ค้นหา
  
Search Engine Optimization Services (SEO)

Meta-analysis

การวิเคราะห์อภิมาน (อังกฤษ: meta-analysis) หมายถึงวิธีการทางสถิติที่ใช้เพื่อเปรียบเทียบและรวบรวมข้อมูลจากงานวิจัยต่าง ๆ กัน โดยมีจุดมุ่งหมายเพื่อกำหนดสิ่งที่พบเหมือน ๆ กัน สิ่งที่ต่างกัน และความสัมพันธ์ที่น่าสนใจอื่น ๆ ที่อาจปรากฏด้วยการศึกษางานวิจัยหลาย ๆ งาน Meta-analysis สามารถพิจารณาได้ว่าเป็นการ "ทำการศึกษาเกี่ยวกับการศึกษาอื่นที่ทำมาแล้ว" โดยแบบที่ง่ายที่สุด Meta-analysis จะทำโดยกำหนดการวัดค่าทางสถิติที่เหมือนกันในงานวิจัยหลาย ๆ งาน เช่น ขนาดผล (effect size) หรือ p-value แล้วสร้างค่าเฉลี่ยถ่วงน้ำหนัก (weighted average) ของการวัดค่าที่เหมือนกัน โดยน้ำหนักที่ให้มักจะขึ้นอยู่กับขนาดตัวอย่าง (sample size) ของแต่ละงานวิจัย แต่ก็สามารถขึ้นอยู่กับองค์ประกอบอย่างอื่น ๆ เช่นคุณภาพของงานศึกษาด้วย

แรงจูงใจที่จะทำงานศึกษาแบบ meta-analysis ก็เพื่อรวมข้อมูลเพื่อจะเพิ่มกำลังทางสถิติ (statistical power) ของค่าที่สนใจ เมื่อเปรียบเทียบกับเพียงใช้ค่าวัดจากงานศึกษาเดียว ทำงานศึกษาเช่นนี้ นักวิจัยต้องเลือกองค์ประกอบหลายอย่างที่อาจมีอิทธิพลต่อผลงาน รวมทั้งวิธีการสืบหางานวิจัย การเลือกงานวิจัยตามกฏเกณฑ์ที่เป็นกลาง การแก้ปัญหาเมื่อมีข้อมูลไม่ครบ การวิเคราะห์ข้อมูลที่ได้ และการแก้ปัญหาหรือไม่แก้ปัญหาความเอนเอียงในการตีพิมพ์

การศึกษาแบบ Meta-analysis มักจะเป็นส่วนสำคัญของงานปริทัศน์แบบทั้งระบบ (systematic review) แต่ไม่เสมอไป ยกตัวอย่างเช่น อาจจะมีการทำงานแบบ Meta-analysis โดยใช้ผลงานการทดลองทางคลินิก (clinical trial) เกี่ยวกับการรักษาทางแพทย์อย่างหนึ่ง เพื่อได้ความเข้าใจที่ดีขึ้นว่าการรักษาได้ผลแค่ไหน

เมื่อใช้ศัพท์ต่าง ๆ ที่กำหนดโดยองค์กร Cochrane Collaboration คำว่า meta-analysis ก็จะหมายถึงวิธีทางสถิติที่ใช้ในการประมวลหลักฐาน โดยไม่รวมเอาการประมวลข้อมูลรูปแบบอื่น ๆ เช่น research synthesis (แปลว่า การสังเคราะห์งานวิจัย) หรือ evidence synthesis (แปลว่า การสังเคราะห์หลักฐาน) ที่ใช้ประมวลข้อมูลจากงานศึกษาเชิงคุณภาพ (qualitative studies) ซึ่งใช้ในงานปริทัศน์แบบทั้งระบบ

งานศึกษาแบบ Meta-analysis ที่เก่าแก่ที่สุดเกิดขึ้นเมื่อคริสต์ทศวรรษที่ 12 ในประเทศจีน เมื่อนักปราชญ์จู ซี (??, ค.ศ. 1130~1200) สร้างหลักปรัชญาโดยรวบรวมข้อมูลจากงานหนังสือต่าง ๆ จู ซี เรียกวิธีการศึกษาของตนว่า "ทฤษฏีกฏเกณฑ์ทั้งระบบ" (อังกฤษ: Theory of Systematic Rule, จีน: ???) ส่วนในประวัติชาวตะวันตก รากฐานของ meta-analysis เริ่มมาจากการศึกษาทางดาราศาสตร์ในคริสต์ศตวรรษที่ 17 แต่การประมวลผลการทดลองทางคลินิกด้วย meta-analysis เป็นครั้งแรก เกิดขึ้นเมื่อปี ค.ศ. 1904 เผยแพร่ในวารสารแพทย์อังกฤษ (British Medical Journal) ซึ่งแสดงประสิทธิภาพของวัคซีนไข้รากสาดน้อย ทำโดยนักสถิติชาวอังกฤษคาร์ล เพียร์สัน ส่วนงาน meta-analysis ที่รวบรวมงานศึกษาที่มีแนวคิดเดียวกันทั้งหมดเกี่ยวกับประเด็นวิจัยเดียวกัน แต่ทำโดยนักวิจัยกลุ่มต่าง ๆ กัน เป็นหนังสือที่ตีพิมพ์ในปี ค.ศ. 1940 ชื่อว่า Extrasensory Perception After Sixty Years (ประสาทที่ 6 หลังจากผ่านมา 60 ปี) โดยนักจิตวิทยาของมหาวิทยาลัยดุ๊กคือ ดร. โจเซ็ฟ แพร็ตต์ และคณะ เป็นงานปริทัศน์รวบรวมผลงานวิจัย 145 ผลงานในเรื่อง ESP (การรับรู้นอกประสาทสัมผัส) ที่พิมพ์ในระหว่างปี ค.ศ. 1882-1939 เป็นงานปริทัศน์ที่มีการประเมินระดับอิทธิพลของงานศึกษาที่ไม่ได้เผยแพร่ (คือประเมินอิทธิพลของความเอนเอียงในการตีพิมพ์)

โดยแนวคิดแล้ว งานศึกษาแบบ meta-analysis ใช้วิธีทางสถิติเพื่อประมวลผลข้อมูลจากงานศึกษาหลาย ๆ งานเพื่อ

โดยพื้นฐานแล้ว งานศึกษาเช่นนี้ให้ผลเป็นค่าเฉลี่ยถ่วงน้ำหนัก (weighted average) ซึ่งมีข้อดีหลายอย่าง คือ

งานศึกษา meta-analysis ที่ใช้งานวิจัยหลายงานที่มีขนาดตัวอย่างน้อย ไม่สามารถพยากรณ์ผลงานวิจัยงานเดียวที่มีขนาดตัวอย่างมากได้ นักวิชาการบางท่านแย้งว่า จุดอ่อนของวิธีการศึกษาเช่นนี้ก็คือ ไม่สามารถจะควบคุมความเอนเอียงต่าง ๆ ที่มาจากงานที่ใช้เป็นข้อมูลได้ คืองาน meta-analysis ที่มีการออกแบบดี แต่ใช้ข้อมูลจากงานวิจัยที่มีการออกแบบที่ไม่ดี ก็ยังจะคงให้ผลเป็นค่าต่าง ๆ ทางสถิติที่ไม่ดี ดังนั้น ควรจะใช้งานวิจัยที่มีระเบียบวิธี (methodology) ที่ดีเท่านั้น ซึ่งเป็นกฏปฏิบัติที่เรียกว่า "best evidence synthesis" (แปลว่า การสังเคราะห์ผลโดยใช้หลักฐานที่ดีที่สุด) ส่วนนักวิชาการท่านอื่นคิดว่าสามารถรวมงานวิจัยที่ออกแบบไม่ค่อยดีได้ โดยเพิ่มตัวแปร (study-level predictor) ที่บ่งถึงคุณภาพระเบียบวิธีของผลงาน เพื่อตรวจสอบคุณภาพของผลงานเทียบกับระดับของผลที่เป็นประเด็นวิจัยได้ แต่ก็มีนักวิชาการท่านอื่นที่แย้งว่า วิธีที่ดีกว่าก็คือให้เก็บรักษาข้อมูลของความแปรปรวน (variance) ของตัวอย่างการศึกษาไว้ และให้ใช้ข้อมูลงานวิจัยที่มีอยู่ให้มากที่สุด เพราะว่า กฏเกณฑ์ที่คัดสรรงานวิจัยโดยคุณภาพระเบียบวิธี จะทำให้เกิดความไม่เป็นกลาง (subjectivity) เป็นการทำเหตุผลที่จะศึกษาโดยวิธีนี้ให้เป็นโมฆะ

ปัญหาอีกอย่างหนึ่งที่อาจจะมีก็คือการใช้ข้อมูลที่มีการตีพิมพ์ ซึ่งอาจจะทำให้แสดงผลที่เกินความจริงเพราะเหตุแห่งความเอนเอียงในการตีพิมพ์ เพราะว่า งานวิจัยหลายงานได้พบว่า งานวิจัยที่แสดงผลเปล่า (หรือผลลบ) มีโอกาสน้อยกว่าที่จะรับเผยแพร่ ยกตัวอย่างเช่น นักวิจัยอาจจะไม่ได้สืบหาผลงานที่เป็นวิทยานิพนธ์ หรืองานที่ไม่ได้รับการเผยแพร่ นี่เป็นปัญหาที่แก้ได้ยาก เพราะไม่มีใครรู้ว่า มีผลงานกี่งานที่ไม่ได้รายงาน

ความเอนเอียงในการตีพิมพ์เช่นนี้มีผลเป็นขนาดผล (ที่เป็นประเด็นวิจัย) ที่ไม่ตรงกับความจริง ทำให้เกิดเหตุผลวิบัติประเภท base rate fallacy ที่นัยสำคัญของงานที่เกิดการตีพิมพ์เกินความจริง เพราะว่างานอื่น ๆ (ที่ไม่แสดงนัยสำคัญ) ผู้วิจัยไม่ส่งเพื่อพิมพ์ หรือวารสารปฏิเสธที่จะพิมพ์ ปัญหาเช่นนี้ต้องมีการพิจารณาอย่างถี่ถ้วนเมื่อแปลผลที่เกิดจาก meta-analysis

การแจกแจงของขนาดผล (distribution of effect sizes) สามารถเห็นได้ด้วยการวาด funnel plot ซึ่งเป็นแผนภาพกระจายของขนาดตัวอย่าง (sample size) และขนาดผล (effect size) คือจริง ๆ แล้ว ในขนาดผลบางอย่าง ตัวอย่างยิ่งมีน้อยเท่าใด ความน่าจะเป็นก็จะสูงขึ้นเท่านั้นในการพบขนาดผลนั้น ในขณะเดียวกัน ขนาดผลยิ่งสูงขึ้นเท่าไร ความน่าจะเป็นที่งานที่มีตัวอย่างมากจะแสดงผลที่ระดับนั้นโดยสุ่มก็เป็นไปได้น้อยลงเท่านั้น ถ้ามีงานที่แสดงผลเปล่าที่ไม่ได้พิมพ์เป็นจำนวนมาก งานที่แสดงผลบวกที่เหลือจะทำให้เกิด funnel plot ที่ขนาดผลจะมีลักษณะเป็นสัดส่วนผกผันกับขนาดตัวอย่าง กล่าวโดยอีกนัยก็คือ ขนาดผลยิ่งสูงขึ้นเท่าไร ขนาดตัวอย่างก็น้อยลงเท่านั้น ดังนั้นส่วนหนึ่งของผลที่แสดงนัยสำคัญนั้น จะเป็นค่าที่เกิดขึ้นโดยสุ่มและไม่มีความสมดุลใน plot เพราะงานวิจัยแสดงผลลบไม่ได้รับการพิมพ์ โดยเปรียบเทียบกัน ถ้างานวิจัยโดยมาก (ทั้งผลบวกผลลบผลเปล่า) ได้รับการพิมพ์ ขนาดผลที่แสดงจะไม่มีอิทธิพลจากขนาดตัวอย่าง และ funnel plot จะออกมาสมดุล ดังนั้น ถ้าไม่มีความเอนเอียงในการตีพิมพ์ ก็จะไม่มีความสัมพันธ์กันระหว่างขนาดตัวอย่างและขนาดผล ดังนั้น ความสัมพันธ์เชิงลบระหว่างขนาดตัวอย่างและขนาดผลจึงบอกเป็นนัยว่า งานศึกษาที่พบนัยสำคัญในผล มีการตีพิมพ์มากกว่า มีวิธีการหลายอย่างที่สามารถใช้แก้ปัญหาความเอนเอียงในการตีพิมพ์ เช่นการตัดข้อมูลออกแต่จะต้องเดาว่า ควรจะตัดออกที่จุดไหน

วิธีการตรวจจับความเอนเอียงในการตีพิมพ์เป็นเรื่องที่ยังไม่มีที่ยุติ เพราะมักจะมีกำลังทางสถิติต่ำในการตรวจจับ และสามารถแม้จะให้ผลบวกที่ไม่เป็นจริงในบางกรณี ยกตัวอย่างเช่น ในงานที่มีขนาดผลต่ำ ถ้ามีความแตกต่างกันในระเบียบวิธีระหว่างงานที่มีขนาดตัวอย่างน้อยและงานที่มีขนาดตัวอย่างมาก อาจทำให้เกิดความแตกต่างกันของขนาดผลที่ดูเหมือนจะเป็นความเอนเอียงในการตีพิมพ์[โปรดขยายความ]

นอกจากนั้นแล้วยังมีวิธี "Tandem Method" ที่ใช้ในการวิเคราะห์หาความเอนเอียงในการตีพิมพ์ และสามารถลดระดับผลบวกที่ไม่จริง เป็นวิธีที่มี 3 ขั้นตอน อย่างไรก็ดี มีการเสนอว่า 25% ของผลงาน meta-analysis ที่เกี่ยวกับจิตวิทยา อาจจะมีความเอนเอียงในการตีพิมพ์ แต่ว่า เนื่องจากว่าวิธีการตรวจจับมีกำลังต่ำ ดังนั้น การประเมินระดับความเอนเอียงในการตีพิมพ์อาจจะต่ำเกินไปจากความเป็นจริง

การอภิปรายเรื่องความเอนเอียงในการตีพิมพ์ มักจะพุ่งความสนใจไปในเรื่องข้อปฏิบัติในการตีพิมพ์ที่เน้นงานที่พบผลที่มีนัยสำคัญทางสถิติ แต่ว่า จริง ๆ แล้ว แม้นักวิจัยเองก็มีพฤติกรรมที่เป็นปัญหาบางอย่าง เช่นการเปลี่ยนรูปแบบทางสถิติของงานวิจัยไปเรื่อย ๆ จนกระทั่งพบผลที่มีนัยสำคัญ เพื่อสนับสนุนสมมติฐานของตน และเพราะว่า พฤติกรรมที่เป็นปัญหาเช่นนี้จะไม่ปรากฏว่ามีความสัมพันธ์กับขนาดตัวอย่าง ดังนั้น ปัญหาเช่นนี้จะไม่ปรากฏให้เห็นใน funnel plot และอาจจะไม่สามารถตรวจจับได้โดยใช้วิธีอื่น ๆ ที่ใช้ตรวจจับความเอนเอียงในการตีพิมพ์

นอกจากนั้นแล้ว ยังมีปัญหาที่เป็นจุดอ่อนอื่น ๆ รวมทั้ง Simpson's paradox (คืองานวิจัยมีขนาดตัวอย่างน้อยสองงานอาจจะชี้ผลไปทางหนึ่ง ในขณะที่งานรวมข้อมูลอาจจะชี้ไปอีกทางหนึ่ง) และความไม่เป็นกลาง (subjectivity) ในวิธีการประมวลค่าของผล หรือในการตัดสินว่างานวิจัยงานไหนควรจะได้รับเลือก

ปัญหาที่หนักที่สุดของ meta-analysis มักจะเกิดขึ้นเมื่อผู้ทำงานมีแรงจูงใจทางเศรษฐกิจ ทางสังคม หรือทางการเมือง เช่นมีความต้องการที่จะสนับสนุนหรือคัดค้านการออกกฎหมาย ผู้ทำงานที่มีแรงจูงใจเช่นนี้มีโอกาสมากกว่าที่จะใช้ meta-analysis อย่างผิด ๆ เพราะความเอนเอียงส่วนตัว ยกตัวอย่างเช่น งานวิจัยที่แสดงผลสอดคล้องกับความต้องการของผู้ทำงาน Meta analysis มีโอกาสที่จะรับเลือกใช้ข้อมูล (ในการประมวลผล) ในขณะที่งานที่ไม่มีความสอดคล้อง อาจจะไม่ได้รับความสนใจหรืออาจจะกำหนดว่า ไม่น่าเชื่อถือ ยิ่งไปกว่านั้น งานวิจัยที่แสดงผลสอดคล้องเองอาจจะมีความเอนเอียงอยู่แล้ว หรือผู้ทำงานของงานวิจัยนั้นเองอาจจะได้รับผลประโยชน์ในการแสดงผลที่สนับสนุนจุดมุ่งหมายทางการเมือง ทางสังคม หรือทางเศรษฐกิจ โดยใช้วิธีเลือกข้อมูลส่วนน้อยกว่าแต่สนับสนุนผลที่ต้องการ และไม่เลือกเอาข้อมูลที่ครอบคลุมกว่าแต่ไม่สนับสนุน อิทธิพลของความเอนเอียงเหล่านี้ต่อผลงาน meta-analysis เป็นไปได้เพราะว่า ระเบียบวิธีทำงาน meta-analysis สามารถยืดหยุ่นได้

ในปี ค.ศ. 2011 มีงานวิจัยหนึ่งที่มุ่งจะเปิดเผยการขัดกันแห่งผลประโยชน์ของงานวิจัยที่ได้รับเลือกเพื่อใช้ในงาน meta-analysis ทางการแพทย์ งานวิจัยทำการปริทัศน์งาน meta-analysis ต่าง ๆ 29 งาน แล้วพบว่า การขัดกันแห่งผลประโยชน์ของงานวิจัยที่ได้รับเลือกเพื่อใช้ในงาน แทบไม่มีการเปิดเผยโดยประการทั้งปวง งาน 29 งานนี้รวม

งาน 29 งานนี้ประมวลข้อมูลจากงานวิจัยแบบสุ่มและมีกลุ่มควบคุม (randomized controlled trials) 509 งาน จากงานเหล่านี้ 318 งานรายงานแหล่งทุนการวิจัย โดยที่ 219 งาน (69%) รับทุนมาจากอุตสาหกรรมและธุรกิจ[โปรดขยายความ] จากงาน 509 งาน 132 งานรายงานการขัดกันแห่งผลประโยชน์ของผู้ทำ โดยมี 91 งาน (69%) ที่เปิดเผยว่า ผู้ทำงานหนึ่งหรือมากกว่าหนึ่ง มีผลประโยชน์ทางการเงินร่วมกับอุตสาหกรรมและธุรกิจ แต่ว่า ข้อมูลเช่นนี้ แทบไม่เคยเปิดเผยในงาน meta-analysis เลย คือ จากงาน 29 งาน มีเพียงแค่ 2 (7%) ที่แสดงแหล่งทุนการวิจัย และไม่มีการรายงานผลประโยชน์ทางการเงินของผู้ทำงานวิจัยเลย ผู้ทำงานปริทัศน์นี้สรุปว่า

เพราะไม่มีการชี้แจงความขัดกันแห่งผลประโยชน์ เนื่องจากได้รับเงินทุนหรือมีผลประโยชน์ทางการเงินร่วมกับอุตสาหกรรมและธุรกิจ สำหรับงานวิจัยแบบสุ่มและมีกลุ่มควบคุมที่รวมอยู่ใน meta-analysis (ดังนั้น) ความเข้าใจและการประเมินหลักฐานที่ได้มาจาก meta-analysis อาจจะมีความบิดเบือน

meta-regression เป็นเทคนิคที่ใช้ในงาน meta-analysis เพื่อตรวจสอบอิทธิพลของตัวแปร moderator ต่อขนาดผลที่เป็นประเด็นวิจัยโดยใช้เทคนิคทาง regression ต่าง ๆ meta-regression นั้นมีประสิทธิภาพสำหรับงานนี้มากกว่าเทคนิค regression ธรรมดาทั่ว ๆ ไป

ส่วนมาตรฐานของรูปแบบการรายงาน ให้ดูรายละเอียดในเอกสาร Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA แปลว่า รายการข้อมูลที่ควรรายงานในงานปริทัศน์แบบทั้งระบบและ meta-analysis)


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301