ค้นหา
  
Search Engine Optimization Services (SEO)

การเรียนรู้ของเครื่อง

การเรียนรู้ของเครื่อง (อังกฤษ: machine learning) เป็นสาขาหนึ่งของปัญญาประดิษฐ์ที่พัฒนามาจากการศึกษาการรู้จำแบบ เกี่ยวข้องกับการศึกษาและการสร้างอัลกอริทึมที่สามารถเรียนรู้ข้อมูลและทำนายข้อมูลได้ อัลกอริทึมนั้นจะทำงานโดยอาศัยโมเดลที่สร้างมาจากชุดข้อมูลตัวอย่างขาเข้าเพื่อการทำนายหรือตัดสินใจในภายหลัง แทนที่จะทำงานตามลำดับของคำสั่งโปรแกรมคอมพิวเตอร์

การเรียนรู้ของเครื่องมีเกี่ยวข้องอย่างมากกับสถิติศาสตร์ เนื่องจากทั้งสองสาขาศึกษาการวิเคราะห์ข้อมูลเพื่อการทำนายเช่นกัน นอกจากนี้ยังมีความสัมพันธ์กับสาขาการหาค่าเหมาะที่สุดในทางคณิตศาสตร์ที่แงของวิธีการ ทฤษฎี และการประยุกต์ใช้ การเรียนรู้ของเครื่องสามารถนำไปประยุกต์ใช้งานได้หลากหมาย ไม่ว่าจะเป็นการกรองอีเมล์ขยะ การรู้จำตัวอักษร เครื่องมือค้นหา และคอมพิวเตอร์วิทัศน์

อาเธอร์ ซามูเอล นักวิทยาศาสตร์คอมพิวเตอร์ชาวอเมริกันได้ให้นิยามของการเรียนรู้ของเครื่องจักรไว้ในปี ค.ศ. 1959 ว่า "เป็นสาขาที่ให้คอมพิวเตอร์มีความสามารถในการเรียนรู้โดยไม่ต้องโปรแกรมให้ชัดเจน"

ทอม เอ็ม. มิตเชลล์ ได้ขยายนิยามอย่างเป็นทางการกว้างๆไว้ว่า "เราจะเรียกคอมพิวเตอร์โปรแกรมว่าได้เรียนรู้จากประสบการณ์ E เพื่อทำงาน T ได้โดยมีประสิทธิผล P เมื่อโปรแกรมนั้นสามารถทำงาน T ที่วัดผลด้วย P แล้วพัฒนาขึ้นจากประสบการณ์ E" คำนิยามนี้เป็นข้อจำกัดความที่มีชื่อเสียงเพราะเป็นการนิยามการเรียนรู้ของเครื่องจักรในแง่ของการดำเนินการมากกว่าในแง่ของความรู้สึกนึกคิด เปรียบเทียบคือ เป็นการเปลี่ยนคำถามของแอลัน ทัวริงที่เคยถามว่า "เครื่องจักรคิดได้หรือไม่" เป็นคำถามที่ว่า "เครื่องจักรจะทำงานที่พวกเราทำได้หรือไม่"

การเรียนรู้ของเครื่อง สามารถแบ่งโดยกว้างๆได้เป็น 3 ประเภท ตามประเภทของ"ข้อมูลฝึก" หรือ "ข้อมูลขาเข้า" ได้ดังนี้

นอกจากนี้ การเรียนรู้ของเครื่องยังสามารถแบ่งประเภทของ"งาน"ได้ตาม "ข้อมูลขาออก" จากระบบที่เครื่องจักรได้เรียนรู้แล้ว เป็นหลายประเภทดังนี้

ศาสตร์ด้านการเรียนรู้ของเครื่องเติบโตไปพร้อมๆกับปัญญาประดิษฐ์ ในความจริงนั้น การเรียนรู้ของเครื่องมีมาตั้งแต่ยุคแรกๆของปัญญาประดิษฐ์ นักวิทยาศาสตร์หลายคนสนใจการสร้างเครื่องจักรที่สามารถเรียนรู้จากข้อมูลได้ จึงเริ่มทดลองวิธีการหลายๆอย่าง ที่เด่นชัดสุดคือ โครงข่ายประสาทเทียม และในเวลาต่อมา ได้มีการคิดค้นโมเดลเชิงเส้นทั่วไปจากหลักการทางสถิติศาสตร์ ไปจนถึงการพัฒนาวิธีการให้เหตุผลตามหลักความน่าจะเป็น โดยเฉพาะในการประยุกต์ด้านการวินิจฉัยโรคอัตโนมัติ

อย่างไรก็ตาม นักวิจัยในสายปัญญาประดิษฐ์ยุคต่อมาเริ่มหันมาให้ความสำคัญกับตรรกศาสตร์และใช้วิธีการทางการแทนความรู้มากขึ้น จนทำให้ปัญญาประดิษฐ์เริ่มแยกตัวออกจากกับศาสตร์การเรียนรู้ของเครื่อง หลังจากนั้นเริ่มมีการใช้หลักการความน่าจะเป็นมากขึ้นในการดึงและการแทนข้อมูล ต่อมาในปี 1980 ระบบผู้เชี่ยวชาญเริ่มโดดเด่นในสายของปัญญาประดิษฐ์จนหมดยุคของการใช้หลักสถิติ มีงานวิจัยด้านการเรียนรู้เชิงสัญลักษณ์และบนพื้นฐานของฐานความรู้ออกมาเรื่อยๆ จนกลายศาสตร์ด้านการโปรแกรมตรรกะเชิงอุปนัยได้ถือกำเนิดขึ้นมา แต่งานด้านสถิติก็ยังถือว่ามีบทบาทมากนอกสาขาของปัญญาประดิษฐ์ เช่น การรู้จำแบบและการค้นคืนสารสนเทศ นักวิจัยสายปัญญาประดิษฐ์และนักวิทยาศาสตร์คอมพิวเตอร์ได้ทิ้งงานวิจัยด้านโครงข่ายประสาทเทียมไปในเวลาเดียวกัน แต่ก็ยังมีนักคณิตศาสตร์บางคน เช่น จอห์น ฮอปฟิลด์ เดวิด โรเมลฮาร์ต และเจฟฟรีย์ ฮินตันที่ยังพัฒนาโครงข่ายประสาทเทียมต่อไป จนกระทั่งได้ค้นพบหลักการการแพร่คืนย้อนกลับของโครงข่ายประสาทเทียม ที่ประสบความสำเร็จมากมายในเวลาต่อมา

ส่วนการเรียนรู้ของเครื่องกับการทำเหมืองข้อมูลมักจะใช้วิธีการเหมือนๆกันและมีส่วนคาบเกี่ยวกันอย่างเห็นได้ชัด สิ่งที่แตกต่างระหว่างสองศาสตร์นี้คือ

สองศาสตร์นี้มีส่วนคาบเกี่ยวกันไม่น้อย คือ การทำเหมืองข้อมูลใช้วิธีการทางการเรียนรู้ของเครื่อง แต่มักจะมีเป้าหมายในใจที่แตกต่างออกไปเล็กน้อย ส่วนการเรียนรู้ของเครื่องก็ใช้วิธีการของการทำเหมืองข้อมูลบางอย่าง เช่น การเรียนรู้แบบไม่มีผู้สอน หรือขั้นตอนการเตรียมข้อมูลเพื่อปรับปรุงความถูกต้องของการเรียนรู้ บ่อยครั้งที่นักวิทยาศาสตร์ผสมสองสาขานี้เข้าด้วยกันด้วยเหตุผลที่ว่า ประสิทธิภาพของการเรียนรู้ของเครื่องมักจะดีขึ้นหากมีความสามารถในการรู้ความรู้บางอย่าง ในขณะที่การค้นหาความรู้และการทำเหมืองข้อมูลนั้น กุญแจสำคัญคือการค้นหาความรู้ที่ไม่รู้มาก่อน หากมีการวัดประสิทธิภาพจากสิ่งที่ไม่รู้มาก่อน วิธีการเรียนรู้แบบมีผู้สอนของการเรียนรู้ของเครื่อง ก็มักจะให้ผลได้ดีกว่าการใช้วิธีการเรียนรู้แบบไม่มีผู้สอนอย่างเดียว นั่นคือ

การเรียนรู้ของเครื่องยังมีความคล้ายคลึงกับการหาค่าเหมาะที่สุด (optimization) นั่นคือ การเรียนรู้หลายอย่างมักจะถูกจัดให้อยู่ในรูปแบบของการหาค่าที่น้อยที่สุดของฟังก์ชันการสูญเสียบางอย่างจากข้อมูลชุดสอน ฟังก์ชันการสูญเสียหมายถึงความแตกต่างระหว่างสิ่งที่พยากรณ์ไว้กับสิ่งที่เป็นจริง

การเรียนรู้ของเครื่องมีความสัมพันธ์กับสถิติศาสตร์อย่างใกล้ชิด ไมเคิล ไอ. จอร์แดน นักวิทยาศาสตร์คอมพิวเตอร์ชาวอเมริกันชี้ว่าแนวคิดของการเรียนรู้ของเครื่องก็มาจากหลักการของทฤษฎีที่มีมาอย่างยาวนานของสถิติศาสตร์ ในขณะที่นักวิทยาศาสตร์บางคนมองว่า สถิติให้ความสำคัญกับข้อมูล ขณะที่การเรียนรู้ของเครื่องให้ความสำคัญกับอัลกอริทึมมากกว่า

นักสถิติศาสตร์บางคนก็ยังปรับเอาหลักการของการเรียนรู้ของเครื่องไปใช้ นำไปสู่กับผสมผสานกันระหว่างสองศาสตร์ กลายเป็นศาสตร์ที่ชื่อ การเรียนรู้ทางสถิติ

หัวใจสำคัญของการเรียนรู้ของเครื่องคือ การทำให้โมเดลมีความ"ทั่วไป" (general) มากขึ้นจากประสบกาณ์ที่ได้มา การทำให้ทั่วไปมากขึ้นนี้จะทำให้เครื่องสามารถพยากรณ์หรือทำงานกับตัวอย่างข้อมูลที่ไม่เคยเห็นมาก่อนได้อย่างแม่นยำมากขึ้น บางครั้ง ข้อมูลชุดสอนก็มาจากการสุ่มและผู้เรียนรู้จะต้องทำให้โมเดลมีความั่วไปมากขึ้นเพื่อจะได้ทำการพยากรณ์ข้อมูลใหม่ๆได้อย่างถูกต้องเพียงพอ

การวิเคราะห์เชิงคำนวณของการเรียนรู้ของเครื่อง และการวัดประสิทธิภาพการเรียนรู้ เป็นอีกสาขาหนึ่งทางวิทยาศาสตร์คอมพิวเตอร์สายทฤษฎีที่รู้จักกันในชื่อ ทฤษฎีการเรียนรู้เชิงคำนวณ อย่างไรก็ตาม ทฤษฎีก็ไม่สามารถรับประกันประสิทธิภาพของอัลกอริทึมได้เพราะข้อมูลนั้นมีจำกัดและอนาคตมีความไม่แน่นอน แต่ทฤษฎีก็สามารถบอกขอบเขตบนความน่าจะเป็นได้ว่า ประสิทธิภาพน่าจะอยู่ในช่วงใด นอกจากนี้ นักวิทยาศาสตร์ด้านนี้ยังได้ศึกษาดูต้นทุนทางเวลาและความเป็นไปได้ของการเรียนรู้ของเครื่องด้วย โดยคำนวณที่ถือว่าเป็นไปได้ในการเรียนรู้นั้นจะต้องสามารถเรียนรู้ได้ในเวลาโพลิโนเมียล

การเรียนรู้ต้นไม้ตัดสินใจ ใช้ต้นไม้ตัดสินใจในการสร้างโมเดลที่พยากรณ์ได้ ซึ่งจะเชื่อมโยงข้อมูลสังเกตการณ์เข้ากับข้อมูลปลายทาง

โครงข่ายประสาทเทียม เป็นอัลกอริทึมที่ได้แรงบันดาลใจมาจากโครงสร้างและการทำงานของเซลล์ประสาทในสมอง การคำนวณของโครงข่ายประสาทเทียมถูกสร้างเป็นโครงสร้างของการเชื่อมต่อของประสาทเทียมแต่ละตัว ประมวลผลข้อมูลโดยหลักการการเชื่อมต่อ โครงข่ายประสาทเทียมสมัยใหม่เป็นเครื่องวิเคราะห์ทางสถิติที่ไม่เป็นเชิงเส้น มักใช้ในการจำลองความสัมพันธ์ที่ซับซ้อนระหว่างข้อมูลขาเข้าและขาออก เพื่อหารูปแบบจากข้อมูล หรือเพื่อหาโครงสร้างทางสถิติระหว่างตัวแปรที่สำรวจ

การโปรแกรมตรรกะเชิงอุปนัย เป็นวิธีการเรียนรู้จากกฎโดยใช้การโปรแกรมตรรกะ เมื่อมีข้อมูลเบื้องหลังและกลุ่มของตัวอย่างที่เป็นฐานข้อมูลตรรกะแล้ว โปรแกรมตรรกะเชิงอุปนัยจะหาโปรแกรมตรรกะที่ครอบคลุมตัวอย่างบวกแต่ไม่รอบคลุมตัวอย่างลบ

ซัพพอร์ตเวกเตอร์แมชชีน เป็นหนึ่งในวิธีการเรียนรู้แบบมีผู้สอน ใช้เพื่อการการแบ่งประเภทข้อมูลและการวิเคราะห์การถอดถอย เมื่อมีข้อมูลฝึกมาให้และแต่ละข้อมูลถูกจัดอยู่ในประเภทใดประเภทหนึ่งจากสองประเภท ซัพพอร์ตเวกเตอร์แมชชีนจะสร้างแบบจำลองที่สามารถพยากรณ์ได้ว่าตัวอย่างใหม่นี้จะตกอยู่ในกลุ่มใด

การแบ่งกลุ่มข้อมูล เป็นการจัดกลุ่มของข้อมูลสำรวจให้ตกอยู่ในเซ็ตย่อย (เรียกว่า กลุ่ม หรือ cluster) โดยที่ข้อมูลที่อยู่ในกลุ่มเดียวกันจะมีความคล้ายคลึงกันตามเกณฑ์ที่ตั้งเอาไว้ ในข้อมูลที่อยู่คนละกลุ่มจะมีความแตกต่างกัน เทคนิคการแบ่งกลุ่มข้อมูลแต่ละเทคนิคก็มีสมมติฐานของโครงสร้างข้อมูลไม่เหมือนกัน โดยปกติแล้วมักจะมีการนิยาม การวัดค่าความเหมือน การเกาะกลุ่มภายใน และ การแยกกันระหว่างกลุ่ม ที่แตกต่างกัน การแบ่งกลุ่มข้อมูลจัดเป็นวิธีการเรียนรู้แบบไม่มีผู้สอน และเป็นวิธีที่ใช้กันทั่วไปในการวิเคราะห์ข้อมูลทางสถิติ

เครือข่ายแบบเบย์ เป็นโมเดลความน่าจะเป็นเชิงกราฟที่แทนกลุ่มของตัวแปรสุ่มและความเป็นอิสระแบบมีเงื่อนไขด้วยกราฟอวัฏจักรระบุทิศทาง ตัวอย่างเช่น เครือข่ายแบบเบย์สามารถใช้แทนความสัมพันธ์เชิงความน่าจะเป็นระหว่างอาการแสดงกับโรคได้ เมื่อมีอาการแสดง เครือข่ายจะคำนวณความน่าจะเป็นที่จะเป็นโรคแต่ละโรค มีหลายอัลกอริทึมที่สามารถอนุมานและเรียนรู้ได้อย่างมีประสิทธิภาพ

การเรียนรู้แบบเสริมกำลัง พิจารณาว่า เอเยนต์ ควรจะมี การกระทำ ใดใน สิ่งแวดล้อม เพื่อได้ รางวัล สูงสุด อัลกอริทึมของการเรียนรู้แบบเสริมกำลังนี้พยายามจะหา นโยบาย ที่เชื่อมโยง สถานะ ของโลกเข้ากับการกระทำที่เอเยนต์ควรจะทำในสถานะนั้นๆ การเรียนรู้แบบเสริมกำลังนี้มีความแตกต่างไปจากการเรียนรู้แบบมีผู้สอนตรงที่ว่า คอมพิวเตอร์จะไม่รู้เลยว่าอะไรถูกอะไรผิด กล่าวคือ ไม่มีการบอกอย่างชัดเจนว่าการกระทำใดยังไม่ดี

การเรียนรู้บางอย่างโดยเฉพาะการเรียนรู้แบบไม่มีผู้สอนนั้นพยายามจะค้นหาการแทนข้อมูลขาเข้าที่ดีขึ้นเมื่อมีชุดข้อมูลฝึก ตัวอย่างของการเรียนรู้ด้วยการแทนนี้ได้แก่ การวิเคราะห์องค์ประกอบหลักและการแบ่งกลุ่มข้อมูล อัลกอริทึมการเรียนรู้ด้วยการแทนมักจะเปลี่ยนข้อมูลไปในรูปแบบที่มีประโยชน์แต่ยังคงรักษาสารสนเทศของข้อมูลเอาไว้ มักใช้ในกระบวนการเตรียมข้อมูลก่อนจะแบ่งประเภทข้อมูลหรือพยากรณ์ ตัวอย่างอื่นของการเรียนรู้ด้วยการแทนได้แก่ การเรียนรู้เชิงลึก

ในการเรียนรู้ด้วยความคล้ายนั้น เครื่องจะมีตัวอย่างของคู่ที่ถูกมองว่าคล้ายมากและคู่ที่ถูกมองว่าคล้ายน้อย เครื่องจะต้องหาฟังก์ชันความคล้ายออกมาที่สามารถทำนายได้ว่าวัตถุใหม่นั้นมีความคล้ายมากน้อยเพียงใด มักใช้ในระบบแนะนำ (recommendation system)

ขั้นตอนวิธีเชิงพันธุกรรม เป็นการค้นหาแบบฮิวริสติกที่เลียนแบบกระบวนการคัดเลือกตามธรรมชาติในช่วงวิวัฒนาการของสิ่งมีชีวิต โดยใช้เทคนิคการกลายพันธุ์ของยีนและการไขว้เปลี่ยนของโครโมโซมในการหาประชากรที่น่าจะอยู่รอดเพื่อพาไปสู่คำตอบของปัญหาได้ อัลกอริทึมนี้ได้รับความสนใจมากในสาขาการเรียนรู้ของเครื่องในช่วงทศวรรษ 1980 และ 1990 และเทคนิคทางการเรียนรู้ของเครื่องก็ช่วยปรับปรุงประสิทธิภาพของขั้นตอนวิธีเชิงพันธุกรรมและขั้นตอนวิธีเชิงวิวัฒนาการเช่นกัน


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301