ค้นหา
  
Search Engine Optimization Services (SEO)

การหารด้วยศูนย์

ในทางคณิตศาสตร์ การหารด้วยศูนย์ หมายถึงการหารที่มีตัวหารเท่ากับ 0 ซึ่งอาจสามารถเขียนอยู่ในรูปเศษส่วน a0{\displaystyle \textstyle {\frac {a}{0}}} โดยที่ a เป็นตัวตั้ง ค่าของนิพจน์นี้จะมีความหมายหรือไม่ขึ้นอยู่กับบทตั้งทางคณิตศาสตร์ที่เป็นบริบท แต่โดยทั่วไปในเลขคณิตของจำนวนจริง นิพจน์ดังกล่าวไม่มีความหมาย

สำหรับการเขียนโปรแกรมคอมพิวเตอร์ การหารด้วยศูนย์ในจำนวนเต็มอาจทำให้โปรแกรมเกิดข้อผิดพลาดจนหยุดทำงาน หรือในกรณีของจำนวนจุดลอยตัวอาจให้ผลลัพธ์เป็นค่าพิเศษที่เรียกว่า NaN (Not a Number)

การหารในระดับพื้นฐานสามารถอธิบายได้ว่า เป็นการแบ่งเซตของวัตถุออกเป็นส่วนๆ ที่เท่ากัน ตัวอย่างเช่น ถ้ามีแอปเปิล 10 ผล และต้องการแบ่งให้คน 5 คนเป็นจำนวนเท่ากัน ดังนั้นแต่ละคนจะได้รับแอปเปิล 105{\displaystyle \textstyle {\frac {10}{5}}} = 2 ผล เป็นต้น

เราจะใช้ปัญหาเดียวกันนี้อธิบายการหารด้วยศูนย์ นั่นคือถ้าคุณมีแอปเปิล 10 ผล แล้วจะแบ่งให้คน คนละ 0 ผล แล้วหาว่าจะสามารถแบ่งให้ "คน" ได้ทั้งหมดกี่คน การคำนวณเพื่อหาค่า 100{\displaystyle \textstyle {\frac {10}{0}}} จะกลับกลายเป็นไม่มีความหมาย เพราะตัวปัญหาเองก็ไม่มีความหมายเช่นกัน เพราะการแจกแอปเปิลให้ "คน" คนใด คนนั้นก็จะไม่ได้รับแอปเปิล (แจกให้คนละ 0 ผล) หรือสามารถแจกให้คนได้อนันต์เพราะแอปเปิลที่จะแจก ย่อมไม่มีวันหมด นี่เป็นเหตุผลที่เลขคณิตมูลฐานกำหนดให้การหารด้วยศูนย์ไม่มีความหมาย หรือไม่นิยาม

อีกทางหนึ่งที่สามารถใช้อธิบายการหารได้นั่นคือการลบซ้ำกันไปเรื่อยๆ ซึ่งการหารด้วยวิธีนี้จะเป็นการลบตัวตั้งด้วยตัวหารหลายๆ ครั้งจนกว่าตัวตั้งจะมีค่าน้อยกว่าตัวหาร และอาจเหลือเศษจากการหารอยู่ด้วย ตัวอย่างเช่น การหาร 13 ด้วย 5 เราสามารถนำ 5 ไปลบออกจาก 13 จำนวน 2 ครั้ง และจะเหลือเศษเท่ากับ 3 ซึ่งสามารถสรุปเป็น 135{\displaystyle \textstyle {\frac {13}{5}}} = 2 เศษ 3 แต่ในกรณีที่ตัวหารเป็น 0 ถึงแม้จะลบตัวตั้งไปถึงอนันต์ครั้ง ก็ยังไม่สามารถทำให้ตัวตั้งมีค่าน้อยกว่าตัวหารได้ ดังนั้นการหารด้วยศูนย์จึงไม่นิยาม

ตำรา พรัหมสผุฏะ สิทธานตะ (Brahmasphuta-siddhanta) เขียนโดยพรัหมคุปตะ (Brahmagupta) (ค.ศ. 598 - 668) ซึ่งเป็นตำราเล่มแรกสุดที่ค้นพบ ที่กำหนดให้เลข 0 เป็นตัวเลขพิเศษ เพื่อนิยามการกระทำทางเลขคณิตที่เกี่ยวข้องกับ 0 โดยเฉพาะ อย่างไรก็ตามพรัหมคุปตะก็ประสบความล้มเหลวในความพยายามที่จะอธิบายการหารด้วยศูนย์ เพราะคำนิยามของเขาสามารถพิสูจน์ได้ง่ายและนำไปสู่ความผิดพลาด ดังข้อความที่ยกมา

"...จำนวนบวกและลบที่หารด้วยศูนย์ ได้ผลลัพธ์เป็นเศษส่วนที่มีศูนย์เป็นตัวส่วน ศูนย์ที่หารด้วยจำนวนบวกหรือลบ ได้ผลลัพธ์เป็นศูนย์ หรือเศษส่วนที่มีศูนย์เป็นตัวเศษและจำนวนนั้นเป็นตัวส่วน อย่างใดอย่างหนึ่ง ศูนย์ที่หารด้วยศูนย์ ได้ผลลัพธ์เป็นศูนย์..."

ใน ค.ศ. 830 มหวิระ (Mahavira) พยายามที่จะแก้ข้อผิดพลาดของพรัหมคุปตะแต่ก็ไม่สำเร็จ ซึ่งในหนังสือ คณิตะ สาระ สังครหะ กล่าวไว้ว่า

ในเวลาต่อมาภาสกะระที่ 2 (Bh?skara II) (ค.ศ. 1114 - 1185) พยายามที่จะแก้ปัญหานี้โดยนิยามให้ n0=?{\displaystyle \textstyle {\frac {n}{0}}=\infty } ซึ่งนิยามนี้สามารถมีความเป็นไปได้ แต่ก็อาจนำไปสู่ปฏิทรรศน์หากใช้อย่างไม่ระมัดระวัง ซึ่งปฏิทรรศน์เหล่านั้นก็ยังไม่สามารถแก้ได้จวบจนถึงปัจจุบัน (ดูตัวอย่างที่หัวข้อลิมิต)

สิ่งหนึ่งที่เป็นที่ยอมรับในหมู่นักคณิตศาสตร์ด้วยกันว่า วิธีธรรมดาที่สุดที่จะใช้อธิบายความหมายของการหารด้วยศูนย์ คือการนิยามการหารด้วยการกระทำทางเลขคณิต กฎเกณฑ์พื้นฐานของเลขคณิตคือจำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อน ซึ่งภายใต้กฎเกณฑ์ดังกล่าวการหารด้วยศูนย์จะไม่ถูกนิยาม และจะต้องคงไว้อยู่อย่างนั้นในระบบคณิตศาสตร์ใดๆ เพื่อให้เป็นกฎเกณฑ์ที่ยอมรับกันโดยทั่วไปในฟีลด์ เหตุผลคือการหารถูกนิยามให้เป็นอินเวิร์สของการคูณ นั่นหมายความว่า ค่าของ ab{\displaystyle \textstyle {\frac {a}{b}}} จะมีค่าเท่ากับคำตอบของ x ในสมการ bx = a ตราบใดที่ค่านั้นยังคงมีคำตอบและมีเพียงหนึ่งเดียว นอกเหนือจากนั้นจะปล่อยให้เป็นไม่นิยาม

หากกำหนดให้ b = 0 ในสมการ bx = a จะสามารถเขียนเป็น 0x = a หรือ 0 = a ดังนั้นสมการ bx = a ในกรณีนี้จึง ไม่มีคำตอบเมื่อ a ไม่เท่ากับ 0 และ มีคำตอบของสมการเป็นค่า x ใดๆ เมื่อ a เท่ากับ 0 ในกรณีดังกล่าวไม่มีค่าใดที่เป็นหนึ่งเดียว ดังนั้น ab{\displaystyle \textstyle {\frac {a}{b}}} จึงไม่นิยาม และในทางกลับกัน นิพจน์ ab{\displaystyle \textstyle {\frac {a}{b}}} จะถูกนิยามว่า b ต้องมีค่าไม่เท่ากับ 0 เสมอ

เราสามารถปลอมแปลงกรณีพิเศษของการหารด้วยศูนย์ด้วยความขัดแย้งทางพีชคณิต โดยใช้การพิสูจน์ที่ไม่สมเหตุสมผลว่า 1 = 2 ดังตัวอย่างต่อไปนี้

เหตุผลวิบัติ (fallacy) อยู่ที่การตั้งสมมติฐานที่ไม่สมบูรณ์ ว่าการหารด้วยศูนย์ทำให้ 00{\displaystyle \textstyle {\frac {0}{0}}} เท่ากับ 1

คนทั่วไปอาจรับรู้ได้ง่ายว่าการพิสูจน์ข้างต้นนั้นไม่สมเหตุสมผล สำหรับความขัดแย้งเดียวกันนี้สามารถนำเสนอให้อยู่ในรูปแบบอื่นซึ่งทำให้ยากขึ้นชี้จุดข้อผิดพลาด ดังเช่นตัวอย่างนี้ ถ้าเปลี่ยน 1 ให้เป็น x แล้วค่าของ 0 จะซ่อนอยู่ในนิพจน์ x - x และค่าของ 2 ก็จะซ่อนอยู่ในนิพจน์ x + x จากตัวอย่างด้านบนจึงสามารถเขียนให้อยู่ในอีกรูปแบบหนึ่งได้ดังนี้

แนวความคิดที่ใช้กับเลขคณิตพื้นฐาน มีความคล้ายกันกับโครงสร้างเชิงพีชคณิตทั่วไป เช่นในเรื่องของริงและฟีลด์ ในฟีลด์หนึ่งๆ องค์ประกอบทุกอย่างที่ไม่เป็นศูนย์จะสามารถอินเวิร์สได้ภายใต้การคูณ ดังนั้นการหารจึงเป็นปัญหาอยู่ที่การหารด้วยศูนย์เท่านั้น เหตุผลดังกล่าวยังคงเป็นจริงในสกิวฟีลด์ (skew field) (ด้วยเหตุผลนี้จึงเรียกได้ในอีกชื่อว่า ริงการหาร) แต่อย่างไรก็ตาม การหารด้วยองค์ประกอบที่ไม่เป็นศูนย์อาจทำให้เกิดปัญหาได้ในริงอื่นๆ ตัวอย่างเช่น ในการพิจารณาริง Z/6Z ของจำนวนเต็ม mod 6 คำถามคือเราจะให้ความหมายกับนิพจน์ 22{\displaystyle \textstyle {\frac {2}{2}}} ได้อย่างไร ซึ่งควรจะมีคำตอบ x เพียงหนึ่งเดียวสำหรับสมการ 2x = 2 ในจำนวนจริง แต่ 2 ไม่สามารถมีอินเวิร์สของการคูณภายใต้ริง Z/6Z และสมการนี้มีคำตอบได้สองอย่างคือ x = 1 และ x = 4 ดังนั้นนิพจน์ 22{\displaystyle \textstyle {\frac {2}{2}}} จึงไม่นิยาม

เราอาจสามารถนิยาม a0{\displaystyle \textstyle {\frac {a}{0}}} ได้โดยพิจารณาลิมิตของ ab{\displaystyle \textstyle {\frac {a}{b}}} เมื่อ b มีค่าเข้าใกล้ 0

ดังนั้น เราอาจนิยามให้ a0{\displaystyle \textstyle {\frac {a}{0}}} มีค่าเป็น +? เมื่อ a เป็นจำนวนบวก และมีค่าเป็น ?? เมื่อ a เป็นจำนวนลบ อย่างไรก็ตามการนิยามนี้อาจทำให้เกิดความยุ่งยากด้วยเหตุผลสองประการ

นอกเหนือไปจากนั้น นิยามของ 00{\displaystyle \textstyle {\frac {0}{0}}} ไม่สามารถกำหนดได้โดยหาลิมิตบนเศษส่วน เนื่องจากลิมิต

ในกรณีที่เมื่อ x มีค่าเข้าใกล้ 0 แล้วทำให้ทั้ง f (x) และ g (x) มีค่าเข้าใกล้ 0 ทั้งคู่ คำตอบของลิมิตอาจจะลู่เข้าไปยังค่าใดค่าหนึ่ง หรือไม่ลู่เข้าเลยก็ได้ (โดยใช้หลักเกณฑ์โลปีตาลช่วยคำนวณ) ซึ่งแนวความคิดนี้ก็ยังไม่สามารถนำไปสู่การนิยาม 00{\displaystyle \textstyle {\frac {0}{0}}} ได้อยู่ดี (เพราะมีหลายคำตอบ)

การคำนวณแบบรูปนัย (formal calculation) เป็นตัวอย่างหนึ่งที่นำมาอธิบายการคำนวณในกฎเกณฑ์ทางเลขคณิต โดยไม่มีการพิจารณาว่าผลลัพธ์จากการคำนวณจะถูกนิยามไว้แล้วเป็นอย่างดีหรือไม่ ดังนั้นการกำหนดให้ a0{\displaystyle \textstyle {\frac {a}{0}}} มีค่าเป็น ? เมื่อ a มีค่าไม่เท่ากับศูนย์ เป็นกฎเกณฑ์อย่างหยาบ (rule of thumb) ในบางครั้งก็อาจมีประโยชน์ ซึ่งค่าอนันต์นี้จะสามารถเป็นได้ทั้งจำนวนบวก จำนวนลบ หรือไม่มีเครื่องหมาย ขึ้นอยู่กับบริบทที่แวดล้อม ดังตัวอย่างนี้เป็นการคำนวณแบบรูปนัย

ซึ่งจะเกิดผลลัพธ์ที่ไม่น่ายอมรับแต่ก็สามารถนำไปใช้ได้ เช่นเดียวกับการคำนวณแบบรูปนัยอื่นๆ สำหรับความถูกต้องตามตรรกะซึ่งตรงข้ามกับแบบรูปนัยอาจจะกล่าวเพียงว่า

(+? ไม่ใช่จำนวน แต่เป็นวัตถุอย่างหนึ่งที่นำแนวคิดไปสู่เส้นจำนวนจริง คล้ายกับแนวคิดที่ว่า เซตของจุดเป็นสมาชิกของการยุบขนาดมิติ (compactification) บนส่วนของเส้นตรงที่ประกอบด้วยจุดสองจุด ในทอพอโลยี)


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301