ค้นหา
  
Search Engine Optimization Services (SEO)

ข้อความคาดการณ์ของปวงกาเร

ในคณิตศาสตร์โดยเฉพาะอย่างยิ่งสาขาทอพอโลยีเชิงเรขาคณิต ข้อความคาดการณ์ของปวงกาเร (อังกฤษ: Poincaré conjecture) เป็นทฤษฎีบทจัดจำแนกสำหรับทรงกลม 3 มิติ ซึ่งเป็นไฮเปอร์สเฟียร์ล้อมรอบบอลหนึ่งหน่วยในปริภูมิ 4 มิติ

อองรี ปวงกาเรตั้งข้อความคาดการณ์ของเขาเป็นครั้งแรกในปี 1904 ปวงกาเรสนใจปริภูมิที่เหมือนปริภูมิสามมิติเมื่อดูใกล้ ๆ และตัวปริภูมิมีขนาดจำกัด ปวงกาเรคาดการณ์ว่าถ้าปริภูมิเช่นนั้นมีสมบัติเพิ่มเติมไปอีกว่าทุกลูปในปริภูมิดังกล่าวสามารถรัดเข้าหากันอย่างต่อเนื่องจนกระทั่งกลายเป็นจุดได้ แล้วรูปทรงนั้นจะต้องเหมือนกับทรงกลม 3 มิติ ความพยายามพิสูจน์ข้อความคาดการณ์ดังกล่าวนำไปสู่ความก้าวหน้าในคณิตศาสตร์สาขาทอพอโลยีเชิงเรขาคณิตตลอดช่วงศตวรรษที่ 20

กริกอรี เพเรลมาน พิสูจน์ข้อความคาดการณ์นี้ได้สำเร็จในช่วงปี 2002 ถึง 2003 โดยเขาเสนอบทพิสูจน์ในบทความบนเว็บไซต์ arXiv บทพิสูจน์ข้อความคาดการณ์นี้อาศัยงานของ ริชาร์ด แฮมิลตัน เป็นพื้น ซึ่งแฮมิลตันเป็นผู้ริเริ่มการใช้ Ricci flow ในการแก้ปัญหาข้อความคาดการณ์ของปวงกาเร เพเรลมานพัฒนาเทคนิกใหม่ ๆ สำหรับ Ricci flow จนสำหรับดัดแปลงงานของแฮมิลตันเพื่อพิสูจน์ข้อความคาดการณ์ของปวงกาเรได้ในที่สุด นอกจากนี้เขายังพิสูจน์ Geometrization conjecture ของวิลเลียม เทอร์สตันที่ซับซ้อนมากกว่าข้อความคาดการณ์ของปวงกาเร

บทพิสูจน์ข้อความคาดการณ์ของปวงกาเรถือว่าเป็นหมุดหมายที่สำคัญในวิชาทอพอโลยี แฮมิลตันได้รับรางวัลชอว์จากผลงานของเขา ข้อความคาดการณ์นี้ยังเป็นหนึ่งในปัญหารางวัลมิลเลนเนียม ซึ่งสถาบันคณิตศาสตร์เคลย์ยื่นข้อเสนอ 1 ล้านดอลล่าร์สหรัฐให้แก่ผู้ที่สามารถแก้ปัญหาเหล่านี้ได้ ข้อพิสูจน์ของเพเรลมานได้รับการตรวจสอบและยืนยันในปี ค.ศ. 2006 สถาบันคณิตศาสตร์เคลย์เสนอรางวัลมิลเลนเนียมให้แก่เพเรลมานเมื่อ 18 มีนาคม ค.ศ. 2010 และเขายังได้รับการเสนอเหรียญรางวัลฟีลด์ส แต่เขาปฏิเสธรางวัลทั้งคู่ โดยให้เหตุผลว่าผลงานของแฮมิลตันมีส่วนสำคัญพอ ๆ กับผลงานของเขาเอง ปัจจุบันข้อความคาดการณ์ของปวงกาเรเป็นปัญหารางวัลมิลเลนเนียมข้อแรกและข้อเดียวที่ได้รับการไขข้อพิสูจน์ได้

ในปี 1900 ปวงกาเรอ้างว่าฮอมอโลยี ซึ่งเขาเป็นผู้เสนอขึ้นมาเองโดยอาศัยงานของเอนริโก เบ็ตตี นั้นเพียงพอที่จะใช้ตรวจสอบว่า แมนิโฟลด์สามมิติที่กำหนดเป็นทรงกลม 3 มิติหรือไม่ แต่ในปี 1904 ปวงกาเรค้นพบตัวอย่างค้านกับข้ออ้างของเขา โดยปัจจุบันรู้จักปริภูมิที่เป็นตัวอย่างค้านนี้ในชื่อ ทรงกลมฮอมอโลยีปวงกาเร (Poincaré homology sphere) ทรงกลมปวงกาเรเป็นตัวอย่างแรกของทรงกลมฮอมอโลยีซึ่งเป็นแมนิโฟลด์ที่มีฮอมอโลยีเท่ากับทรงกลม เพื่อพิสูจน์ว่าทรงกลมปวงกาเรต่างจากทรงกลมสามมิติ ปวงกาเรได้เสนอการตัวยืนยงทางทอพอโลยีอันใหม่นั่นคือ กรุปพื้นฐาน (fundamental group) และพิสูจน์ว่าทรงกลมปวงกาเรมีกรุปพื้นฐานอันดับ 120 ในขณะที่ทรงกลมสามมิติมีกรุปพื้นฐานชัดแจ้ง ปัจจุบันนักคณิตศาสตร์ค้นพบทรงกลมฮอมอโลยีอยู่จำนวนมาก

ในบทความเดียวกัน ปวงกาเรสนใจว่าแมนิโฟลด์สามมิติที่มีทั้งฮอมอโลยีและกรุปพื้นฐานเหมือนกับทรงกลมสามมิติ จำเป็นต้องเป็นทรงกลมสามมิติหรือไม่ กรุปพื้นฐานของทรงกลมสามมิติชัดแจ้งและเงื่อนไขนี้สมมูลกับข้อความที่ว่า "ทุกลูปสามารถหดให้เป็นจุดได้" ปวงกาเรไม่ได้เขียนไว้ว่าเขาเชื่อในข้อความคาดการณ์หรือไม่

ทุกแมนิโฟลด์ 3 มิติซึ่งเป็นแมนิโฟลด์ปิดและเป็นปริภูมิเชื่อมโยงเชิงเดียวจะสมานสัณฐานกับทรงกลม 3 มิติ

แมนิโฟลด์ปิดคือแมนิโฟลด์ที่กระชับและไม่มีขอบ เงื่อนไขนี้จำเป็น เช่นปริภูมิยูคลิเดียนสามมิติเป็นปริภูมิเชื่อมโยงเชิงเดียว แต่ไม่กระชับ ฉะนั้นจึงไม่สมานสัณฐานกับทรงกลม

ในช่วงปี 1930 เจ.เอช.ซี. ไวท์เฮดเสนอว่าเขามีบทพิสูจน์ แต่ได้ถอนออกไปในภายหลัง แต่ในความพยายามพิสูจน์ทฤษฎีบทนี้ ไวท์เฮดค้นพบตัวอย่างของแมนิโฟลด์เชื่อมโยงเชิงเดียว (ยิ่งไปกว่านั้นเป็นปริภูมิที่ contractible หรือก็คือสมมูลทางฮอมอโทปีกับจุด) แต่เป็นแมนิโฟลด์ไม่กะชับ และไม่สมานสัณฐานกับ R 3 {\displaystyle \mathbb {R} ^{3}} ซึ่งในปัจจุบันเราเรียกว่าแมนิโฟลด์ไวท์เฮด (Whitehead manifold)

ในช่วงปี 1950 และ 1960 นักคณิตศาสตร์คนอื่นก็ได้พยายามพิสูจน์ข้อความคาดการณ์นี้เช่นกัน แต่พบว่ามีจุดผิดพลาดเสมอ ตัวอย่างนักคณิตศาสตร์ที่มีชื่อเสียงเช่น ฌอร์ฌ เดอ รัง, อาร์.เอช. บิง, ว็อล์ฟกัง ฮาเคิน, เอดวิน อี. โมอีส และ Christos Papakyriakopoulos ต่างพยายามพิสูจน์ข้อความคาดการณ์นี้ attempted to prove the conjecture. ในปี 1958 อาร์.เอช. บิง พิสูจน์รูปแบบที่อ่อนกว่าของข้อความคาดการณ์ของปวงกาเรที่ว่า ถ้าทุกเส้นโค้งปิดเชิงเดี่ยวของแมนิโฟลด์สามมิติกระชับถูกบบรรจุในบอลสามมิติ แล้วแมนิโฟลด์นั้นจะสมานสัณฐานกับทรงกลมสามมิติ บิงได้อธิบายจุดผิดพลาดบางจุดขณะพยายามพิสูจน์ข้อความคาดการณ์ของปวงกาเร

วลอดิเมียซ ยาคอปช์ (Włodzimierz Jakobsche) พิสูจน์ในปี 1978 ว่าหากข้อความคาดการณ์บิง–บอร์ซูกเป็นจริงในมิติ 3 แล้วข้อความคาดการณ์ของปวงกาเรจะเป็นจริงด้วย

ทฤษฎีบทการจัดจำแนกพื้นผิวปิดในสองมิติระบุว่าข้อความคาดการณ์ของปวงกาเรเป็นจริงในสองมิติ และในมิติที่สูงกว่า 3 เราอาจถามคำถามเดียวกันนั้นได้ว่าเป็นข้อความคาดการณ์ของปวงกาเรวางนัยทั่วไป ซึ่งถามว่า ทรงกลมฮอมอโทปีมิติ n {\textstyle n} จะสมานสัณฐานกับทรงกลมมิติ n {\textstyle n} หรือไม่ เงื่อนไขนี้แรงกว่าเงื่อนไขในสามมิติ ทั้งนี้เพราะมีการค้นพบว่าในมิติ 4 ขึ้นไปจะมีแมนิโฟลด์ปิดและเป็นปริภูมิเชื่อมโยงเชิงเดี่ยวที่ไม่สมมูลเชิงฮอมอโทปีกับ ทรงกลมมิติ n {\textstyle n}

ก่อนหน้านี้เชื่อกันโดยทั่วไปว่าข้อความคาดการณ์ของปวงกาเรวางนัยทั่วไปเป็นเท็จสำหรับมิติตั้งแต่สี่เป็นต้นไป ในปี 1961 สตีเฟน สมาลสร้างความตื่นตะลึงให้กับวงการคณิตศาสตร์โดยพิสูจน์ข้อความคาดการณ์ของปวงกาเรวางนัยทั่วไปสำหรับมิติที่สูงกว่าสี่ทั้งหมด และใช้วิธีการเดียวกันพิสูจน์ทฤษฎีบทเอช-โคบอร์ดิสม์ ในปี 1982 ไมเคิล ฟรีดแมนพิสูจน์ข้อความคาดการณ์ของปวงกาเรวางนัยทั่วไปสำหรับสี่มิติ งานของฟรีดแมนยังเหลือความเป็นไปได้ที่จะมีแมนิโฟลด์เรียบในสี่มิติที่สมานสัณฐานกับทรงกลมสี่มิติ แต่ไม่อนุพันธสัณฐานกับทรงกลมสี่มิติ คำถามนี้เรียกว่า ข้อความคาดการณ์ปวงกาเรเรียบ (smooth Poincaré conjecture) ในมิติที่สี่ยังเป็นปัญหาเปิด และเชื่อกันว่าเป็นปัญหาที่ยาก ข้อความคาดการณ์ปวงกาเรเรียบในเจ็ดมิตินั้นเป็นเท็จโดยมีตัวอย่างค้านคือทรงกลมผิดธรรมดา (exotic sphere) ของจอห์น มิลนอร์

ข้อความคาดการณ์ของปวงกาเรเป็นจริงในมิติสี่ และมิติที่สูงกว่าด้วยเหตุผลที่ต่างกันอย่างยิ่ง และในสามมิติข้อความคาดการณ์นี้ต้องรอจนข้อความคาดการณ์จีโอเมไทรเซชัน (geometrization conjecture) วางกรอบให้กับแมนิโฟลด์สามมิติทั้งหมด จอห์น มอร์แกนเขียนไว้ว่า:

ในมุมมองของข้าพเจ้า ก่อนงานของเธอร์สตันเกี่ยวกับแมนิโฟลด์ไฮเพอร์บอลิกและ... ข้อความคาดการณ์จีโอเมไทรเซชันจะปรากฎ ไม่มีมติเอกฉันท์ในหมู่ผู้เชี่ยวชาญว่าข้อความของปวงกาเรเป็นจริงหรือไม่ หลังงานของเธอร์สตันก็มีความคิดเอกฉันท์ขึ้นมาว่าข้อความของปวงกาเร (และข้อความคาดการณ์จีโอเมไทรเซชัน)เป็นจริง ถึงแม้ว่าทั้งสองไม่มีผลโดยตรงระหว่างกัน

โปรแกรมของแฮมิลตันเริ่มในบทความปี 1982 ของริชาร์ด เอส. แฮมิลตัน โดยแฮมิลตันเสนอแนวคิดเรื่องริคคีโฟล์ว (Ricci flow) บนแมนิโฟลด์ และแสดงการใช้มันพิสูจน์กรณีพิเศษของข้อความคาดการณ์ของปวงกาเร หลายปีต่อมา แฮมิลตันพัฒนางานของเขาแต่ยังไม่สามารถพิสูจน์ข้อความคาดการณ์ได้ จนกระทั่งกริกอรี เพเรลมานตีพิมพ์บทความของเขา

ในช่วงปลายปี 2002 และ 2003 เพเรลมานเผยแพร่บทความสามบทความบน arXiv ในสามบทความนี้ เพเรลมานร่างบทพิสูจน์ข้อความคาดการณ์ของปวงกาเร และข้อความคาดการณ์ที่ทั่วไปกว่าคือข้อความคาดการณ์จีโอเมไทรเซชัน เป็นการเพิ่มเติมโปรแกรมของแฮมิลตัน

ในช่วงเดือนพฤษภาคมถึงกรกฎาคมปี 2006 มีกลุ่มวิจัยจำนวนมากเสนอบทความที่เติมรายละเอียดในบทพิสูจน์ของเพเรลมาน อันได้แก่

ทั้งสามกลุ่มวิจัยพบช่องว่างในงานของเพเรลมานนั้นเล็กน้อย และอาจแก้ได้โดยวิธีการของเขาเอง

ในวันที่ 22 สิงหาคม ปี 2006 สภานานาชาตินักคณิตศาสตร์ (ICM) ให้รางวัลเหรียญฟีลดส์แก่เพเรลมาน แต่เขาปฏิเสธ จอห์น มอร์แกนกล่าวในงาน ICM ในวันที่ 24 สิงหาคม 2006 และประกาศว่า "ในปี 2003 เพเรลมานได้แก้ข้อความคาดการณ์ของปวงกาเรเป็นผลสำเร็จ"

ในเดือนธันวาคมปี 2006 วารสาร Science ยกย่องบทพิสูจน์ของข้อความคาดการณ์ปวงกาเรว่าเป็นการค้นพบที่ยิ่งใหญ่แห่งปี (Breakthrough of the Year) และนำขึ้นปกวารสาร


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด ข้อความคาดการณ์ของโกลด์บาช เอกลักษณ์ของออยเลอร์ ทฤษฎีบทสี่สี วิธีการแนวทแยงของคันทอร์ ทฤษฎีบทมูลฐานของแคลคูลัส ทฤษฎีบทมูลฐานของพีชคณิต ทฤษฎีบทมูลฐานของเลขคณิต ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ทฤษฎีบทสุดท้ายของแฟร์มา ทฤษฎีข้อมูล กลศาสตร์ ทฤษฎีเกม คณิตศาสตร์การเงิน การวิเคราะห์เชิงตัวเลข คณิตศาสตร์ฟิสิกส์ วิทยาการเข้ารหัสลับ การคำนวณ คณิตศาสตร์เชิงการจัด วิยุตคณิต ทฤษฎีความอลวน สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แฟร็กทัล ทอพอลอยี เรขาคณิตสาทิสรูป พีชคณิตเชิงเส้น ทฤษฎีกรุป ทฤษฎีจำนวน อนันต์

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24157