบบคือ การบวก, การคูณด้วยปริมาณสเกลาร์ และการคูณด้วยควอเทอร์เนียน ผลรวมระหว่างจำนวนควอเทอร์เนียนสองจำนวนจะมีค่าเท่ากับการรวมของจำนวนสองจำนวนในปริภูมิ R4 และเช่นเดียวกัน การคูณควอเทอร์เนียนด้วยจำนวนจริงจะใช้นิยามเดียวกันกับการคูณเวกเตอร์ใน R4 ด้วยจำนวนจริง สำหรับการคูณระหว่างจำนวนควอเทอร์เนียนสองจำนวนนั้น ก่อนอื่นจะต้องนิยามฐานหลัก (basis) ของ R4 ก่อน โดยปกติพื้นฐาน ฐานหลักที่นิยมใช้ก็คือ 1, i, j และ k ดังนั้นสมาชิกใดๆก็ตามใน H ย่อมสามารถเขียนให้อยู่ในรูปผลรวมเชิงเส้น (linear combination) ของฐานหลักเหล่านั้นได้เสมอโดยไม่ซ้ำแบบกัน ยกตัวอย่างเช่น ควอเทอร์เนียน a1 + bi + cj + dk เป็นการเขียนในรูปฐานหลัก โดยที่ a, b, c และ d เป็นจำนวนจริง และมี 1, i, j และ k เป็นฐานหลัก เป็นต้น ควอเทอร์เนียนมีเอกลักษณ์การคูณ คือ 1 ดังนั้นการคูณควอเทอร์เนียนด้วย 1 จึงไม่เปลี่ยนแปลงควอเทอร์เนียน ด้วยเหตุนี้จำนวนควอเทอร์เนียนใดๆ มักเขียนในรูป a + bi + cj + dk ดังนั้นนิยามการคูณระหว่างจำนวนควอเทอร์เนียนสองจำนวนจึงประกอบไปด้วยการคูณกันระหว่างสมาชิก และการใช้กฎการแจกแจง
ฐานหลักของควอเทอร์เนียนมีสมบัติ คือ
i
2
=
j
2
=
k
2
=
i
j
k
=
−
1
{\displaystyle i^{2}=j^{2}=k^{2}=ijk=-1\ }
โดย i, j และ k เป็นจำนวนจินตภาพ เราสามารถหาผลคูณระหว่างฐานหลักแต่ละคู่ได้ ยกตัวอย่างเช่น หากต้องการแสดงว่า
k
=
i
j
{\displaystyle k=ij\ }
สามารถทำได้โดยเริ่มจากพิจารณาสมการ
−
k
=
i
j
k
k
−
k
=
i
j
(
−
1
)
k
=
i
j
{\displaystyle {\begin{aligned}-k&=ijkk\\-k&=ij(-1)\\k&=ij\end{aligned}}}
สำหรับผลคูณระหว่างฐานหลักคู่อื่นๆสามารถพิสูจน์ได้ด้วยวิธีการเดียวกัน ซึ่งจะได้ผลลัพธ์ ดังนี้
สำหรับจำนวนควอเทอร์เนียนสองจำนวน a1 + b1i + c1j + d1k และ a2 + b2i + c2j + d2k ผลคูณฮามิลตัน (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) สามารถหาได้โดยใช้สมบัติการแจกแจง จากนั้นหาผลรวมระหว่างผลคูณของฐานหลักแต่ละคู่ ดังต่อไปนี้