ฮามิลโทเนียน (Hamiltonian) หรือฟังก์ชันฮามิลตัน (Hamilton function) สำหรับระบบทางกลศาสตร์แบบฉบับ (classical mechanics) คือฟังก์ชันสเกลาร์ของพิกัดทั่วไป โมเมนตัมสังยุค และเวลา ที่สามารถใช้อธิบายการวิวัฒน์ไปในเวลา (time evolution) ของระบบนั้นได้ ทั้งนี้เนื่องจากสถานะของระบบในกลศาสตร์แบบฉบับสามารถอธิบายได้โดยบอกพิกัดและโมเมนตัมเป็นฟังก์ชันของเวลา
เราสามารถสร้างฮามิลโทเนียนได้จากลากรางเจียน (Lagrangian)ของระบบ เนื่องจากฮามิลโทเนียนเป็นฟังก์ชันของพิกัดทั่วไป (generalized coordinates) และโมเมนตัมสังยุค (conjugate momenta, canonical momenta หรือ generalized momenta) แต่ลากรางเจียนเป็นฟังก์ชันของพิกัดและอัตราเร็วของพิกัดนั้น (อนุพันธ์ของพิกัดเทียบกับเวลา) ดังนั้นเราจึงจำเป็นจะต้องนิยามโมเมนตัมสังยุคก่อน
โดย คือพิกัดทั่วไป คืออัตราเร็วสำหรับพิกัดนั้น และ คือเวลา ซึ่งเวลาจะทำหน้าที่เป็นพารามิเตอร์ในกลศาสตร์แบบฉบับ
เมื่อเรานิยามโมเมนตัมสังยุคแล้ว ถ้าเราสามารถเขียนอัตราเร็ว ให้เป็นฟังก์ชันของโมเมนตั้มได้ เราจะสามารถมองว่าพิกัดและโมเมนตัมเป็นตัวแปรอิสระได้ (ต่างจากในกรณีของลากรางเจียน ซึ่งความเร็วจะเป็นแค่อนุพันธ์เทียบกับเวลาของพิกัด ไม่ใช่ตัวแปรอิสระ) ซึ่งปริภูมิของพิกัดและโมเมนตัมสังยุคนี้มีชื่อคือ Phase space
ฮามิลโทเนียนของระบบนั้นจะนิยามโดยแปลงเลอจองก์ (Legendre transform) ของลากรางเจียนคือ
โดยที่เราเขียนอัตราเร็วให้เป็นฟังก์ชันของโมเมนตัม (ทำให้ฮามิลโทเนียนเป็นฟังก์ชันของพิกัดและโมเมนตัม ไม่ใช่พิกัดและความเร็ว)
ในกรณีที่จำเป็นต้องใช้พิกัด ตัว
เพื่ออธิบายระบบด้วยลากรางเจียน
เราจะสามารถนิยามโมเมนตัมสังยุคแต่ละตัว ได้โดย
ทำให้เรามีระบบสมการ N สมการ ในกรณีที่สมการนี้สามารถแก้ได้เพื่อเขียนอัตราเร็วให้อยู่เป็นฟังก์ชันของพิกัดและโมเมนตัม
เราจะสามารถสร้างฮามิลโทเนียนได้จากการการแปลงเลอจองก์
ข้อควรระวังคือในบางระบบ เราจะไม่สามารถเขียนอัตราเร็วของพิกัดทุกๆตัวให้เป็นฟังก์ชันของพิกัดและโมเมนตัมได้ ซึ่งจะทำให้โมเมนตัมทุกตัวไม่เป็นอิสระต่อกันและไม่สามารถใช้ฮามิลโทเนียนอธิบายการวิวัฒน์ไปในเวลาของระบบได้
เมื่อพิจารณาการเปลี่ยนแปลง (variation) ของปริมาณ เราจะได้
จะพบว่าการนิยามโมเมนตัมโดย ทำให้การเปลี่ยนแปลงของ ไม่มีผลเปลี่ยนแปลงของปริมาณนี้อัตโนมัติ (เนื่องจากสัมประสิทธิ์ของพจน์ เป็นศูนย์) ดังนั้นการเปลี่ยนแปลงของปริมาณนี้จะขึ้นกับการเปลี่ยนแปลงของตัวแปรคือพิกัด โมเมนตัมสังยุค และเวลา เนื่องจากเราเรียกปริมาณนี้ว่าฮามิลโทเนียน
จะเห็นว่าฮามิลโทเนียนเป็นฟังก์ชันของตัวแปรสามชนิดดังกล่าว สอดคล้องกับนิยามที่เขียนไว้ด้านบน นอกจากนั้นเราจะได้
ซึ่งมีความสมมาตรอย่างชัดเจนกับนิยามของโมเมนตัม นั่นคือ
ความสัมพันธ์ลักษณะนี้เป็นคุณสมบัติสำคัญอย่างหนึ่งของการแปลงเลอจองก์
เมื่อพิจารณาการเปลี่ยนแปลงของปริมาณ จะพบว่า
และเมื่อใช้นิยามของ จะเห็นว่าปริมาณนี้เป็นฟังก์ชันของตัวแปรคือพิกัด อัตตราเร็ว และเวลา ซึ่งก็คือลากรางเจียนนั่นเอง
นอกจากนั้นเราพบว่า
และ
ซึ่งเป็นความสัมพันธ์ที่มีลักษณะเดียวกัน เนื่องจากตัวแปร และ ไม่ได้มีการแปลงเลอจองก์
ข้อสรุปสำคัญสำหรับหัวข้อนี้คือลากรางเจียนและฮามิลโทเนียนเป็นปริมาณที่เป็นคู่กัน (dual) ซึ่งเป็นผลมาจากคุณสมบัติของการแปลงเลอจองก์
ระบบการสั่นแบบฮาร์โมนิกใน 1 มิติ (1 dimensional harmonic oscillator) สามารถอธิบายโดยลากรางเจียน
โดย คือพิกัดของระบบ (เช่นตำแหน่งของอนุภาคบนสปริง) และ คือค่าคงที่ของระบบนั้น (เช่นค่าคงที่ของสปริง) จะเห็นว่าโมเมนตัมสังยุคของพิกัด คือ
ซึ่งในกรณีนี้จะสามารถแก้สมการและเขียนอัตราเร็วของพิกัด ให้เป็นฟังก์ชันของโมเมนตัมได้
ดังนั้นฮามิลโทเนียนของระบบนี้คือ
สังเกตว่า
เมื่อ คือพลังงานจลน์ (kinetic energy) ซึ่งเขียนเป็นฟังก์ชันของโมเมนตัมสังยุคและ คือพลังงานศักย์ของระบบ
แรงสู่ศูนย์กลางสามารถอธิบายได้โดยศักย์ที่เป็นฟังก์ชันของระยะห่างจากจุดอ้างอิง (origin)
ในกรณีนี้การเลือกใช้พิกัดทรงกลมให้เป็นพิกัดทั่วไปจะทำให้อธิบายระบบได้สะดวกกว่า
การที่ศักย์เป็นฟังก์ชันของระยะห่างจากจุดอ้างอิงอย่างเดียวทำให้ระบบมีสมมาตรภายใต้การหมุน(รอบแกนใดๆก็ได้) ดังนั้นโมเมนตัมเชิงมุมของการหมุนรอบแกนนั้นๆไม่เปลี่ยนแปลง (conserved) ทำให้การเคลื่อนที่ของระบบอยู่ในระบาบ 2 มิติ ดังนั้นเราจำเป็นจะต้องใช้พิกัดแค่สองจากสามตัวในการบอกตำแหน่งของระบบ ลากรางเจียนของระบบนี้คือ
ในกรณีนี้จะมีโมเมนตัมสังยุคของพิกัดสองพิกัดคือ
และ
โดยเราสามารถแก้สมการเขียนอัตตราเร็วในรูปของโมเมนตัมได้คือ
สังเกตว่าอัตราเร็ว เป็นฟังก์ชันของทั้งโมเมนตัมสังยุคของพิกัด เองและฟังก์ชันของพิกัด ด้วย
ในกรณีนี้จะได้
ซึ่งสามารถเขียนเป็นผลรวมของพลังงานจลน์(ที่เป็นฟังก์ชันของโมเมนตัมสังยุค)และพลังงานศักย์ได้เช่นกัน
สำหรับอนุภาคที่มีอัตราเร็วน้อยกว่าอัตราเร็วแสงมากๆ () จะได้ว่าลากรางเจียนของระบบคือ
โดยที่ คือประจุไฟฟ้าของอนุภาค คือศักย์สเกลาร์
ในกรณีนี้โมเมนตัมสังยุคคือ
ซึ่งจะเท่ากับ kinetic momentum ดังนั้นฮามิลโทเนียนของระบบนี้คือ
ซึ่งสามารถเขียนให้อยู่ในรูปผลรวมพลังงานจลน์(เป็นฟังก์ชันของโมเมนตัมสังยุค)และพลังงานศักย์ได้
เมื่ออนุภาคที่มีอัตราเร็วน้อยกว่าอัตราเร็วแสงมากๆ () อยู่ในสนามไฟฟ้า-แม่เหล็ก เราจะต้องเปลี่ยนมาใช้ลากรางเจียนซึ่งมีเทอมที่อธิบายอันตรกริยาระหว่างอนุภาคกับสนามแม่เหล็ก
โดยที่ คือศักย์เว็คเตอร์ (vector potential) ของสนามไฟฟ้า-แม่เหล็ก สังเกตว่าในกรณีนี้เราไม่สามารถนิยามลากรางเจียนได้จากผลต่างของพลังงานจลน์และพลังงานศักย์ (เนื่องจากสนามแม่เหล็กไม่ทำงาน)
ฮามิลโทเนียนของระบบนี้คือ
ซึ่งจะเห็นว่าในกรณีนี้ ฮามิลโทเนียนของระบบจะเท่ากับผลรวมของพลังงานจลน์ซึ่งเป็นฟังก์ชันของโมเมนตัมสังยุคและพลังงานศักย์จากสนามไฟฟ้า แต่ไม่มีเทอม"พลังงาน"ในรูป ซึ่งจริงๆแล้วเทอมนี้เป็นเพียงตัวกำหนดอันตรกริยา(interaction) ระหว่างอนุภาคกับสนามแม่เหล็ก
ในกรณีที่เราทราบศักย์ V(q) ของระบบแล้วต้องการที่จะสร้างฮามิลโทเนียนของระบบนั้น การจะเขียน เมื่อ คือพลังงานจลน์ของระบบที่เป็นฟังก็ชันของโมเมนตัมสังยุคและ คือฟังก์ชันของพลังงานศักย์ จะต้องทำด้วยความระมัดระวัง เช่นในตัวอย่างข้างบนสำหรับอนุภาคในสนามไฟฟ้า-แม่เหล็ก
เมื่ออัตรเร็วที่ปรากฏในลากรางเจียนของระบบใดๆอยู่ในรูปยกกำลังสองเท่านั้น เราจะสามารถเขียนลากรางเจียนจะอยู่ในรูปผลต่างระหว่างพลังงานจลน์และพลังงานศักย์
และสามารถเขียนพจน์ของ"พลังงานจลน์"ได้เป็น
โดยที่ อาจจะเป็นฟังชันก์ของพิกัดได้ เราจะพบว่าโมเมนตัมสังยุคคือ
ในกรณีที่สามารถแก้สมการนี้เพื่อเขียนอัตราเร็วให้เป็นฟังก์ชันของโมเมนตัมสังยุคได้
เมื่อ คือฟังก์ชันที่เหมาะสม เราจะพบว่า
ดังนั้นฮามิลโทเนียนของระบบนี้จะเป็น
โดยที่พลังงานจลน์เป็นฟังก์ชันของโมเมนตัมสังยุค นั่นคือเราจะสามารถเขียนฮามิลโทเนียนให้เป็นผลรวมของพลังงานจลน์และพลังงานศักย์ได้เมื่อลากรางเจียนเป็นฟังก์ชันของอัตราเร็วกำลังสอง(และเป็นฟังก์ชันของพิกัด)
สำหรับลากรางเจียนที่เขียนอยู่ในรูป
โดยที่ และ อาจจะเป็นฟังก์ชันของพิกัด จะเห็นว่า
ดังนั้น
สังเกตว่าเทอมที่เป็นเชิงเส้น(linear)ของอัตราเร็วในลากรางเจียนจะไม่ปรากฏในฮามิลโทเนียน ดังนั้นเราจึงจำเป็นจะต้องระมัดระวังในการนิยามส่วนที่จะเรียกว่าพลังงานจลน์และพลังงานศักย์ในลากรางเจียน ซึ่งอาจจะทำให้ได้ฮามิลโทเนียนที่ไม่ถูกต้องได้ถ้าใช้"วิธีลัด"
ลากรางเจียนของอนุภาคที่เคลื่อนที่ด้วยแรงสู่ศูนย์กลางจากตัวอย่างข้างบน
เป็นฟังก์ชันของ โดย และ ในกรณีนี้จะเห็นว่าฮามิลโทเนียนสามารถเขียนเป็นนผลรวมของพลังงานจลน์และพลังงานศักย์ได้
ส่วนในกรณีของอนุภาคในสนามไฟฟ้า-แม่เหล็กจะเห็นว่าลากรางเจียนมีเทอมที่เป็นฟังก์ชันของอัตราเร็วยกกำลังหนึ่งอยู่ คือเทอม ซึ่งทำให้ไม่สามารถเขียนฮามิลโทเนียนเป็นผลรวมของพลังงานจลน์และพลังงานศักย์ได้ถ้าเรามองว่าเทอมดังกล่าวเป็นส่วนหนึ่งของพลังงานศักย์
สิ่งสำคัญในการสร้างฮามิลโทเนียนคือระบบสมการที่ใช้นิยามโมเมนตัมสังยุคจะต้องสามารถแก้ได้เพื่อจะเขียนอัตราเร็วเป็นฟังก์ชันของพิกัด โมเมนตัมสังยุค และเวลา
เมื่อลากรางเจียนเป็นฟังก์ชันสม่ำเสมอดีกรีหนึ่งของอัตราเร็ว (Homogeneous function)
เมื่อใช้ทฤษฎีบทของออยเลอร์ (Euler) สำหรับฟังก์สม่ำเสมอ เราจะพบว่า
ดังนั้น
ตัวอย่างของลากรางเจียนที่มีคุณสมบัตินี้คือลากรางเจียนของอนุภาค relativistic ซึ่งเราสามารถให้เวลา เป็นตัวแปรพลวัติ (dynamical variable) ได้ถ้าเราใช้พารามิเตอร์ ใดๆในการอธิบายการเคลื่อนที่โดยที่ กล่าวคือ
สังเกตว่าเพื่อความสะดวก เราจะใช้หน่วยธรรมชาติ (natural units) คือหน่วยที่เลือกให้อัตราเร็วแสงและค่าคงที่ของพลังค์ (Planck constant) มีค่าเป็นหนึ่ง
ในกรณีที่เราเลือก ที่ทำให้
เราจะสามารถใช้ เป็นเวลาที่วัดบนกรอบอ้างอิงที่เป็นกรอบอ้างอิงเดียวกับนาฬิกาได้ (proper time) โดยเพื่อความสะดวกในการเขียนสมการในตัวอย่างนี้ เราจะใช้การเติมจุดข้างบนตัวแปร
ลากรางเจียนที่สามารถอธิบายการเคลื่อนที่ของอนุภาคได้คือ
เราจะพบว่าลากรางเจียนนี้เป็นฟังก์ชันสม่ำเสมอของอัตราเร็ว
โมเมนตัมสังยุคของอัตราเร็วใน spacetime คือ
เมื่อใช้วิธีจากตัวอย่างข้างบน (ทฤษฎีบทของออยเลอร์) จะเห็นว่าฮามิลโทเนียนเป็นศูนย์
สาเหตุที่ฮามิลโทเนียนเป็นศูนย์คือ โมเมนตัมสังยุคมีคุณสมบัติ
ซึ่งแสดงว่าเส้นใดๆในปริภูมิ (space) ของ ที่ลากระหว่างจุด ใดๆกับจุด จะถูกแม๊ป (map) ไปยังจุดๆเดียวในปริภูมิของโมเมนตัม ดังนั้นเราจึงสรุปได้ว่าปริภูมิของอัตราเร็วจะถูกแม๊ปไปยังพื้นผิวหนึ่ง (surface) ในปริภูมิของโมเมนตัม ซึ่งพื้นผิวนี้จะถูกนิยามโดยโมเมนตัมสังยุค
ทำให้ไม่สามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคได้ นอกจากนั้น สังเกตว่า
ก็คือความสัมพันธ์ระหว่างโมเมนตัม มวล และพลังงานของอนุภาคที่ได้จากทฤษฎัสัมพัธภาพนั่นเอง ดังนั้นพื้นผิวดังกล่าวจึงเรียกว่า mass-shell constraint surface
ตัวอย่างนี้แสดงให้เห็นว่าการที่สมการความสัมพันธ์ระหว่างโมเมนตัมสังยุคและอัตตราเร็ว (นิยามของโมเมนตัมสังยุค)ไม่สามารถถูกแก้เพื่อเขียนอัตราเร็วทุกตัวในรูปของโมเมนตัมสังยุคได้ โมเมนตัมของระบบจะไม่เป็นปริมาณอิสระต่อกัน ทำให้ไม่สามารถอธิบายระบบด้วยฮามิลโทเนียน
ในกรณีที่ใช้ตัวแปรหลายตัวในการอธิบายระบบ เมื่อต้องการทราบว่าโมเมนตัมสังยุคเป็นตัวแปรอิสระต่อกันหรือไม่ เราจะพิจารณาดีเทอร์มิแนนท์ (determinant) ของแมตริกซ์ที่สร้างจากอนุพันธ์อันดับสองของนิยามของโมเมนตัม ซึ่งทางคณิตศาสตร์มักจะเรียกแมตริกซ์นี้ว่าเฮซเซียน (Hessian matrix) โดยแมตริกซ์นี้มีสมาชิกตัวแถวที่ และหลักที่ คือ
โดยเราจะสามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคก็ต่อเมื่อดีเทอร์มิแนนท์ของแมตริกซ์นี้ไม่เป็นศูนย์ นั่นคือเราจะได้
ก็ต่อเมื่อ
ส่วนในกรณีที่
เราจะไม่สามารถแก้สมการเขียนอัตราเร็วในรูปของโมเมนตัมสังยุคได้ ทำให้ไม่สามารถอธิบายระบบด้วยฮามิลโทเนียน ซึ่งในกรณีนี้เราจะต้องใช้วิธีสร้างฮามิลโทเนียนสำหรับระบบที่มี constraint ซึ่งผู้อ่านสามารถศึกษาเพิ่มเติมได้จากแหล่งข้อมูลอ้างอิงด้านล่าง