ค้นหา
  
Search Engine Optimization Services (SEO)

กัมมันตภาพรังสี

การสลายให้กัมมันตรังสี (อังกฤษ: radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (อังกฤษ: nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี. วัตถุใดที่ปลดปล่อยรังสีด้วยตัวเอง-เช่นอนุภาคแอลฟา, อนุภาคบีตา, รังสีแกมมา และ อิเล็กตรอนจากกระบวนการการแปลงภายใน วัตถุนั้นจะถูกเรียกว่ามี "กัมมันตรังสี"

การสลายให้กัมมันตรังสีเป็นกระบวนการแบบ stochastic (เช่นแบบสุ่ม) ที่ระดับอะตอมเดียว ในกระบวนการนั้น ตาม"ทฤษฎีควอนตัม" มันไม่สามารถคาดการณ์ได้ว่าเมื่อไรที่อะตอมหนึ่ง ๆ จะสลายตัว โอกาสที่อะตอมใดอะตอมหนึ่งจะสลายตัวไม่เคยเปลี่ยนแปลง คือว่า มันไม่สำคัญว่าอะตอมได้มีอยู่นานมาแล้วแค่ไหน อย่างไรก็ตาม สำหรับแหล่งสะสมขนาดใหญ่ของอะตอม อัตราการสลายตัวสำหรับแหล่งสะสมนั้นสามารถคำนวณได้จาก"ค่าคงที่การสลายตัว"ของมันที่ถูกวัดได้หรือครึ่งชีวิตของมัน นี่คือพื้นฐานของเทคนิคการระบุวันที่ที่เรียกว่า radiometric dating หรือ radioactive dating. ครึ่งชีวิตของอะตอมกัมมันตรังสีไม่มีข้อจำกัดสำหรับความสั้นหรือความยาวของระยะเวลา และช่วงตลอด 55 หน่วยแมกนิจูดของเวลา

การสลายให้กัมมันตรังสีมีหลายประเภท (ดูตารางด้านล่าง) การสลายหรือการสูญเสียพลังงานจากนิวเคลียส เกิดขึ้นเมื่ออะตอมที่มีนิวเคลียสประเภทหนึ่งที่เรียกว่า นิวไคลด์รังสีพ่อแม่ (อังกฤษ: parent nuclide) (หรือไอโซโทปรังสีพ่อแม่[note 1])) แปลงเป็นอะตอมตัวหนึ่งที่มีนิวเคลียสตัวหนึ่งที่อยู่ในสถานะที่แตกต่างกัน หรือที่มีนิวเคลียสตัวหนึ่งที่มีจำนวนโปรตอนและนิวตรอนที่แตกต่างกัน ผลิตภัณฑ์นี้เรียกว่า"นิวไคลด์ลูก" (อังกฤษ: daugter nuclide) ในการสูญสลายบางครั้ง นิวไคลด์ของพ่อแม่และของลูกมีองค์ประกอบทางเคมีที่แตกต่างกัน จึงเป็นผลให้กระบวนการสลายตัวทำการผลิตอะตอมของธาตุที่แตกต่างกัน กระบวนการนี้เรียกว่า การแปรนิวเคลียส (อังกฤษ: nuclear transmutation)

กระบวนการสลายตัวครั้งแรกที่ถูกค้นพบเป็นการสลายให้อนุภาคแอลฟา, การสลายให้อนุภาคบีตาและการสลายตัวให้รังสีแกมมา

ในทางตรงกันข้าม มีกระบวนการการสลายให้กัมมันตรังสีที่ไม่ส่งผลในการแปลงพันธ์นิวเคลียส พลังงานของนิวเคลียสที่ถูกกระตุ้นอาจถูกนำมาใช้เพื่อปลดปล่อยอิเล็กตรอนในวงโคจรในกระบวนการที่เรียกว่าการแปลงภายใน (อังกฤษ: internal conversion) นิวเคลียสที่อุดมไปด้วยนิวตรอนและถูกกระตุ้นอย่างสูงจะรวมตัวกันเป็นผลผลิตจากการสลายตัวแบบอื่น ๆ บางครั้งนิวเคลียสดังกล่าวมีการสูญเสียพลังงานโดยปลดปล่อยนิวตรอน มีผลในการเปลี่ยนแปลงขององค์ประกอบจากไอโซโทปหนึ่งไปยังอีกไอโซโทปหนึ่ง

อีกประเภทหนึ่งของการสลายให้กัมมันตรังสีส่งผลให้ได้ผลิตภัณฑ์ที่ไม่ได้กำหนดไว้ แต่ปรากฏในช่วงของ "ชิ้น" ของนิวเคลียสเดิม การสลายแบบนี้เรียกว่าฟิชชันเกิดเอง มันเกิดขึ้นเมื่อนิวเคลียสขนาดใหญ่ที่ไม่เสถียรแบ่งตัวมันเองออกเป็นสอง (และบางครั้งสาม) นิวเคลียสลูกสาวที่มีขนาดเล็กกว่า และโดยทั่วไปจะนำไปสู่??การปล่อยรังสีแกมมา หรือนิวตรอนหรืออนุภาคอื่น ๆ จากผลิตภัณฑ์เหล่านั้น

สำหรับตารางสรุปที่แสดงจำนวนของนิวคลีไอด์ที่มีกัมมันตรังสีและที่เสถียรในแต่ละหมวดหมู่ให้ดู radionuclide มียี่สิบเก้าองค์ประกอบทางเคมีบนโลกที่มีสารกัมมันตรังสี พวกมันเป็นพวกที่มีสามสิบสี่นิวไคลด์รังสีที่ย้อนเวลากลับไปในช่วงก่อนการก่อตัวของระบบสุริยะ และรู้จักกันว่าเป็นนิวไคลด์ดั้งเดิม (อังกฤษ: primordial nuclide) ตัวอย่างที่รู้จักกันดีคือยูเรเนียมและทอเรียม และยังรวมถึงไอโซโทปรังสีที่เกิดขึ้นตามธรรมชาติมานานแล้วเช่นโพแทสเซียม-40 อีกห้าสิบหรือมากกว่าสำหรับนิวไคลด์รังสีอายุสั้นกว่า เช่นเรเดียมและเรดอน ถูกพบบนโลก เป็นผลิตภัณฑ์ของเครือข่ายการสลายที่เริ่มต้นด้วยนิวไคลด์ดั้งเดิม และกระบวนการรังสีคอสมิกที่เกิดอย่างต่อเนื่องเช่นการผลิตคาร์บอน-14 จากไนโตรเจน-14 โดยรังสีคอสมิก นิวไคลด์รังสีอาจจะถูกผลิตโดยสงเคราะห์เทียมในเครื่องเร่งอนุภาคหรือเครื่องปฏิกรณ์นิวเคลียร์ ทำให้เกิด 650 ตัวของนิวไคลด์รังสีเหล่านี้ที่มีครึ่งชีวิตมากกว่าหนึ่งชั่วโมงและอีกหลายพันตัวมากขึ้นที่มีครึ่งชีวิตสั้นลงด้วยซ้ำ โปรดดูรายการของนิวไคลด์นี้ รายชื่อเหล่านี้เรียงตามครึ่งชีวิต

การสลายตัวหรือการสูญเสียพลังงานนี้ส่งผลให้อะตอมที่เป็น parent nuclide เปลี่ยนรูปไป กลายเป็นอะตอมอีกชนิดหนึ่งที่ต่างออกไป(ที่เรียกว่า daughter nuclide) ตัวอย่างเช่น อะตอมของ คาร์บอน-14 (C-14) (parent คาดว่า "ตัวตั้งต้น") แผ่รังสี และเปลี่ยนรูปกลายเป็น อะตอมของ ไนโตรเจน-14 (N-14) (daughter คาดว่า "ผลลัพธ์") กระบวนการนี้เกิดขึ้นแบบสุ่มในระดับของอะตอม จึงทำให้เป็นไปไม่ได้ที่จะคาดการณ์ว่า อะตอมที่สังเกตจะสลายตัวเมื่อใด แต่ถ้าเป็นการสังเกตการณ์อะตอมในปริมาณมากแล้ว เราสามารถคาดการณ์อัตราการสลายตัวโดยเฉลี่ยได้

หน่วยในระบบสากลหรือหน่วยเอสไอ (อังกฤษ: SI unit) ถูกใช้ในการวัดการแผ่รังสี มีหน่วยเป็น เบ็กเคอเรล (ฝรั่งเศส: becquerel (Bq)) ที่ตั้งชื่อให้เป็นเกียรติกับนักวิทยาศาสตร์นายอองตวน อองรี แบกแรล หนึ่งหน่วยเบ็กเคอเรลถูกกำหนดให้เป็นหนึ่งการแปลงร่าง (หรือการสลายตัวหรือการแตกตัว) ต่อวินาที

การแผ่รังสีมีหน่วยเก่าเป็น กูว์รี (ฝรั่งเศส: curie (Ci)) ซึ่งถูกกำหนดแต่เดิมว่าเป็น "ปริมาณหรือมวลของสิ่งที่กระจายออกมาจากเรเดียมที่สมดุลกับหนึ่งกรัมของเรเดียม(ธาตุ)" วันนี้ หน่วยกูว์รีถูกกำหนดให้เป็นการแตกตัว 3.7?1010 ครั้งต่อวินาที เพื่อที่ว่า 1 กูว์รี (Ci) = 3.7?1010 Bq. เพื่อจุดประสงค์ด้านการป้องกันรังสี แม้ว่าคณะกรรมการกำกับดูแลด้านนิวเคลียร์ของสหรัฐจะอนุญาตให้มีการใช้หน่วยกูว์รีควบคู่ไปกับหน่วย SI ก็ตาม ฝ่ายอำนวยการหน่วยของการวัดแห่งสหภาพยุโรปกำหนดว่าการใช้หน่วยหน่วยกูว์รีสำหรับ "จุดประสงค์ด้าน....สุขภาพของประชาชน" จะถูกยกเลิกภายในวันที่ 31 ธันวาคม 1985

นิวตรอนและโปรตอนที่ประกอบขึ้นเป็นนิวเคลียส รวมไปถึงอนุภาคอื่นๆที่เข้าใกล้มัน ถูกควบคุมด้วยหลายๆปฏิกิริยา แรงนิวเคลียร์อย่างเข้ม ซึ่งไม่สามารถตรวจพบได้ในระดับที่มองเห็นด้วยตาเปล่า(macroscopic scale) เป็นแรงที่แข็งแกร่งที่สุดสำหรับระยะห่างที่เล็กกว่าอะตอม (subatomic distance) แรงไฟฟ้าสถิตย์ (electrostatic force)ก็เป็นอีกแรงที่สำคัญ และ ในการสลายให้อนุภาคบีตา แรงนิวเคลียร์อย่างอ่อนก็มีส่วนเกี่ยวข้องด้วย

ความเกี่ยวพันกันของแรงเหล่านี้ก่อให้เกิดปรากฏการณ์ ที่พลังงานถูกปลดปล่อยออกมาในขณะจัดเรียงตัวของอนุภาค ในการเรียงตัวบางแบบของนิวเคลียส มีคุณสมบัติในการเรียงตัวแบบช้าๆ โดยอนุภาคจะเรียงตัวในรูปแบบที่มีพลังงานต่ำกว่า และปลดปล่อยพลังงานออกมา บางคนอาจเปรียบเทียบลักษณะที่เกิดขึ้นกับ หิมะที่อยู่บนเขา ซึ่งมีแรงเสียดทานระหว่างเกล็ดน้ำแข็งที่รองรับน้ำหนักของหิมะ ซึ่งทำให้ระบบมีความไม่เสถียร เนื่องจากยังสามารถเปลี่ยนไปเป็นสถานะที่มีพลังงานต่ำกว่าได้ สิ่งกระตุ้นจะช่วยให้เกิดสภาวะที่มีค่าเอนโทรปีที่สูงกว่า ระบบจะเปลี่ยนแปลงเพื่อไปยังสถานะพื้น, ก่อให้เกิดความร้อน และ พลังงานรวมจะถูกกระจายให้กับระดับพลังงานที่สูงกว่า ซึ่งก่อให้เกิดหิมะถล่มในที่สุด พลังงานรวมไม่มีการเปลี่ยนแปลงในกระบวนการนี้ แต่เนื่องจากกฎของเอนโทรปี หิมะถล่มจึงเกิดขึ้นได้ในทิศทางเดียวเท่านั้น คือสถานะพื้น (ground state) ซึ่งเป็นสถานะที่มีความเป็นไปได้มากที่สุด ในการที่พลังงานที่มีจะถูกกระจายไป

ในการถล่มนี้ (การสลายตัว) ต้องการพลังงานกระตุ้น เฉพาะในกรณีของหิมะถล่มนั้น พลังงานนี้มาจากการรบกวนจากภายนอกระบบ ซึ่งการรบกวนนี้อาจมีระดับที่เล็กมาก สำหรับในกรณีของนิวเคลียสของอะตอมที่อยู่ในภาวะกระตุ้น สิ่งรบกวนขนาดเล็กนี้เกิดจากการสลับที่ของช่องว่าง(vacuum fluctuations)จำนวนหนึ่ง นิวเคลียส (หรือระบบที่ถูกกระตุ้นใดใดก็ตามใน กลศาสตร์ควอนตัม) ไม่เสถียร และจะทำตัวเองให้เสถียร เปลี่ยนไปเป็นระบบที่ลดระดับการตุ้นลง ผลจากการเปลี่ยนแปลงนี้ส่งผลทำเกิดการเปลี่ยนแปลงในโครงสร้างอะตอม และ เกิดการปลดปล่อยไม่ว่าจะเป็น โปรตอน หรือ อนุภาคความเร็วสูงที่มีมวล (เช่น อิเล็กตรอน, อนุภาคแอลฟา, หรือ อนุภาคอื่นๆ)

อองรี เบ็กเกอเรล ชาวฝรั่งเศส ค้นพบกัมมันตภาพรังสี ในปี พ.ศ. 2439 ในขณะที่กำลังทำงานเกี่ยวกับสารเรืองแสงพวกฟอสฟอรัส(phosphorescent materials) สารพวกนี้เรืองแสงในที่มืดหลังจากที่ได้รับแสง และเขาคิดว่าแสงเรืองที่เกิดในหลอดคาโทดในเครื่องเอ็กเรย์ น่าจะมีส่วนเกี่ยวข้องกับสารเรืองแสงประเภทนี้ เขานำฟิล์มภาพมาหุ้มในกระดาษสีดำ และนำสารเรืองแสงพวกฟอสฟอรัสหลายชนิดมาวางทับ จากการทดลองไม่ปรากฏผล จนกระทั่งเขาใช้เกลือของยูเรเนียม ซึ่งทำให้เกิดเป็นเงาดำบนแผ่นฟิล์ม การแผ่รังสีนี้เรียกว่า Becquerel Rays

ต่อมาเป็นที่ประจักษ์ว่าส่วนที่ดำขึ้นนั้น ไม่ได้เกี่ยวข้องกับสารเรืองแสงพวกฟอสฟอรัสเลย เพราะแผ่นฟิล์มดำในขณะที่สารนั้นอยู่ในที่มืด สำหรับเกลือของยูเรเนียม และ โลหะยูเรเนียมก็ทำให้แผ่นฟิล์มดำเช่นกัน ซึ่งชี้ให้เห็นว่า เกิดขึ้นจากการแผ่รังสีที่สามารถผ่านแผ่นกระดาษที่ทำให้แผ่นฟิล์มดำ

ในช่วงแรกนั้น การแผ่รังสีนี้มีลักษณะคล้ายคลึงกับการค้นพบ รังสีเอ็กซ์ จากการค้นคว้าเพิ่มเติมโดย เบ็กเกอเรล, มารี กูรี, ปิแอร์ กูรี, เออร์เนสต์ รูเทอร์ฟอร์ด และการค้นพบอื่นๆ ทำให้เห็นว่า กัมมันตภาพรังสีมีความซับซ้อนยิ่งกว่ามาก มีการสลายตัวได้หลายแบบ แต่ รูเทอร์ฟอร์ด เป็นคนแรกที่พบว่า สามารถประมาณการณ์ปรากฏการณ์ได้ทางคณิตศาสตร์ ด้วยสูตรเอ็กโพเนนเชียลแบบเดียวกัน

ผู้ค้นคว้ากลุ่มแรก ๆ ค้นพบอีกว่า สารเคมีอื่น ๆ นอกจากยูเรเนียมมีไอโซโทปที่เป็นสารกัมมันตรังสี การใช้การค้นหาอย่างเป็นระบบสำหรับกัมมันตรังสีในแร่ยูเรเนียม เป็นแนวทางที่ช่วยให้ มารี กูรี ระบุธาตุใหม่พอโลเนียม และแยกธาตุใหม่ เรเดียมจากแบเรียม เนื่องจากความคล้ายคลึงทางเคมีของธาตุทั้งสอง ทำให้เป็นการยากในการแยกแยะธาตุทั้งสอง

อันตรายของกัมมันตภาพรังสี และ การแผ่รังสีไม่เป็นที่ทราบในระยะแรก ผลเฉียบพลันของการแผ่รังสีค้นพบในการใช้รังสีเอ็กในขณะที่วิศวกร นิโคลา เทสลา ตั้งใจเอานิ้ววางเพื่อถ่ายรังสีเอ็กในปี พ.ศ. 2439 เขาได้รายงานผลการศึกษาที่ระบุถึงอาการไหม้ที่เกิดขึ้น ซึ่งเข้าระบุว่าเกิดจากโอโซนมากกว่าที่เกิดจากรังสีเอ็ก อาการบาดเจ็บของเขาหายในที่สุด

ผลเชิงพันธุกรรมจากการแผ่รังสี รวมถึงโอกาสในการก่อมะเร็ง ค้นพบหลังจากนั้นมาก ในปี พ.ศ. 2470 เฮอร์แมนน์ โจเซฟ มุลเลอร์ (อังกฤษ: Hermann Joseph Muller) เผยแพร่ผลการวิจัยที่แสดงถึงผลเชิงพันธุกรรม และในปีพ.ศ. 2489 เขาได้รับรางวัลโนเบลจากการค้นพบนี้

ก่อนหน้าที่จะทราบผลทางชีววิทยาของการแผ่รังสี แพทย์ และ บริษัทหลายแห่งได้เริ่มทำตลาดสารกัมมันตรังสีในฐานะของยาเถื่อน (patent medicine - หมายถึง ยาที่ไม่ระบุถึงส่วนผสมไม่มีการจดทะเบียน ไม่มีการตรวจสอบสรรพคุณทางยา เน้นการทำตลาดเป็นหลัก และมักมีการโอ้อวดเกินจริง) และ ผลิตภัณฑ์ที่ประกอบด้วยสารกัมมันตรังสี (radioactive quackery - ใช้คำที่คล้ายคลึงกับยาเถื่อน หรือ ยาปลอม) ตัวอย่างเช่น ยาสวนทวาร (Enema) ที่มีส่วนประกอบของเรเดียม, น้ำที่มีส่วนผสมของเรเดียมที่ใช้ดื่มคล้าย โทนิค (tonic) มารี กูรี ต่อต้านการใช้ในลักษณะนี้ และเตือนเกี่ยวกับผลของรังสีที่มีต่อร่างกายมนุษย์ที่ยังไม่ทราบ (ในที่สุดกูรีเสียชีวิต จากอาการของมะเร็งเม็ดเลือดขาว ซึ่งเชื่อว่าเกิดจากการที่ทำงานกับเรเดียม อย่างไรก็ตามจากการตรวจสอบกระดูกของเธอในภายหลัง พบว่าเธอเป็นนักวิทยาศาสตร์ที่ระมัดระวังตัว และพบปริมาณเรเดียมเพียงเล็กน้อยเท่านั้น มีการค้นพบสาเหตุที่แท้จริงของการเสียชีวิตของเธอ ซึ่งเกิดจากการได้รับรังสีเอ็กซ์จากหลอดรังสีที่ไม่ได้มีการป้องกัน ขณะที่เป็นอาสาสมัครในหน่วยแพทย์ ในสงครามโลกครั้งที่1) ในปี พ.ศ. 2473 พบกรณีที่เกิดกระดูกตาย และ การเสียชีวิตจำนวนมากในผู้ใช้ ส่งผลให้ผลิตภัณฑ์ที่มีส่วนผสมของเรเดียมแทบจะหายไปจากตลาด

สำหรับประเภทของการแผ่กัมมันตภาพรังสี ค้นพบว่าสนามไฟฟ้าหรือสนามแม่เหล็กสามารถก่อให้เกิดการปลดปล่อยรังสีออกมาได้สามประเภท เนื่องจากไม่มีคำจำกัดความที่ดี จึงมีการกำหนดชื่อของรังสีดังกล่าวด้วยอักษรกรีกตามลำดับ คือ แอลฟา บีตา และแกมมา ซึ่งยังใช้อยู่ในปัจจุบัน การสลายให้รังสีแอลฟานั้นพบในเฉพาะธาตุที่หนักมาก (พบในธาตุที่มีเลขอะตอม 52 และมากกว่าเท่านั้น) สำหรับการสลายอีกสองแบบนั้น เกิดได้ในธาตุอื่นทั้งหมด

ในการวิเคราะห์ธรรมชาติของผลลัพธ์ที่ได้จากการสลายตัว เป็นที่แน่ชัดจากแนวทางของแรงแม่เหล็กไฟฟ้า ว่า รังสีแอลฟามีประจุเป็นบวก รังสีบีตามีประจุเป็นลบ และรังสีแกมมามีประจุเป็นกลาง จากผลการสะท้อนกลับ เป็นที่แน่ชัดว่าอนุภาคแอลฟามีมวลมากกว่าอนุภาคบีตามาก การปล่อยอนุภาคแอลฟาผ่านแผ่นกระจกหน้าต่างบางๆ และเก็บกักมันในหลอดปล่อยประจุ(discharge tube) ทำให้นักวิจัยศึกษาการปลดปล่อยแถบแสง(emission spectrum)ของก๊าซที่เกิดขึ้นได้ และ เป็นการพิสูจน์ในที่สุดด้วยว่า อนุภาคแอลฟาเป็นนิวเคลียสของฮีเลียม การทดลองอื่นแสดงว่า มีความคล้ายคลึงกันระหว่าง รังสีเบต้า และ รังสีแคโทด(cathode ray) ทั้งสองเต็มไปด้วยอิเล็กตรอน และ อยู่ระหว่างรังสีแกมมา และ รังสีเอ็กซ์ ซึ่งเป็นรังสีแม่เหล็กไฟฟ้า(electromagnetic radiation)ที่มีพลังงานสูง

ถึงแม้ว่า แอลฟา, เบต้า และ แกมมา เป็นที่รู้จักแล้วก็ตาม ได้มีการค้นการสลายตัวแบบอื่นๆเพิ่มเติม ไม่นานหลังจากการค้นพบนิวตรอนในปีพ.ศ. 2475 เอนรีโก แฟร์มี ค้นพบว่า ในการสลายตัวที่เกิดขึ้นน้อยมากนั้นจะก่อให้เกิด นิวตรอน เช่นเดียวกับการสลายตัวของอนุภาค การปลดปล่อยโปรตอน(proton emission)โดดเดี่ยวพบได้ในบางธาตุ หลังจากค้นพบโพสิตรอนจากการก่อเกิดรังสีคอสมิค เป็นที่ทราบว่าในกระบวนการเดียวกันกับการสลายให้อนุภาคบีตา สามารถก่อให้เกิดอนุภาคโพสิตรอนได้ด้วย(positron emission), ซึ่งอนุภาคนี้สามารถเรียกในอีกชื่อหนึ่งว่า อนุภาคตรงข้ามของอิเล็กตรอน ซึ่งในการสลายตัวทั้งสองแบบของการสลายให้อนุภาคบีตา จะก่อให้เกิดการเปลี่ยนแปลงในนิวเคลียสที่จะปรับระดับสัดส่วนของ นิวตรอน และ โปรตรอน ให้อยู่ในระดับที่มีพลังงานต่ำที่สุด ท้ายที่สุด ในปรากฏการณ์ที่เรียกว่า การสลายตัวแบบกลุ่ม(cluster decay) อนุภาคนิวตรอน และ อนุภาคโปรตรอน จำนวนหนึ่ง ถูกปลดปล่อยออกมาอย่างต่อเนื่องในปรากฏการณ์นี้ด้วย นอกจากอนุภาคแอลฟา

ยังมีการค้นพบการสลายให้กัมมันตรังสีแบบอื่นๆ ที่สามารถปลดปล่อยอนุภาคที่กล่าวมาแล้วได้ แต่เกิดขึ้นจากกระบวนการที่แตกต่างออกไป ตัวอย่างเช่น internal conversion ซึ่งได้ผลลัพธ์เป็น อิเล็กตรอน และ ในบางครั้ง โฟตอนพลังงานสูง ซึ่งในกระบวนการดังกล่าวไม่ได้เกิดการสลายให้อนุภาคบีตา หรือ การสลายให้อนุภาตแกมมา เลยก็ตาม


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เป็นต่อ ขั้นเทพ เป็นข่าว ซีรีส์ คณะนิเทศศาสตร์ ซิทคอม ยีนเด่น (ละครโทรทัศน์) เฮง เฮง เฮง เป็นต่อ นักเขียนบท เจ้าชายฌัก รัชทายาทแห่งโมนาโก กาญจน์เกล้า ด้วยเศียรเกล้า วอลเลย์บอลชายทีมชาติไทย ปิยะรัฐ ตุ้นทัพไทย อรรถพร ธีมากร ไมเคิล คลาร์ก ดันแคน เจ้าพงศ์แก้ว ณ ลำพูน ระบบทศนิยมดิวอี้ ตึกนิวยอร์กเวิลด์ เทพมารสะท้านภพ ไทเก็ก หมัดทะลุฟ้า สุภาพบุรุษตระกูลหยาง ตำนานเดชนางพญางูขาว เจิ้ง เจียอิ่ง อู๋ จัวซี กู่ เทียนเล่อ มังกรคู่สู้สิบทิศ แม่พระปฏิสนธินิรมล เจมส์ ฟิกก์ ธัญยกันต์ ธนกิตติ์ธนานนท์ โกะโร อินะงะกิ ฉัตรชัย ดุริยประณีต ธงไชย แมคอินไตย์ คิม เบซิงเงอร์ จิม มอร์ริสัน เดวิด คาร์ราดีน บ๊อบ อารัม สมเด็จพระราชินีนาถคริสตินาแห่งสวีเดน พรรคประชาชนบรูไน แอมโบรสแห่งมิลาน รังสี ทัศนพยัคฆ์ คิเคโร เจ้าหญิงคาทารีนา-อะมาเลีย เจ้าหญิงแห่งออเรนจ์ บุษกร ตันติภนา จอห์น เทอร์รี เฟอร์นันโด วาร์กัส ช่วง มูลพินิจ พิศมัย วิไลศักดิ์ พระมเหสีจองซอง การโจมตีท่าเรือเพิร์ล กองทัพเรือจักรวรรดิญี่ปุ่น Grammy Awards Allmusic ซิงเกิล นักธุรกิจ แร็ปเปอร์ เลสลี นีลเซน มะสึโอะ บะโช นันทนัช โล่ห์สุวรรณ ผู้รักษาประตู สจวร์ต เทย์เลอร์ แดเนียล เฮนนีย์ แอนนา นิโคล สมิธ หลวงพ่อเกษม เขมโก ลี กวน ยู คริส โจนนาว ซิลเวอร์แชร์ เค.แมกซ์ ซินบี แตวุง เค-วัน นักมวยไทย อักษรฮันกุล นักบุญเดนิส ออสการ์ ชินด์เลอร์ เช เกบารา สมเด็จพระสันตะปาปาปิอุสที่ 12 สมเด็จพระเจ้าอเล็กซานเดอร์ที่ 1 แห่งยูโกสลาเวีย หทัยภัทร สมรรถวิทยาเวช พชร ธรรมมล คนึงพิมพ์ พรมกร แบรนดอน เราธ์ แผ่นดินถล่ม สิ่งก่อสร้างที่สูงที่สุดในโลก อนุสาวรีย์วอชิงตัน อำเภอเมืองสุพรรณบุรี ปริ๊นซ์ ออฟ เทนนิส แม่พระแห่งลูกประคำ เลย์ เซบัสเตียน โกอาเตส ตะวัน จารุจินดา แอรอน แอชมอร์ ชอว์น แอชมอร์ ชิลเบร์ตู ซิลวา ภาคภูมิ แจ้งโพธิ์นาค ซามี ฮูเปีย โทนี แบรกซ์ตัน ไซมอน โคเวลล์ วลาดิมีร์ ปูติน พระเจ้าเฟรเดอริกที่ 1 แห่งเดนมาร์ก อาคารรัฐสภาไทย สาธารณรัฐอินโดนีเซีย

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23406